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ABSTRACT
Geometric non-linear analyses are performed utilising two 
main control factors, including load and displacement 
parameters. In this paper, a new incremental-iterative scheme 
without predictor step is suggested. Using the obtained 
constraint equation, the load factor increment is calculated. It 
is assumed that the path corresponding to the iterative analysis 
is a parabolic curve. Two different mathematical procedures 
are developed in order to form this new constraint equation. 
In the first formulation, two reasonable assumptions are 
considered for the parabolic path. The length of iterative steps’ 
curve is minimised in the second scheme. To corroborate the 
efficiency and capability of the proposed technique, several 
structures with complex non-linear behaviour are solved.

1.  Introduction

Structural analysis can be performed linearly or non-linearly. In the linear analysis, 
a simple behaviour is considered for structures. Note that this behaviour is unre-
alistic when large loads are applied to the structures or thin members are used. To 
achieve accurate responses, non-linear analyses are required for this condition. 
The response of structures might include material and/or geometric nonlinearities. 
In the geometric non-linear analysis, the initial shape of the structure is changed 
because of large deformations. Thus far, various strategies have been proposed to 
conduct the geometric non-linear analysis of the structures.

One of the old and elementary analysis methods is named pure incremental 
strategy. This algorithm performs weakly in the problems with large displacements 
and rotations (Chajes & Churchill, 1987). In addition, more efficient techniques 
in the structural non-linear analysis are the incremental-iterative tactics, such as 
well-known Newton-Raphson scheme. In each step of Newton-Raphson method, 
the load level is constant. In this procedure, the stiffness matrix is required to be 
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updated successively. As a result, this approach is computationally expensive and 
slow to perform for the structures with a large number of degrees of freedom. To 
remove these deficiencies, the modified Newton-Raphson algorithm was sug-
gested. In this technique, the stiffness matrix is only calculated at the beginning of 
each step, and this matrix is used for the other iterations throughout the increment 
(Crisfield, 1979). It should be noted, this way is not able to trace the load limit 
points, appropriately. Considering the weakness of this strategy, the displacement 
control scheme was proposed. Accordingly, a displacement component is assumed 
to be constant in the iterations of each increment.

Note that the aforementioned tactic fails in presenting the snap-back regions 
of the structural equilibrium path (Zienkiewicz, 1971). For solving this issue, 
Wempner and Riks suggested the arc length algorithms. The related constraint 
equations define the distance between the last equilibrium point and iterative 
analyses path (Riks, 1972; Wempner, 1971). This route is named arc length, and 
should be defined as a constant value in the first iteration. Moreover, several 
researchers have suggested some orthogonal methods. For instance, the normal 
plane procedure and updated normal plane approach are the oldest and most 
famous ones (Ramm, 1981; Riks, 1979). In the same area of study, Fried developed 
the orthogonal vector method (Fried, 1984). Crisfield ignored the load factor in 
the constraint equation of the cylindrical arc length strategy and proposed the 
updated-Wempner-Riks approach (Crisfield, 1981). In another study, Simons  
et al. organised the normal unbalanced displacement strategy utilising all the 
entries of the displacement vector in the solution procedure (Simons, Bergan, 
& Nygard, 1984). Moreover, Rezaiee-Pajand and Tatar found other constraint 
equations by applying the orthogonal condition (Rezaiee-Pajand & Tatar, 2006).

In 1981 and 1985, the work control scheme was presented in which the work 
increment was supposed to be constant at each step (Powell & Simons, 1981; 
Yang & McGuire, 1985). In another research, the normal flow approach was 
established based on the iterative analysis, which is performed on the perpen-
dicular lines to Davidenko’s flow. Changing the perturbation coefficient could 
generate Davidenko’s flow curves (Allgower & Georg, 1979). The modified ver-
sion of this method was presented by Saffari et al. (Saffari, Fadaee, & Tabatabaei, 
2008). Recently, the angle between the predictor and corrector path was assessed. 
Rezaiee-Pajand and Afsharimoghadam took advantage of two-variable objective 
functions and obtained two new constraint equations for geometric nonlinear 
analysis (Rezaiee-Pajand & Afsharimoghadam, 2017).

As yet, various methods have been proposed for reaching the responses of the 
structural equilibrium path, one of which is based on mixing the orthogonal tactics 
with Quasi-Newton procedures (Krenk & Hededal, 1995). In another publication, 
Rezaiee-Pajand and Boroshaki recommended the variant arc length method for 
assessing the nonlinear behaviour of the structures (Rezaiee-Pajand & Boroshaki, 
1999). Kim and Kim employed neural networks and Newton-Raphson algorithms 
in the predictor and corrector steps, respectively (Kim & Kim, 2001). In 2004, the 
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non-linear analyses of the trusses were performed by minimising the total energy 
of the structure (Toklu, 2004). Similarly, using analytical formulation, Ligaro and 
Valvo minimised the structural total energy to evaluate the nonlinear behaviour 
of the regular pyramid truss (Ligaro & Valvo, 2006).

