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Abstract

This study advances the use of high-strength concrete beams in structural
engineering by analyzing their flexural behavior. Utilizing a combination
of theoretical and empirical methods, the research develops equations for
calculating the cracking moment and ultimate load capacity of these beams.
Key findings include a shear-bearing capacity calculation model, validated by
experimental data, with discrepancies in cracking moment and ultimate load-
bearing capacity formulas being only 6.16% and 1.53% respectively. These
results offer significant insights for the design and analysis of high-strength
concrete beams in architectural engineering, demonstrating high accuracy
and stability.
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1 Introduction

High-strength concrete, known for its superior compressive strength,
enhanced deformation resistance, high density, and reduced porosity, is
widely used in large-scale structures such as skyscrapers, expansive bridges,
and unique constructions [1–3]. Recent advancements have seen the integra-
tion of fiber materials into high-strength concrete, significantly improving
its tensile strength, compressive strength, elasticity modulus, and durability,
while maintaining excellent flowability [4–6]. This is a notable shift from
traditional concrete practices and highlights the material’s evolving role in
modern engineering designs [7].

Recent studies further expand our understanding of high-strength con-
crete. For example, research by Yang et al. [8] examined 14 high-strength
concrete beams, uncovering that casting methods greatly impact their bending
load capacity, even with identical cross-sections and reinforcement ratios.
Additionally, Fu Qiang et al. [9] investigations on the effects of different
longitudinal reinforcement ratios reveal that increased reinforcement in the
compressed zone can mitigate crack formation and reduce deflection under
load, an important consideration for structural design.

While much of the existing literature focuses on reinforced high-strength
concrete beams, exploring the properties of unreinforced variants is crucial
for a comprehensive understanding of the material’s inherent bending char-
acteristics. These investigations are pivotal for the practical application and
advancement of high-strength concrete beams, despite current research in this
area being relatively limited [10–12].

This paper, therefore, undertakes a study on the bending bearing perfor-
mance of concrete beams, employing both theoretical analysis and exper-
imental validation. It is anchored on the flat section assumption and the
compressive stress-strain relationship equation for high-strength concrete
beams. The research utilizes ultimate bearing capacity calculation values
from DBJ 43/T 325—2017 “Technical Specification for Reactive Powder
Concrete Structures” and T/CCPA 35—2022 “Design Specification for Ultra-
High Performance Concrete Structures”. The study successfully deduces
formulas for the cracking moment and ultimate bearing capacity of high-
strength concrete beams. Moreover, drawing on the mechanical flat push
theory, it formulates a shear-bearing capacity calculation model for high-
strength concrete beams, offering valuable insights for the structural design
of such beams.
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2 Calculation of High-Strength Concrete Beam
Load-Bearing Capacity in Architectural Designs

2.1 Basic Assumptions

Considering the tensile action in the tensile zone of high-strength concrete
beams, the load-bearing capacity calculation of the normal section of high-
strength concrete beams differs from that of ordinary reinforced concrete
components [13–15]. To analyze the entire stress process of the normal
section of high-strength concrete beams, the following two assumptions need
to be established:

(1) Plane Section Assumption

During the entire stress process of the normal section of high-strength con-
crete beams, the mid-span section approximately remains planar. Therefore,
adopting the plane section assumption facilitates the establishment of the
computational model.

(2) Stress-Strain Relationship of High-Strength Concrete Beams Under Com-
pression

The stress-strain relationship equation for high-strength concrete beams
under compression is as shown in Equation (1):

σc
fc

=


1.2x− 0.2x6 0 ≤ x < 1

x

10(x− 1)2 + x
x ≥ 1

(1)

In the formula: σc represents the stress of the concrete at a strain of εc, in
MPa; fc is the axial compressive strength of the concrete, in MPa; define x as
εc/ε0, where ε0 is the peak compressive strain of the concrete, in microstrain
(µε).

