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ABSTRACT
The ultimate subject of this work is the implementation 
and testing of a novel numerical tool that can simulate on a 
personal computer and only in a few minutes a problem with 
many millions of degrees of freedom. The authors have already 
successfully developed and tested a technique that turned 
out to be a modified, reverse fast-multipole implementation 
for the conventional BEM. The variationally based hybrid BEM 
leads to a computationally less intensive formulation than in 
the conventional BEM for large-scale 2D and 3D problems 
of potential and elasticity. This formulation is especially 
advantageous for problems of complicated geometry and 
topology or requiring complicated fundamental solutions. 
The proposed implementation of the fast multipole method 
(FMM) for the simplified, hybrid BEM deals with the transpose 
of the double-layer potential matrix as well as with the nodal 
matrix expression of the potential fundamental solution. 
The basic aspects of the FMM are firstly introduced for the 
conventional BEM as well as for its expedite version. This 
takes most part of the present paper, which ends up with 
some validating numerical results. The FMM outline for the 
simplified hybrid BEM is shown in a separate section, as its 
numerical implementation is still in progress.

1.  Introduction

The present research work is part of the studies carried out by the second author 
(Peixoto, 2014) together with Novelino (2015) to develop a robust and efficient 
fast multipole code applicable to problems with generally curved boundaries, in 
a framework that is almost completely independent from the underlying funda-
mental solution (Peixoto, Novelino, & Dumont, 2015a, 2015b). The basic concept 
of the (FMM), with the expansion of the fundamental solution about successive 
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layers of source and field poles, is described in a compact algorithm that is more 
straightforward to lay out and promises to be more efficient than the ones available 
in the technical literature (Liu, 2009; Liu & Nishimura, 2006; Nishimura, 2002).

In the proposed FMM implementation, a hierarchical tree of poles is built 
upon a topological concept of superelements inside superelements, which in part 
circumvents the need of evaluating geometrical distances between nodes as well 
as the need of concepts such as quadtrees or octrees for 2D or 3D problems. This 
FMM – which differs from the formulations classically presented in the literature 
not only because it follows a reverse strategy – has been already assessed for a 
variety of patch and cut-out tests for 2D potential problems and is being presently 
implemented for elasticity and 3D problems. It has not been inserted into an 
iterative solver yet since our goal has consisted in first to validate and assess the 
isolated FMM algorithm for accuracy, computational effort and storage alloca-
tion. The code is written in C++ and can automatically deal with elements of any 
order – although only linear and quadratic elements have actually been tested. A 
separate code for constant elements is also implemented.

The following outline combines, extends and improves two papers recently 
presented at international conferences (Dumont & Peixoto, 2016a, 2016b).

2.  Complex formulation of the two-dimensional potential problem

In the following equations zs = xs + iys is the complex representation of the refer-
ence coordinates of a source point (as conceptualised in the frame of a boundary 
element development) and the difference of a field point z = x + iy to the source 
point is z−zs. Just for the sake of notation simplicity we temporarily assume zs = 0 
as the reference coordinates origin.

The fundamental solution for a potential problem is written in complex nota-
tion as

 

with z = x + iy and including a material property k, such as a conductivity param-
eter in a stationary heat propagation analysis for a homogeneous and isotropic 
domain. We check that
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√

x2 + y2 is the distance between source and field points. Since
 

the potential flux in the Cartesian coordinates is defined as

(1)�∗s = ℜ

(
−1

2�k
ln (z)

) ≡ ℜ
(
�Cs

)

(2)
−1

2�k
ln (z) =

−1

2�k
ln (r) + i arctan(y, x)

(3)
d ln (z)

dz
=

1

z
≡ 1

x + i y
=

x

r2
− i

y

r2



EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS﻿    355

 

or, in complex notation,
 

The complex expression of the boundary outward unit vector is
 

and the expression of the boundary normal flux qn becomes
 

(The superscript n stands for ‘normal’ to differentiate from the notation 
used in Equation (5) for flux in the Cartesian directions.). This comes from 
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3.  Basic equations of the conventional, collocation boundary element 
method

In the collocation boundary element method, a generic potential problem is for-
mulated, in the absence of domain sources just for the sake of simplicity, as the 
compatibility matrix equation

 

for the vectors of boundary nodal potentials d ≡ df  and nodal normal flux attrib-
utes q ≡ q

�
 applied as mixed boundary conditions. The double-layer and sin-

gle-layer potential matrices H and G are defined as
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In the above definitions of H ≡ Hsf  and G ≡ Gs�, the subscript s denotes a node 
at which a point source is applied, f is a field node to which a nodal potential df is 
attached and ℓ is a point on the boundary corresponding to the nodal normal flux 
qℓ. Integration is carried out along a boundary segment in terms of a parametric 
variable ξ, as indicated in the latter two equations, in which it is also shown that, 
for the sake of notation simplicity, the argument ξ may be dropped.

While the fundamental solution defined in Equation (1) has global support, 
both potential and normal flux quantities θ and qn are piecewise approximated 
along the boundary (thus with local support), as already indicated in Equations 
(10) and (11), by:

 

where uf(ξ) ≡ uf and uℓ(ξ) ≡ uℓ (the argument ξ is usually dropped, for notation 
simplicity) stand for the same type of real polynomial interpolation functions of 
a given order (constant, linear and quadratic functions are implemented in our 
code). In the above and in the following equations repeated indices mean that 
a sum is being carried out. There is no sum indicated in the latter expression 
above as ‘(at �)’ is not an index. Since uf(ξ) and uℓ(ξ) have local support, there is 
no need to make explicit that the integrations indicated in the evaluation of Hsf 
and Gsℓ are carried out segment by segment along the boundary. The expression 
of tℓ(ξ) ≡ tℓ for the interpolation of the normal flux along an element segment (as 
well as for boundary traction forces in an elasticity problem) stems from a con-
sistent boundary element formulation proposed by Dumont (2010) for generally 
curved elements.