Several researchers have attempted to minimise a few of the residual parame-
ters so as to guarantee the process convergence in the analysis steps. In the other 
words, an attempt was made to close the estimated responses to the true struc-
tural equilibrium path. Herein, Bergan proposed a new relation by minimising 
the reduced residual load (Bergan, 1980). In 1988, Chan suggested a method in 
which the residual displacements were minimised. In this procedure, the dis-
placement criterion was used to finish the iterations of each increment. It is worth 
emphasising that this method traces the shortest path to achieve the solution 
convergence (Chan, 1988). To pass the load and displacement limit points, Yang 
and Shieh proposed the generalised displacement control strategy (Yang & Shieh, 
1990). Cardoso and Fonseca reflected that the generalised displacement control 
technique is the same as the normal cylindrical arc length technique (Cardoso & 
Fonseca, 2007). In another study, Rezaiee-Pajand and Tatar suggested the residual 
length minimisation algorithm (Rezaiee-Pajand & Tatar, 2009). Similarly, by utilis-
ing the geometric approach, the area and perimeter of a residual rectangular were 
minimised in the iterative steps (Rezaiee-Pajand, Tatar, & Moghaddasie, 2009).

It is significant to mention that the arc length formulation can be applied in 
both load and displacement spaces. However, this way brings about numeri-
cal difficulties. In order to ease this process, Krishnamoorthy et al. proposed a 
three-parameter arc length method. It is important to note that, the constraint 
equations are dimensionless in this scheme (Krishnamoorthy, Ramesh, & Dinesh, 
1996). In an extensive study, the capabilities of the different geometric non-linear 
analysis approaches were compared (Rezaiee-Pajand, Ghalishooyan, & Salehi-
Ahmadabad, 2013).

As a different way, the dynamic relaxation (DR) algorithm was employed for the 
post-buckling analysis of the trusses (Papadrakakis, 1983). In fact, the dynamic 
relaxation method is an explicit approach for solving the simultaneous systems 
of equations. In this kind of non-linear solver, the fictitious mass and damping 
are added to the static governing equations, and an artificial dynamic system 
is built for the structural behaviour. Several ways of formulating these strate-
gies are available in the related literature (Rezaiee-Pajand & Alamatian, 2008, 
2010, 2011; Rezaiee-Pajand, Kadkhodayan, Alamatian, & Zhang, 2011; Rezaiee-
Pajand & Sarafrazi, 2010, 2011; Rezaiee-Pajand & Taghavian-Hakkak, 2006). In 
the recent years, Rezaiee-pajand et al. have performed many nonlinear structural 
analyses by these procedures (Rezaiee-Pajand, Kadkhodayan, & Alamatian, 2012;  
Rezaiee-Pajand, Sarafrazi, & Rezaiee, 2012; Rezaiee-Pajand & Rezaee, 2014; 
Rezaiee-Pajand & Estiri, 2016a, 2016b, 2016c, 2016d).

In what follows, the studies conducted on the stiffness of the frame structures 
are reviewed briefly. In 1965, the first geometric non-linear stiffness matrix of the 
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frame structures was formulated (Saafan, 1965). Later, Connor et al. used a simple 
stiffness matrix in specific conditions (Connor, Logcher, & Chan, 1968). Tezcan 
and Mahapatra applied the updated Lagrangian method to formulate a simple 
stiffness matrix for three-dimensional frame members with small deformations. 
This stiffness matrix is asymmetric, and it is unsuitable for the non-prismatic 
members (Tezcan & Mahapatra, 1969). In another study, Oran found a symmetric 
stiffness matrix for the plane and space frame members with small deformations 
and large rotations (Oran, 1973a, 1973b). In 1973, the elastic frame structures and 
beams were analysed via simple equalities (Yang, 1973). Wen and Rahimzadeh 
considered small nodal rotations and large member deformations for analysing the 
frame structures. They developed a tangential stiffness matrix which is successful 
in the analysis of the structures with small displacements, although it was required 
to be modified for those with large displacements (Wen & Rahimzadeh, 1983). In 
another research, Meek et al. used the third-order deformations and large rotations 
for the analysis of the space frames. They took advantage of the suitable shape 
functions to account for large deformations in the analysis (Meek & Loganathan, 
1989; Meek & Tan, 1984). Furthermore, applying the virtual work principle and 
non-linear strains contribute towards obtaining a new stiffness matrix, including 
two parts, for the three-dimensional beams with non-uniform torsion (Yang & 
McGuire, 1986).