2.2 Beam Design

For ease of calculation and analysis, the design of the plain high-strength
concrete beam adopts a rectangular cross-section, with a simple support
structure, a length of 1.2 m, a width of 0.15 m, and a height of 0.3 m. The
beam overhangs 15 cm on each side of the support, making the calculated
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span 0.9 m. The axial compressive strength of the high-strength concrete
beam is taken as 23 MPa, and the axial tensile strength as 10.55 MPa.

2.3 Calculation of Cracking Moment

To simplify the calculation, the same method as for ordinary reinforced con-
crete components is adopted, equating the longitudinal reinforcement steel
to an equivalent area of high-strength concrete beam with the same modulus
[16–18]. In this case, the high-strength concrete beam can be considered as a
homogeneous elastic material.

Introducing the plastic influence coefficient of the section resistance
moment γ, and using the principles of material mechanics to establish a crack
resistance formula, the Mcr calculation formula is as follows:

Mcr = γffkW0 (2)

The equation involves Mcr, which represents the cracking moment for
the plain high-strength concrete beam, measured in kN·m; γ, the coefficient
impacting the plastic behavior of the beam’s section resistance moment; ffk,
denoting the peak tensile stress of the beam in MPa; and W0, signifying the
section’s elastic resistance moment to the tensile edge, expressed in cubic
meters.

For this high-strength concrete beam, which is not reinforced, the
converted cross-sectional area A0 is:

A0 = bh (3)

The distance x0 from the centroid of the section to the edge of the
compression zone is:

x0 =
1/2bh2

A0
=

h

2
(4)

The moment of inertia I0 of the section about the centroidal axis is:

I0 =
1

12
bh3 + bh

(
x0 −

h

2

)2

=
1

12
bh3 (5)

The elastic resistance moment W0 of the section is:

W0 =
I0

h− x0
=

1/12bh3

h− x0
=

1/12bh3

h− 1/2h
=

1

6
bh2 (6)
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The plastic influence coefficient γ of the section resistance moment is:

γ = Ws/W0 (7)

Ws =

1.7bεtEcx3
c

h−xc
+ 7.35bft(h− xc)

2

3ft
(8)

W0 =
I0

h− x0
=

bh3 + 3bh(2x0 − h)2

12(h− x0)
(9)

The formula includes: b, the width of the high-strength concrete beam in
meters; h, the beam’s height in meters; Ws, the beam section’s elastic resis-
tance moment considering plastic deformation in the tension zone, expressed
in cubic meters; xc, the height of the compressed zone in the beam, in meters;
εt, the initial cracking tensile strain of the beam in microstrain (µε); Ec,
the beam’s modulus of elasticity in GPa; and ft, its tensile strength in MPa.
Due to the unavailability of experimental data for εt, an empirical formula is
employed to compute the section resistance moment coefficient. Referring to
Literature [14], for high-strength concrete beams with a rectangular section
and about 100 MPa compressive strength, the formula for calculating the
resistance moment influence coefficient relative to the reinforcement ratio is
proposed:

γm =

{
1.1 + 18.4ρ ρ ≤ 4.3

1.89 ρ > 4.3
(10)

Since the high-strength concrete beam is unreinforced, then:

γm = 1.1 + 18.4ρ (11)

In addition to the reinforcement ratio, the plastic influence coefficient
γ is influenced by various factors such as the section’s height and shape,
the type of steel fiber used, and the fiber volume fraction. The formula
(12) is employed to calculate the plastic influence coefficient of the section
resistance moment when there is a variation in the section height.

γ =

(
0.7 +

120

h

)
γm (12)

Combining formulas (2), (6), and (12), the calculated cracking moment
Mcr is 28.72 kN·m.
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2.4 Calculation of Ultimate Load-Bearing Capacity

When calculating the bending load-bearing capacity of the normal section of
high-strength concrete beams, for simplification, the same method as ordinary
reinforced concrete components is adopted, treating the stress distribution
of the high-strength concrete beam as an equivalent rectangular stress block
[18–20].