Spillers utilised Taylor’s expansion series and equilibrium equation to develop 
the asymmetric stiffness matrix for the space frames with large rotations and 
small rotational strains (Spillers, 1990). In 1992, the multi-storey frames were 
assessed under the distributed loads. In this process, the curvature and warping 
effects of the members were inserted into the chordal stiffness matrix (Singh & 
Singh, 1992). Considering the small strains and medium to large rotations for the 
members, Torkamani et al. performed the second-order geometric non-linear 
analysis on the 2D frames (Torkamani, Sonmez, & Cao, 1997). Furthermore, 
Chang proposed the higher order stiffness matrix of the 3D frames by employing 
the rigid body principle. This matrix included the elastic, geometric and higher 
order parts (Chang, 2004). In another work, the geometric stiffness matrices of 
the curved beams were used in their buckling analysis. Note that the stiffness 
matrices of these beams were achieved by changing the Cartesian coordinates of 
the straight beams into the cylindrical coordinates (Yang, Lin, & Wang, 2007).

According to the literature review, it can be concluded that in the previous 
approaches, the predictor and corrector steps were employed for achieving the 
true behaviour of the structures. In this paper, a parabolic path is utilised for 
the iterative analyses. As a usual way of the incremental solutions, the tangential 
stiffness matrix is employed. In contrast to the previous strategies, the suggested 
method does not require the predictor step. Although, two completely different 
mathematical approaches are utilised throughout this study, only one constraint 
equation is derived. This is an indication that the presented method is mathe-
matically valid even before performing numerical tests. In the first formulation, 
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a new constraint equation is obtained, based on two appropriate assumptions for 
the parabolic path. In the other scheme, in which Bernoulli’s equivalence relation 
is used, the same new equality is acquired through minimising the iterative path 
length. To verify the outcomes of this study, some structural geometric nonlinear 
analyses are performed. As it will be shown, extended numerical experiences 
clearly demonstrate that authors’ method can automatically implement structural 
analysis without the intervention of the analyst.

2.  General structural non-linear analysis

The equilibrium path of a structure depends on the applied loads and structural 
geometry. To satisfy the equilibrium condition, common governing equations are 
written in the below form:
 

In this relation, the displacement vector, load factor, residual load vector, external 
force vector, and internal force vector are denoted by u, λ, R, P and F, respectively. 
The residual force vector is a function of the displacements and load factor. It is 
worth emphasising that the load factor is an important parameter in the non-linear 
analysis process. If the displacement vector includes m entries, the number of the 
structural unknowns will be m + 1. Inserting the load factor into the formulations, 
produces an extra unknown. Consequently, a different equation is required in 
addition to Equation (1). According to Figure 1, in the n-th increment, the part 
of the equilibrium path which begins at the (n – 1)-th point and finishes at the 
n-th point is obtained. In the first iteration, the incremental load factor can be 
computed, based on several assumptions. Hence, related displacements can be 
computed using the next relation:
 

In the current equality, the tangential stiffness matrix at the (n − 1)-th equi-
librium point is denoted by Kn−1. The displacement increment and load factor of 
the initial iteration are denoted by Δun

1
 and Δ�n

1
, correspondingly. To reach the 

n-th point, the sequential iterations are needed. For each iteration, the load factor 
is computed by means of the constraint equation. Utilising a linear combination 
of the increment of the related displacements to the residual load and external 
force in each iteration, results in the displacement increment as follows (Batoz 
& Dhatt, 1979):

 

Where, superscript n and subscript i denote the increment and iteration number, 
respectively. Furthermore, �u′n

i
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i
 are the displacement increments induced 
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by the external force and residual load, correspondingly. These displacements are 
given by the subsequent equalities:

It is noteworthy that the internal and external forces are known at the beginning 
of each iteration. Therefore, the dependent displacement increments are available. 
According to Equation (3), only ��n

i
 is required for computing the displacement 

increment in the corrector step. Finally, the incremental load factor and the dis-
placement increment of the next step can be obtained by adding ��n

i
 and �un

i
 to 

their previous increments, respectively. Thus, they have the following forms:

It should be added that the load factor increment is computed in each iteration 
using the constraint equation. In this work, the path of the iterative analyses is 
assumed to be a parabolic curve. To solve the equilibrium equation, the tangen-
tial stiffness matrix is employed in the formulation. Considering that authors’ 
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Figure 1. The common incremental-iterative methods, including predictor and corrector steps.
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approach does not need the predictor step, it is more efficient compared to the 
tactics proposed by the former studies. In this paper, the load factor increment is 
calculated using an iterative process. It will be extensively demonstrated that the 
suggested technique can automatically perform the structural geometric nonlinear 
analysis.

In order to simplify the presented formulation, a single degree of freedom 
structure is considered while deriving the constraint equation. Thus, all vectors 
and matrices used in the process of the proposed formulations become scalars, 
and generating algebraic expressions. Finally, the same constraint equality that 
has been obtained by two different approaches is generalised for the analysis of 
multi-degree of freedom structures and converted to vector space. For these cases, 
matrix notation applies.

2.1.  First suggested formulation

By assuming that the iterative paths have the parabolic shape in each increment, 
the succeeding constraint equation can be achieved:
 

In this equation, a, b and c are constant values due to supposing that there is one 
entry in the load and displacement vector. Based on Figure 2, by transferring the 
coordinate system to the (n − 1)-th equilibrium point, the constraint equation is 
derived in the new coordinate system. Additionally, by inserting the coordinates 
of the (n − 1)-th point into the new coordinate system; the constant value c will 
be equal to zero in the relation (8). For the mentioned condition, the following 
relationships are held:
 

 

 

In these equalities, U and Λ denote the displacement and load factor in the 
new coordinate system, respectively. After finding coefficients a and b via the 
relation (9), the constraint equation can be obtained. To achieve this goal, two 
reasonable assumptions should be made. Firstly, it is presumed that the tangent 
of the equilibrium path and iterative analysis one are equal at the beginning of 
each increment. This issue can be expressed mathematically as below:
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From the geometrical viewpoint, this analogy is shown in Figure 2. Using Equation 
(12), parameter b in Equation (9) can be computed as the coming form:
 

Herein, the second assumption is introduced. According to Figure 2, if the par-
abolic path includes an extreme point, the tangent to this curve is horizontal 
at the point 

(
U

n

t
,Λn

t
P
)
. Consequently, calculating the derivative of the relation 

(9), substituting Un

i+1
 with Un

t
, and setting the obtained result to zero, lead to the 

succeeding formula:
 

Then, inserting the extreme point coordinates into Equation (9), and utilising the 
current equality result in the next relation:
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Figure 2. The iterative path of the suggested technique and its dependent variables.
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By substituting the parameter obtained from Equation (13) in the above-cited 
relation, Equation (15) can be rewritten as below:
 

Hence, inserting parameters a and b into Equation (9) yields the coming result:

It should be reminded that parameters a and b are achieved by the relations (16) 
and (13), respectively. Utilising Equations (3), (10) and (11), and also inserting 
them into the last equality, the constraint equation can be simplified as the next 
form:
 

 

By ignoring the force component, P, in the coefficients of Equation (18), a double 
root can be derived for this quadratic algebraic equation. Subsequently, the only 
real root is presented in vector space as below:
 

The current constraint equation can be applied for the iterative steps of the struc-
tural geometric nonlinear analysis. Since the frame’s stiffness was reviewed in the 
present paper, several space frames are solved in this study.

2.2.  Second suggested formulation

To find the constraint equation, another technique is utilised. In this method, the 
length of the parabolic path, shown in Figure 2, is minimised. As it was indicated 
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before, a single degree of freedom structure is considered to simplify the formu-
lation’s process. Lastly, the obtained scheme is generalised for the wide-ranging 
structures.

The coming integration is used for calculating the arc length of the iterative 
path:

 

After computing the derivative of the parabolic relation (9), with respect to the 
displacement component, the above-mentioned integration can be rewritten as 
the following form:
 

Since it is hard to solve analytically the last algebraic integration, an approximate 
approach can ease the calculation. In fact, in order to find the square root of 
the quadratic equation in the current integral, Bernoulli’s equivalence relation is 
employed. Accordingly, Equation (22) converts to the following relation:
 

Similar to the previous suggested tactic, it is presumed that the tangents of the 
equilibrium path and parabolic curve are equal to the tangent stiffness matrix at 

(21)L = ∫
U

n

i+1

U
n

i

√

1 + (
�ΛP

�U
)2dU

(22)L = ∫
U

n

i+1

U
n

i

√
1 + (2aU + b)2dU

(23)L ≈ ∫
U

n

i+1

U
n

i

[

1 +
(2aU + b)2

2

]

dU

Figure 3. The plan and view of the star-shaped frame under a concentrated load.
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(a)

(b)

(c)