(1) Simplification of Stress in the Compression Zone

The resultant force of compressive stress in the concrete compression zone,
Fc, is:

Fc =

∫ xc

0
σc(εc) · bdy (13)

The distance from the resultant compressive force Fc to the neutral axis:

yc =

∫ xc

0 σc(εc) · b · ydy
Fc

=

∫ xc

0 σc(εc) · b · ydy∫ xc

0 σc(εc) · bdy
(14)

The compressive strain of concrete at a distance y from the neutral axis:

εc = εcu
y

xc
, y =

εc
εcu

xc,dy =
xc
εcu

dεc (15)

The variation of the resultant compressive force Fc:

Fc =

∫ εc

0
σc(εc) · b

xc
εcu

dεc = b
xc
εcu

· Ccu (16)

The variation of the distance from the resultant force Fc to the neutral
axis:

yc =

∫ εca
0 σc(εc)b(xc/εcu)

2εcdεc

b(xc/εcu)Ccu
=

xc
εcu

ycu (17)

In the formula: εcu is the ultimate compressive strain of concrete, in
microstrain (µε); Ccu is the area enclosed by the stress-strain curve in the
compressed zone of high-strength concrete beam, in MPa; ycu is the distance
from the centroid of the area to the origin O, in microstrain (µε). Then:

Ccu =

∫ εca

0
σc(εc)dεc (18)

ycu =

∫ εω
0 σc (εc) εcdεc

Ccu
(19)
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Based on the compressive constitutive relationship Equation (1) of high-
strength concrete beam:

Ccu =

∫ ε0

0
σc(εe)dεc +

∫ ε∗

ε0

σe(εe)dεc (20)

ycu =

∫ εa
0 σc(εe)εcdεc

Ccu
=

∫ ε0
0 σc(εe)εcdεc +

∫ εa
ε0

σc(εe)εcdεc

Ccu
(21)

Introducing parameters k1, k2 satisfying:

k1fc =
Ccu

εcu
, k2 =

ycu
εcu

(22)

The bending moment carried by the concrete in the compression zone:

Mc = Fc(yc + h− xc) = k1fcbxc[h+ (k2 − 1)xc] = αfcbx
(
h− x

2

)
(23)

In the formula: fc is the compressive strength of the high-strength concrete
beam, in MPa; x is the equivalent height of the stress in the compression zone,
in m.

Where:

Fc = k1fcbxc = αfcbx, h+ (k2 − 1)xc = h− x

2
(24)

Introducing parameter β, satisfying:

β =
x

xc
= 2(1− k2) (25)

Then:

α =
k1
β

(26)

Solving gives α = 0.89, β = 0.81, thus the equivalent rectangular stress
height of the compressed zone of the high-strength concrete beam is 0.81xc,
with a stress magnitude of 0.89fc.

(2) Simplification of Stress in the Tension Zone

Height of the tension zone:

xt = h− xc = h− x

β
(27)
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From the balance condition:∑
F = 0 αfcbx = kftb

(
h− x

β

)
(28)

∑
M = 0 Mu = αfcbx

(
h− x

2

)
− 0.5kftb

(
h− x

β

)
(29)

When the high-strength concrete beam fails, the ultimate bending
moment equals the cracking moment, i.e., Mu = Mcr. Combining formulas
(28) and (29), the expression for the equivalent height x of the compression
zone is obtained:

x =
−B +

√
B2 − 4AC

2A
(30)

Where:

A =
1

2β
αfcb−

1

2
αfcb, B = αfcbh− 1

2
αfcbh, C = −M t

u (31)

Therefore, the equivalent height of the compression zone x = 11.56 mm.
Substituting into formula (28), the equivalent coefficient k of the tension

zone is 0.42. Considering a safety reserve, the equivalent coefficient k of the
tension zone is taken as 0.35. Thus, the formula for calculating the ultimate
load-bearing capacity of the section under bending is:

Mu = 0.89fcbx
(
h− x

2

)
− 0.5× 0.35ftb

(
h− x

0.81

)2
(32)

Substituting the data, the ultimate load-bearing capacity Mu = 33.24
kN·m.