Figure 4. The equilibrium paths of the star-shaped frame with high rigidity. (a) The behavioural 
curve of node 1 in the z direction; (b) The behavioural curve of node 2 in the x direction; (c) The 
behavioural curve of node 2 in the z direction.
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the beginning of each increment. Therefore, by replacing Equation (13) in the 
relation (23) and employing the equality (10) for the integral bounds, the subse-
quent result is obtained:
 

To find the optimum value of parameter a, the current arc length is minimised. 
By calculating the derivative of Equation (24) with respect to parameter a and 
setting it to zero, this parameter can be obtained as follows:
 

Then, by inserting the relations (25) and (13) into Equation (9), and also employ-
ing the equalities (3), (10) and (11), the succeeding third-order formula is con-
cluded with respect to the load factor increment:
 

 

It should be mentioned that this third-order algebraic equation only has one real 
root. By ignoring the force component, P, in coefficients A′, B′, C′ and D′, the real 
root leads to the same former constraint equation, which was given by the relation 
(20). Accordingly, the validity of the assumptions and formulations is proved. Indeed, 
reaching both presented procedures to an analogous constraint equation can verify 
the correctness of each other. As demonstrated so far, this is in spite of using the 
completely different mathematical approaches. Recall that; in order to analyse the 
multi-degree of freedom structures, the equality (20) is generalised to the vector space.
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Table 1. The number of the increments and iterations of the star-shaped frame with high rigidity.

Technique Number of increments Number of iterations
Proposed method 172 1376
Cylindrical arc length method 242 798
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(a)

(b)

(c)

Figure 5.  The load-deflection diagrams of the star-shaped frame with low rigidity under a 
concentrated load. (a) The behavioural curve of node 1 in the z direction; (b) The behavioural 
curve of node 2 in the x direction; (c) The behavioural curve of node 2 in the z direction.
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3.  Numerical evaluations

The geometric non-linear behaviours of the various space frames are studied via 
authors’ computer programme. In this package, the proposed constraint relation 
(20) is employed. In addition to the benchmark problems, several novel 3D frames 
are analysed by the new formula. Besides, all of these structures are analysed 
utilising the common cylindrical arc length scheme. In this way, the capability 
of the new strategy to trace the complex static curves is evaluated. In all analysis 
processes, the allowable error is considered as 10−4.

3.1.  Star-shaped frame with high rigidity

This benchmark structure has 13 nodes and 24 members. Figure 3 illustrates the 
star-shaped frame. A concentrated load, P, is applied to the top node. All exterior 
nodes of this structure are simply supported. The elasticity and shear modulus of the 
members are E = 303 kN/cm2 and G = 109.6 kN/cm2, respectively. Furthermore, the 
cross-sectional area, the bending and torsional moments of inertia are A = 3.17 cm2, 
Iy = Iz = .837 cm4, and J = 1.411 cm4, correspondingly. This benchmark structure 
was nonlinearly analysed using an incremental-iterative scheme in Meek and Tan’s 
research (Meek & Tan, 1984). In another study, a three-dimensional beam member 

Figure 6. The plan and view of the star-shaped frame with low rigidity under symmetric loading 
pattern.

Table 2. The number of the increments and iterations of the star-shaped frame with low rigidity 
under a concentrated load.

Technique Number of increments Number of iterations
Proposed method 490 3087
Cylindrical arc length method 686 1920
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with large rotations was proposed (Hsiao, Horng, & Chen, 1987). This member is 
used during the analysis of the star-shaped space frame.

(a)

(b)

(c)

Figure 7.  The equilibrium curves of the star-shaped frame with low rigidity under symmetric 
loading pattern. (a)The load-displacement diagram of node 1 in the z direction; (b) The load-
displacement diagram of node 2 in the x direction; (c) The load-displacement diagram of node 2 
in the z direction.
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Firstly, the equilibrium path of node 1 in the applied load’s direction is achieved. 
According to Figure 4(a), the suggested approach can represent the equilibrium 
curve of this benchmark structure. The same solution is obtained by the cylindrical 
arc length approach. Moreover, the static curves of node 2 in the x and z directions 
are achieved successfully, and presented in Figure 4(b) and (c), correspondingly. 
Due to the high rigidity of this structure, no limit point is observed in Figure 
4(a) and (c). However, Figure 4(b) includes a sharp snap-back region. According 
to the findings, authors’ formula was capable of accurately tracing all mentioned 
equilibrium paths.

In Table 1, the number of the required increments and iterations, when using 
the relation (20) and cylindrical arc length tactic are listed. Accordingly, the new 
strategy brings about the responses with fewer increments and more iterations in 
comparison to the cylindrical arc length scheme.

3.2.  Star-shaped frame with low rigidity under a concentrated load

Figure 3 shows this 3D frame structure. A concentrated load, P, is applied to the 
peak node of the frame. The elasticity and shear modulus of the members are 
E = 303 kN/cm2 and G = 109.6 kN/cm2, respectively. The cross-sectional area, 
the moment of inertia around the y and z axes are A = 3.17 cm2, Iy = .295 cm4, 
and Iz = 2.377 cm4, correspondingly. Moreover, the torsional moment of inertia 
of the structural members is equal to J = .918 cm4. Note that; the flexural and 
torsional rigidity of the members are less than those of the previous sample. Meek 
and Tan solved this benchmark frame (Meek & Tan, 1984). Besides, the dynamic 
post-buckling analysis of the star-shaped structure with large deformations was 
performed (Meek & Xue, 1998). In another research, the 3D benchmark frame, 

Figure 8. The plan and view of the star-shaped frame with low rigidity under asymmetric loading 
pattern.
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(c)

(a)

(b)

Figure 9.  The load-displacement diagrams of the star-shaped frame with low rigidity under asymmetric 
loading pattern. (a) The equilibrium path of node 1 in the z direction; (b) The equilibrium path of node 
2 in the x direction; (c) The equilibrium path of node 2 in the z direction; (d) The equilibrium path of 
node 4 in the x direction; (e) The equilibrium path of node 4 in the z direction; (f) The equilibrium path 
of node 5 in the x direction; (g) The equilibrium path of node 5 in the z direction.
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(d)

(e)

(f)

Figure 9. (Continued)
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with various initial deficiencies of the members, was analysed by the exact and 
tangential stiffness matrix of the beam-column member with initial curvature 
(Chan & Gu, 2000).

The obtained diagrams for nodes 1 and 2 in this space frame are shown in 
Figure 5. Accordingly, the load limit points are observed in the structural equi-
librium paths of both nodes. Furthermore, the behavioural curves of node 2 have 
a displacement limit point in both directions. Once again, it is clear that the 
suggested method can trace these complex paths accurately.

The obtained results are inserted in Table 2. Similarly, these outcomes indicate 
the interpretation of the previous subsection.

3.3.  Star-shaped frame with low rigidity under symmetric loading pattern

This space frame is demonstrated in Figure 6. A concentrated load, P, is applied 
to node 1 and nodes 2–7 are subjected to load P

2
. The elasticity and shear modu-

lus of the members are E = 303 kN/cm2 and G = 109.6 kN/cm2, respectively. The 
cross-sectional area, the moment of inertia about the y and z axes are A = 3.17 cm2, 
Iy = .295 cm4, and Iz = 2.377 cm4, correspondingly. Moreover, the member tor-
sional moment of inertia is equal to J = .918 cm4. It should be reminded that this 
symmetric loading pattern of the three-dimensional structure was examined by 
Meek and Tan (Meek & Tan, 1984).

In a similar manner to the previous samples, the amazing equilibrium curves 
for nodes 1 and 2 emerge. Based on Figure 7(a), the equilibrium path of the mid-
dle node includes two load limit points, which can be successfully passed by the 
suggested approach. According to Figure 7(b), as for the static curve of node 2 
in the x direction, not only authors’ strategy passes the snap-through region, but 
also is capable of catching the snap-back one. Moreover, the equilibrium path of 

(g)

Figure 9. (Continued)
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node 2 in the z direction has two displacement limit points. Based on the obtained 
responses, the new tactic can trace these complex curves completely.

It should be mentioned that the new method requires 506 increments and 
3592 iterations for performing the nonlinear analysis of this star-shaped frame. 
According to Table 3, the cylindrical arc length scheme needs more increments 
and fewer iterations in comparison to authors’ tactic for tracing the equilibrium 
curves of this space structure.

3.4.  Star-shaped frame with low rigidity under asymmetric loading pattern

Figure 8 illustrates this 3D frame subjected to an asymmetric loading pattern. 
The concentrated load, P

2
, is applied to nodes 2, 3 and 7, and also load P is exerted 

to the central node. The physical and mechanical properties of the members are 
analogous to those of the previous example. It should be noted that, this space 
structure was analysed by the other researchers, as well (Meek & Tan, 1984).

Fourteen non-linear analyses are performed on this frame. The equilibrium 
paths for nodes 1, 2, 4 and 5 are illustrated in Figure 9. By comparing Figures 7 
and 9, it can be concluded that the structural equilibrium paths of the frame under 
asymmetric loading pattern include sharper curvatures. It should be remarked 
that nodes 4 and 5 are not subjected to any loads, and their equilibrium paths are 
complicated. It is worthwhile to highlight that the suggested method can success-
fully trace all mentioned paths. Note that; all obtained results are compatible with 
those of the other researchers (Meek & Tan, 1984).