2.5 Calculation of Ultimate Load-Bearing Capacity According to
DBJ 43/T 325—2017

In DBJ 43/T 325—2017, the uniaxial compressive stress-strain relationship
for high-strength concrete beams is given as:

σc
fc

=

1−
(
1− εc

ε0

)n

εc < ε0

1 ε0 ≤ εc ≤ εcu

(33)

The standard value of axial compressive strength of high-strength con-
crete beams, fcu, is 127.23 MPa.



Mechanical Behavior Analysis of High Strength Concrete Beams 551

The standard value of the cube compressive strength, fcu, k, is 1.45 fcu =
184.48 MPa. Where:

n = 1.2− 0.001(fcuk − 100) (34)

ε0 = 0.0025 + (fcu·k − 100)× 10−5 (35)

εcu = 0.0042− 0.3× (fcu,k − 100)× 10−5 (36)

k1 =

∫ εn
0 σc(εe)dεc

fcεcu

=

∫ ε0
0 fc[1− (1− εcε0)

n]dεc +
∫ εn
ε0

fcdεc

fcεcu
(37)

k2 =

∫ εe
0 σc(εe)εcdεc

k1fcε2cu

=

∫ ε0
0 fc[1− (1− εc/ε0)

n]εcdεc +
∫ εc
ε0

fcεcdεc

k1fcε2cu
(38)

From formulas (25) and (26), α1 = 0.86 and β1 = 0.70. Relative limit of
the height of the compression zone:

ξb =
β1

1 + (0.002/εcu)
(39)

The calculation of the bending load-bearing capacity of the normal
section of the bending member should comply with the following regulations:

Mu ≤ αyfcbx(h− 0.5x)− 0.25ftb× 0.5

(
h− x

β1

)2

(40)

The height x of the concrete compression zone is determined by the
following formula:

α1fcbx = 0.25ftb

(
h− x

β1

)
(41)

Substituting the data, the equivalent height of the compression zone x is
obtained as 7.22 mm.

The height of the concrete compression zone should also comply with the
following condition:

x ≤ ξbh = 139.38 mm (42)
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From formula (37), the ultimate load-bearing capacity Mu is obtained as
17.35 kN·m.

2.6 Calculation of Ultimate Load-Bearing Capacity According to
T/CCPA 35—2022

The bending load-bearing capacity of the normal section of a bending
member is calculated using the following formula:

Mu = α1fcbx(h− 0.5x)− 0.5kftb

(
h− x

β1

)2

(43)

In the given formula: α1 represents the coefficient influencing the equivalent
stress value, applicable when the stress distribution in a high-strength con-
crete beam’s compressed zone under non-uniform loading approximates a
rectangular shape, and is assumed to be 0.75. The symbol x denotes the height
of this equivalent rectangular stress distribution in the beam’s compressed
zone, measured in meters. The term k serves as the reduction coefficient for
the equivalent stress in the beam’s tensile zone, set at 0.25. Finally, β1 is
defined as the ratio of the height x of the rectangular stress distribution in the
beam’s compressed zone to the height xn of the neutral axis, and is valued
at 0.75.

From formula (36), the relative limit height of the compression zone, ξb,
for the high-strength concrete beam component is obtained.

The height x of the concrete compression zone is determined by the
following formula:

α1fcbx = kftb

(
h− x

β1

)
(44)

Substituting the data, the equivalent height of the compression zone x is
obtained as 8.26 mm.

The height of the concrete compression zone should also comply with the
following condition:

x ≤ ξbh = 149.34 mm (45)

From formula (40), the ultimate load-bearing capacity Mu is obtained as
17.30 kN·m. In summary, the cracking moment of the high-strength concrete
beam is 28.72 kN·m, and the ultimate load-bearing capacity is 33.24 kN·m,
while the ultimate load-bearing capacities calculated according to DBJ 43/T
325—2017 and T/CCPA 35—2022 are smaller, at 17.35 and 17.30 kN·m,
respectively.



Mechanical Behavior Analysis of High Strength Concrete Beams 553

3 Mechanical Equilibrium-Based Calculation Model for
Shear Capacity of High-Strength Concrete Beams in
Modern Architectural Design

3.1 Application of Mechanical Equilibrium Design Method in
Architecture

When a beam component undergoes shear failure, several diagonal bending
shear cracks typically form within its shear span region. Initially, these cracks
appear vertically at the lower part of the beam and gradually extend upward
at an angle, evolving into bending shear cracks. For ease of analysis and
calculation, the shear cracks on the inclined section can be considered to
develop linearly. Within the shear span of the beam component, the numerical
relationship between the cracking load (Vcr) and the sliding strength (Vsl) is
crucial in determining the component’s shear bearing capacity. For instance,
in the diagonal crack plane AD as shown in Figure 1, if the cracking load
Vcr-AD is less than the sliding strength Vsl-AD, then Vsl-AD becomes the
decisive factor for the shear capacity of that plane. Conversely, on the crack
plane AB, where the cracking load Vcr-AB exceeds the sliding strength Vsl-
AB, it is Vcr-AB that predominantly dictates the shear bearing capacity of
the inclined section AB.

Figure 2 illustrates the relationship between the cracking load (Vcr) and
sliding strength (Vsl), and the critical angle of shear sliding failure surface
diagonal cracks (βp). When a component undergoes shear failure, for any
specific angle of diagonal cracks, there exist corresponding values of Vcr

Figure 1 Relationship between cracking load, sliding strength, and the critical angle of
diagonal cracks.
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Figure 2 Distribution of cracks.

and Vsl, along with their relative magnitude relationship. In the figure, as the
crack angle βp increases, the cracking load Vcr gradually decreases and the
sliding strength Vsl increases. Hence, there must exist a failure section within
the shear span. In Figure 2, section AC, located between sections AB and
AD, satisfies the condition where the cracking load Vcr equals the sliding
strength Vsl. This equality determines the shear bearing capacity Vu of the
beam component. For the diagonal crack section AC, this corresponds to the
intersection point F in Figure 2 where Vcr equals Vsl. If the shear load at
the critical angle βp of the shear failure surface causes a shear load equal to
Vcr, leading to shear along the diagonal crack and resulting in a shear load
Vu, then the shear bearing capacity Vu of the component equals the sliding
strength Vsl. Based on this, by calculating the sliding bearing strength Vsl
according to the critical angle βp of the diagonal cracks, the value of Vsl at
the critical intersection point F can be obtained, thereby determining the shear
bearing capacity Vu.

3.2 Derivation of Calculation Formula

Figure 3 presents the internal force dynamics in a stirrup-less concrete
component’s shear inclined section. External forces, Va and Ma, influence
the isolated section of the key diagonal crack AB. Shear forces arise along
this diagonal segment to counter Va’s vertical load, while Ma’s bending
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Figure 3 Internal force along the critical failure inclined plane.

moment induces a rotation for equilibrium. At this stage, the failure plane
is hypothesized to shift from AB to A1B1, aligning with the neutral axis
height dNA’s gradual adjustment for force balance. Above the neutral axis,
the concrete is compressed, exhibiting diagonal cracks only in its tensile zone.
This allows for a numerical force analysis in each part of this section under
Ma and Va, including forces Pcc, Psc, Pct, and Pst.

In Figure 3, the term dNA denotes the relative height of the compression
zone. Distances d1 and d2 measure from the top of the beam and the ten-
sile reinforcement to the point where the resultant force of the compressed
concrete acts, respectively. The angle βp represents the critical angle for the
diagonal crack of the shear failure surface, while S indicates the shear force
along this surface.

In concrete beams lacking stirrups, the development and width of diago-
nal cracks are less effectively constrained, primarily due to the absence of
stirrups. This leads to a scenario where the shear resistance against slid-
ing along these crack surfaces predominantly relies on the integrity of the
uncracked concrete within the shear compression zone. The mechanisms of
aggregate interlock across diagonal cracks and the dowel action of longitu-
dinal reinforcement play only a minor role in enhancing the shear bearing
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capacity. Consequently, it is hypothesized that the primary source of shear
bearing capacity emanates from the concrete situated in the compression zone
above the neutral axis. This approach effectively disregards the contribution
of concrete below this axis and considers the influence of Pct as insubstantial.
Additionally, the effect of compressive steel reinforcement above this zone on
shear bearing capacity is deemed marginal and can be reasonably omitted.