As it was mentioned throughout the text; the presented approach does not have 
a predictor step, so it works automatically. The number of the required increments 
and iterations are listed in Table 4. Consequently, authors’ technique is slower than 
the cylindrical arc length tactic for this benchmark sample.

3.5.  Dome frame

This space frame has 18 members and 43 nodes. As demonstrated in Figure 10,  
the central node is subjected to a concentrated load, P, and the ends of the 
peripheral members are fixed. The elasticity and shear modulus of all members 
are E  =  2069  kN/cm2 and G  =  883  kN/cm2, respectively. The cross-sectional 
area and flexural moments of inertia are A = 9272 cm2, Iy = 1.15 × 107 cm4, and 
Iz = 4.463 × 106 cm4, correspondingly. Moreover, the member torsional moment of 
inertia is equal to J = 1.93 × 107 cm4. In 1982, the frame dome with large deformations 

Table 3. The number of the increments and iterations of the star-shaped frame with low rigidity 
under symmetric loading pattern.

Technique Number of increments Number of iterations
Proposed method 506 3592
Cylindrical arc length method 708 2690
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was analysed by the finite element method (Argyris, Boni, Hindenlang, & Kleiber, 
1982). Papadrakakis and Ghionis solved this benchmark sample by the conju-
gate gradient algorithms (Papadrakakis & Ghionis, 1986). Later, the technique 
based on Euler’s formulation was used for analysing this structure (Kassimali & 
Abbasnia, 1991). For geometrically non-linear behaviour, Park and Lee solved 
this 3D frame with shear beam element (Park & Lee, 1996). Recently, the frame 
dome was considered in the analysis of the 3D Timoshenko frames having the 
geometrical and material nonlinear behaviours by Rezaiee-Pajand and Gharaei-
Moghaddam (Rezaiee-Pajand & Gharaei-Moghaddam, 2015). In the current paper, 
each frame member is divided into three elements to perform nonlinear analysis. 
Therefore, this three-dimensional frame is analysed by 54 elements.

Herein, the equilibrium path of the highest node in the loaded direction is 
represented. According to Figure 11, the obtained results of the new tactic are 
well-matched with those achieved by the cylindrical arc length algorithm and 
other researchers’ techniques. If this 3D dome frame has the members with low 
rigidity, the snap-through region appears on the related equilibrium path, like 
the analysed star-shaped frame with high rigidity in comparison to low rigid one.

In this part, the suggested approach is compared to the cylindrical arc length 
technique. The number of the required increments and iterations of authors’ strat-
egy are 232 and 1879, respectively. However, the cylindrical arc length scheme 
needs 302 increments and 1268 iterations to trace the equilibrium path. It is worth 
emphasising that the achieved results are completely adaptable with those of the 
previous studies (Kassimali & Abbasnia, 1991; Papadrakakis & Ghionis, 1986; 
Park & Lee, 1996; Rezaiee-Pajand & Gharaei-Moghaddam, 2015).

Table 4. The number of the increments and iterations of the star-shaped frame with low rigidity 
under asymmetric loading pattern.

Technique Number of increments Number of iterations
Proposed method 529 3756
Cylindrical arc length method 742 2819

Figure 10. The plan and view of the dome frame.
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3.6.  64-member space frame

This frame has eight simple supports, and a concentrated load P is applied to the 
peak node. Figure 12 shows the 64-member space frame. Members’ cross-sec-
tional areas are considered to be A = 100 cm2. The bending moments of inertia of 
all members are assumed to be Iy = Iz = 5000 cm4, and the torsional moments of 
inertia of them are supposed to be J = 5000 cm4. Besides, the elasticity and shear 
modulus are E = 20.6 kN/cm2 and G = 7.92 kN/cm2, respectively.

For verification, the suggested method is utilised in a companion with the 
cylindrical arc length scheme. The nonlinear analysis of this structure is carried out 
four times. Firstly, the structural equilibrium curve of node 1 in the z direction is 
determined. Based on Figure 13(a), the novel method can automatically perform 
the geometric nonlinear analysis of this space structure. Whereas, the cylindrical 

Figure 11. The equilibrium path corresponding to the dome frame’s node under a concentrated 
load.

Figure 12. The plan and view of the 64-member space frame.
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arc length tactic requires the predictor step for the analysis. Secondly, the frame 
response for node 2 in the x direction is located. In Figure 13(b), the ability of 
authors’ scheme in tracing the equilibrium path of this frame is displayed.