In line with these assumptions, a detailed examination of the forces
exerted on each segment along the critical diagonal crack shear plane is con-
ducted, adhering to the principles of mechanical equilibrium. This analysis
encompasses the assessment of both horizontal and vertical force equilibri-
ums and includes the computation of a moment around point A. Such an
approach facilitates the derivation of the following equations:

Pst = S cosβp + Pcc (46)

Va = S sinβp (47)

Ma = Pstd− Pccd1 (48)

By combining equations (46) and (47), the resultant force of the concrete
in the compression zone, Pcc, is obtained:

Pce = Pst −
Va

tanβp
(49)

Combining equations (48) and (49), the second form of the expression for
the compressive force in the concrete compression zone, Pcc, is derived:

Pce =
Ma − Vad/ tanβp

d2
(50)

Given that the resistance of the compression zone primarily contributes to
the shear bearing capacity of the uncracked zone, it follows that in Figure 3,
the pre-sliding sliding strength of this zone is a key determinant of the
shear bearing capacity along the shear failure crack surface. Consequently,
the sliding bearing capacity of the compression zone, denoted as Zcap, is
represented by the product of the area of the inclined plane section above
the neutral axis and the shear stress τN along the compression zone’s sliding
surface. This is elaborated in Equation (50):

Zcap =
dNA

sinβp
bτN (51)
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Furthermore, a strong linear relationship exists between the shear stress
τN along the shear failure surface and the normal stress σN on the inclined
section. Hence, it is posited that the shear stress τN along the sliding surface
adheres to the relationship outlined in Equation (52). In this equation, the
coefficients Af and Bf are indicative of the shear friction characteristics prior
to sliding:

τN = Af +BfσN (52)

Assuming that the compressive force Pcc in the compression zone is
uniformly distributed, the normal stress σN can be determined as:

σN =
Pec sinβp

bdNA
sinβp

(53)

In this context, Pcc sinβp represents the normal force component of Pcc

exerted on the inclined section, which hinders the sliding of the concrete in
the compression zone. Concurrently, a portion of the sliding bearing capacity
Zcap counters the shear force component along the inclined sliding surface,
Pcc cosβp, thereby maintaining equilibrium in the isolated segment. As a
result, the maximal shear force Smax present on the critical diagonal sliding
surface equates to the discrepancy between Zcap and the tangential influence
of the concrete compression force in the compression zone, as illustrated in
the following expression:

Smax = Zcap − Pce cosβp (54)

At the onset of shear sliding failure in the component, the shear bear-
ing capacity Vu is numerically equal to the maximum sliding bearing
capacity Vsl:

Vu = Vs (55)

By combining Equations (48), (51), (54), and (55), the maximum shear
force on the critical failure inclined plane before shear sliding can be
obtained, as shown in Equation (56):

Vsl =

[
dNA

sinβp
bτN − Pce cosβp

]
sinβp (56)

Substituting Equations (52) and (53) into Equations (55) and (56), we get:

Vu = bdNAAf + [Bf sinβp − cosβp] sinβpPce (57)
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With the coefficient C defined as [Bf sinβp− cosβp] sinβp, and substi-
tuting Equations (49), (50), and (55) into Equation (57), a second form of the
calculation formula for shear bearing capacity can be derived.

Vu =
bdNAAf

1− C
(
Ma/Va−d/ tanβp

d2

) (58)

3.3 Determination of Calculation Parameters

The correlation between the inclination angle βp and the shear-span ratio,
a key factor, is clearly depicted in Figure 4. The data trend in this figure is
effectively simplified into a bilinear model to achieve optimal correlation.
As indicated by the data, there is a shift in the linear trend at a shear-span
ratio of 3.14. For beam components with a shear-span ratio below this value,
the angle βp of the critical diagonal crack incrementally rises as the shear-
span ratio diminishes. Importantly, when the shear-span ratio approaches 0,
βp trends towards 90◦, indicative of a purely shear condition. The relationship
between the inclination angle βp and the shear-span ratio λ has been analyzed
using Origin software for regression, resulting in the calculation formula
presented in Equation (59):

βp =

{
−13.83λ+ 86.53 λ ≤ 3.14

43.10 λ > 3.14
(59)

Figure 4 Derivation of βp in terms of shear-span ratio.
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Current research indicates that due to the low tensile strength of concrete,
bending cracks appear earlier in the web of the beam under load. The
initial bending cracks quickly extend towards the neutral axis position, then
gradually stabilize. With continued loading, the range and width of the cracks
increase, while the height change is relatively small. Thus, the relative height
of the compressed zone of the beam component, dNA, can be determined
based on the strain-based assumption of plane sections and linear-elastic
bending theory.

dNA = d(
√
(nρ)2 + 2nρ− nρ) (60)

In the equation, n is the ratio of the elastic moduli of steel and concrete,
n = Es/Ec.

d2 = d− 1

2
β1dNA (61)

Here, β1 is the conversion coefficient for the relative height of the
compressed zone in bending members.

4 Experimental Validation

To verify the accuracy of the proposed mechanical calculation model for
high-strength concrete, a comprehensive experiment using a mixed load-
ing method of force followed by displacement was conducted [21–23].
The experimental setup involved a two-point symmetrical vertical concen-
trated load applied to the specimen via a distributing beam, with the specimen
being simply supported at both ends. This setup is depicted in Figure 5.

The experimental parameters were carefully selected to replicate realistic
conditions. The load was applied gradually to monitor the beam’s behavior
under increasing stress. Measurements included the displacement and deflec-
tion at the center of the beam’s bottom span, at the corresponding loading
points on the beam’s bottom, and at the support positions. The concrete

Figure 5 Experimental set-up.
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used was of grade C80, ensuring a high-strength quality for the experiment.
To ensure accuracy, the concrete mix and curing process were strictly con-
trolled, following industry standards. The load was applied incrementally,
and data were recorded at each stage to track the progression of stress and
deformation.

In the initial stages of loading deformation, the test beam displayed no
notable deformations or surface cracks, indicating its operation within the
elastic phase. With increasing load, fine cracks emerged at the center of
the beam’s lower span, signifying a shift to the elastic-plastic stage as the
concrete primarily absorbed the stress. When the load reached approximately
25% of the maximum bearing capacity, bending and diagonal cracks swiftly
appeared in the shear span section. Progressing to 75% of the ultimate bearing
capacity, these diagonal cracks expanded towards the supports, evolving
into prominent main diagonal cracks [24–26]. At this juncture, the shear
force shifted increasingly onto the longitudinal reinforcement, resulting in a
marked increase in the number and width of cracks in the shear span section,
as well as in deflection values. Continual loading up to the beam’s maximum
bearing capacity was accompanied by distinct sounds, culminating in the
main diagonal crack forming the final failure surface and localized concrete
crushing, ultimately leading to the specimen’s failure [27, 28].

When compared to the data presented in Figure 6, it is noticeable that the
growth patterns of the curves for the nine tested beams do not exhibit substan-
tial differences. Initially, these curves demonstrate an almost linear ascending
trend during the loading phase. However, upon the onset of diagonal cracking,
there is a discernible reduction in the slope, with the most notable variances
manifesting in the failure load values.