(a)

(b)

Figure 13. The structural static curves of the 64-member frame. (a) The equilibrium path of node 
1 in the z direction; (b) The equilibrium path of node 2 in the x direction.

Figure 14. The longitudinal view, transversal view, and plan of the arch frame.
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(a)

(b)

(c)

Figure 15. The force-deformation diagrams of the arch frame. (a) The structural static curves in 
the z direction; (b) The structural static curves in the x direction; (c) The structural static curves in 
the y direction.
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Lastly, the required numbers of the increments and iterations for the nonlinear 
analysis are presented. The novel strategy traces the equilibrium paths of Figure 
13 using 495 increments and 3712 iterations. Moreover, the cylindrical arc length 
scheme needs 743 increments and 3789 iterations so as to trace the mentioned 
equilibrium paths. Evidently, the new algorithm is a bit faster than the cylindrical 
arc length method for this space frame.

3.7.  Arch frame

The arch structure shown in Figure 14, has 267 members and 84 nodes. Two 
concentrated loads with an asymmetric pattern are applied to this frame. The 
cross-sectional area, the member flexural and torsional moments of inertia are 
presumed to be A = 20.45 cm2, Iy = Iz = 34.84 cm4, and J = 58.73 cm4, correspond-
ingly. In addition, the elasticity and shear modulus of all members are considered 
to be E = 208.9 kN/cm2 and G = 75.57 kN/cm2, respectively.

Firstly, the equilibrium paths of nodes 1 and 2, in the z direction, are found. 
In the subsequent examinations, the designed frame is analysed for these nodes 
in the x and y directions.

According to Figure 15(a), it is clear that the suggested tactic can completely 
trace the equilibrium paths of both nodes in the z direction. In contrast, the 
cylindrical arc length procedure can only trace the beginning parts of these 
paths. As it can be seen in Figure 15(b), authors’ scheme successfully finds the 
load-displacement diagrams of the mentioned nodes in the x direction. However, 
the cylindrical arc length strategy cannot trace the related paths, thoroughly. As 
for the y direction, the similar results can be observed, based on Figure 15(c). 
Regarding to these issues, the novel method can represent the total static curves 
of the mentioned frame, which has the most number of degrees of freedom in 
the presented numerical examples. Whereas, utilising the cylindrical arc length 
technique is not appropriate for this space structure. It can be concluded that 
authors’ technique is more efficient than the cylindrical arc length strategy in 
analysing this 3D arch structure.

4.  Conclusion

In order to perform the incremental-iterative processes, the load factor increment 
is obtained by applying the constraint equation. To develop this relation, the path 
of the iterative analyses was assumed to be a parabolic curve. By employing the 
mathematical principles and applying two different procedures, a novel constraint 
equation was derived. Reaching the same constraint equality for the suggested 
approaches by these two diverse ways, somehow verified the accuracy of authors’ 
assumptions and formulations. In contrast to the common ways, the presented 
scheme does not require the predictor step. Besides, no try and errors are needed 
by the analyst to adjust properly the predictor value for solving problems. Hence, 
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authors’ technique can analyse the structures automatically. It should be reminded 
that the previous similar strategies required the predictor step. Consequently, an 
initial approximation could enter to their formulations. The second superiority 
of the new formulation is that the proposed constraint equation is single-valued. 
As a result, there is no need to select an appropriate load factor increment among 
the roots. To affirm the capability of the proposed method, various numerical 
tests were performed. These evaluations and the related outcomes proved the high 
ability of the new approach in passing all types of the limit points. Moreover, this 
novel strategy can trace the equilibrium paths perfectly. After solving the bench-
mark problems, it was found that the obtained results were compatible entirely 
with those accomplished by the other researchers.

Notations

R  	 residual load vector

u  	 displacement vector
�  	 load factor
P  	 external force vector
F  	 internal force vector
m  	 number of degrees of freedom
n  	 increment number
i  	 iteration number
K  	 tangential stiffness matrix
Δ  	 increment in predictor step
δ  	 increment in corrector step
δu′′  	 displacement increment due to residual load
δu′  	 displacement increment due to external force
a, b, c  coefficients of parabolic equation
Λ  	 load factor of transferred coordinate system
U  	 displacement vector of transferred coordinate system
L  	 arc length of iterative path
E  	 elasticity modulus
G  	 shear modulus
A  	 cross-sectional area
I  	 bending moment
J  	 torsional moment
x, y, z  main directions of Cartesian coordinate axes
u, v, w  nodal displacements in x, y and z directions
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