Employing the model previously elaborated upon, the shear bearing
capacity of the beam specimens was calculated, and the results are compre-
hensively outlined in Table 1. This table indicates that the ratios of calculated
to experimental values, derived using the mechanical equilibrium calculation
model, ranged from 0.87 to 1.13. This range denotes a robust correlation
with the experimental data and exhibits minimal deviation. Such an outcome
underscores that the model introduced in this study accurately reflects the real
shear bearing capacities of the 9 beams under examination, thereby providing
significantly enhanced predictive accuracy and stability relative to other
existing methodologies. Additionally, it is noteworthy that the discrepancy
between the calculated and experimental results for both the cracking moment
and ultimate load bearing capacity remained below 10%, which is considered
to be within an acceptable error margin.
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Figure 6 Displacement-load curve.

Table 1 Comparison of calculated and experimental values
Vtest / VMEC / Vpre / M1−test M1−count Deviation/ Ml−test Ml−count Deviation/

Engineering kN kN Vtest (kNm) (kNm) % (kNm) (kNm) %

1 31.27 27.28 0.87 28.72 26.95 6.16 33.24 33.70 1.38

2 41.01 36.85 0.90 32.42 33.12 2.16 37.74 38.02 0.74

3 40.22 38.59 0.96 31.41 32.47 3.38 36.51 36.42 0.25

4 42.27 38.91 0.92 33.84 34.91 3.16 38.95 38.47 1.23

5 42.91 42.90 1.00 33.65 34.86 3.60 39.24 39.84 1.53

6 45.01 39.94 0.89 37.28 38.51 3.30 42.85 41.97 2.06

7 54.13 58.94 1.09 49.47 49.98 1.04 52.13 52.02 0.21

8 62.22 62.19 1.00 42.51 44.32 4.26 57.45 57.06 0.68

9 68.40 77.31 1.13 45.68 46.14 1.01 59.68 59.79 0.18

Note: Vtest refers to the experimentally measured shear bearing capacity of the specimen; VMEC is the shear
bearing capacity value of the specimen calculated using the mechanical equilibrium-based model; Vpre /Vtest

represents the ratio of the predicted shear bearing capacity from various concrete beam models to the
experimentally measured value; M1−test is the experimental value of the cracking moment; M1−count is the
calculated cracking moment using formulas; Ml−test is the experimental value of the ultimate moment;
Ml−count is the calculated ultimate moment using formulas.

5 Conclusions

In this research, several key findings were made regarding the mechanical
properties of high-strength concrete beams in architectural design:

In the initial design phase for calculating the cracking moment, the
longitudinal force was equated to an area of high-strength concrete beams
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with the same elastic modulus, treating it as a homogeneous elastic material.
Using empirical formulas, a formula for calculating the cracking moment of
high-strength concrete beams was derived, which showed good agreement
with experimental values. However, it’s important to note that this approach
does not consider varying environmental factors such as temperature and
humidity, which can affect the material properties.

In calculating the ultimate bearing capacity, the method used for ordinary
reinforced concrete was adopted. The stress distribution of high-strength
concrete beams was approximated as a rectangular stress block, leading to
the derivation of a formula for the ultimate bearing capacity of high-strength
concrete beams. While this formula showed good correlation with experimen-
tal values, especially for high-rise buildings and large-span structures facing
heavy loads or complex stress conditions, the simplicity of the experimental
beams may not fully capture the complexity of real-world applications.

The ultimate bearing capacity calculated using DBJ 43/T 325—2017
and T/CCPA 35—2022 was found to be slightly conservative. However, the
results from this research method were close to the experimental outcomes.
In practical engineering design, by combining this calculation method with
adequate full-scale tests, the mechanical properties of high-strength concrete
can be fully utilized, supporting more sustainable and resource-efficient
architectural designs. It’s worth noting that the calculation models used in this
study did not account for certain environmental factors, which could influence
the performance of concrete in different conditions.

The research established a concrete beam shear-bearing capacity calcu-
lation model based on mechanical analysis, focusing on the force balance
relationship on the critical shear failure diagonal section. This model has a
clear physical meaning and accurately reflects the shear failure mechanism
of the beam’s diagonal section. While the mechanics-based model effectively
represents the shear-bearing capacity of high-strength concrete beams and
aligns well with experimental results, the scope of the experiments was
limited in terms of beam design and environmental variability, which may
affect its applicability in more complex scenarios.
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