The subscripts used in Equation (9) and in the following equations play an 
important role in a consistent formulation. Let oe = 1, 2, 3, … be the order of 
a generic boundary element, that is, linear, quadratic, cubic and so on, with 
oe + 1 = 2, 3, 4, … nodes in an element. If a given problem is discretised with ne 
boundary elements, then the number of source points s is ne × oe, which is also 
the number of field points f: the double layer potential matrix H is square and 
of order ne × oe, which is also the size of the vector of nodal potentials d. On the 
other hand since two adjacent boundary segments in general do not share a com-
mon normal at their connecting nodes (maybe unwillingly, as the result of the 
imprecise geometry representation of a curved, piecewise smooth boundary), the 
left and right normals n⃗ at these points – see Equation (6) – should be explicitly 
considered in a generic formulation, so that the size of the vector of normal fluxes 
q becomes ne × oe + ne, which is also the number of columns of the single-layer 
potential matrix G and which is also why subscript ℓ is used (f and ℓ would be 
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used indistinctly only in the case of constant elements). By the way, it is worth 
remarking that the concepts of continuous or discontinuous nodes at corner points 
are considered by the first author as inconsistent and misleading and should not 
take place in a consistent formulation (Dumont, 2010).

4.  Basic equations of the simplified hybrid boundary element method

The simplified hybrid boundary element method has been well explained by 
Dumont and Aguilar (2012), for example, and is derived from the fully variational 
formulation proposed by Dumont (1989), which is also shortly reviewed in Liu et 
al. (2011). For the simplest case of a potential problem, it relies on the assumption 
that the potential θ and its gradients θ,j inside a domain can be described in terms 
of a series of point source parameters p∗s  applied along the boundary plus some 
arbitrary particular solution θp,

 

where �∗s  is a fundamental solution of the corresponding differential equation of 
the problem, as given in Equation (1) for the Laplace equation. In the present 
case, ∇2�∗s = 0 except for the point of application of p∗s , when �∗s  becomes undeter-
mined. Moreover, �∗s  is obtained except for a constant Cs (Dumont, 2010; Dumont 
& Aguilar, 2012). This belongs to the basic theory of the conventional boundary 
element method only bearing in mind that in a variational formulation �∗s  is used 
as a numerical approximation of the actual problem and not just as a weighting 
function [references given in Dumont (2010)].

Assigning subscripts D and N to subvectors of nodal potentials d and equivalent 
nodal fluxes p to characterise whether the boundary conditions are of Dirichlet or 
Neumann type, the final matrix equation system of the simplified hybrid boundary 
element method is expressed as

 

where the quantities with superscript p stand for nodal potentials or fluxes related 
to an assumed, arbitrary particular solution of the problem. H is the same dou-
ble-layer potential matrix of the conventional, collocation boundary element 
method given in Equation (10), and U∗ represents the fundamental solutions �∗s  
evaluated at the boundary nodal points, that is, U∗ ≡ U∗

fs ≡ �∗s (zf − zs). The vector 
p ≡ pf  of equivalent nodal normal flux is obtained from the distributed normal 
flux q ≡ q

�
 introduced in Equation (8):
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where |J|(at�) is defined as in Equation (12) and L̃
�f  is a pre-evaluated result given 

as the block matrices below for linear, quadratic and cubic elements:
 

Equation (14) can be firstly solved for p∗ in terms of the known nodal quantities 
pN − p

p

N
 and dD − d

p

D
, provided that the problem is well posed, with the subsequent 

evaluation of the unknown boundary potentials and fluxes. Then, the equation to 
be implemented in the frame of the fast multipole method is

 

Results at internal points are obtained from p∗ directly using Equation (13). Results 
close to or at nodal points can also be obtained (see, for instance, Dumont & 
Aguilar, 2012). The implemented 2D boundary element code works with linear, 
quadratic or cubic elements.

5.  Basic equations of the expedite boundary element method

The matrices H and G of the conventional, collocation boundary element method 
and, in a similar reasoning, the matrix HT of the simplified hybrid boundary ele-
ment method, may be obtained in an expedite way that consists in approximating 
the fundamental solution along a boundary segment using the same interpola-
tion functions introduced in Equation (12). Equation (8) can be developed – in 
its complex version as ready to be implemented in the frame of a fast multipole 
algorithm – according to the following equation, which uses in the second row 
the definitions of Equations (10) and (11) and then approximates the fundamental 
solutions themselves along each boundary segment according to Equation (12), 
thus resulting into a very simplified (thus the term expedite) form in terms of the 
transformation matrix L of Equation (15):
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In this development, TC
�s expresses the complex fundamental solution qCs  evaluated 

at node ℓ (and corresponding outward normal for the considered boundary seg-
ment) and UC

fs ≡ UC
sf  is the result of �Cs  evaluated at node f. The expedite integration 

scheme represented as
 

only applies if the source point given by s is sufficiently far from the boundary 
segment where an integration should be carried out.

6.  Proposed FM algorithm for a general, complex function

The following basic definitions are used in the present developments to represent 
a general function in the complex domain f(z):

• � z−zs = difference between the source point zs and the field point z.
• � zck , k = 1, 2,… nc: hierarchical levels of poles about which the fundamental 

solution will be successively expanded for the field point z (then, by defini-
tion, zc0 ≡ z).

• � zLl, l = 1, 2, … nL: hierarchical levels of poles about which the fundamental 
solution will be successively expanded for the source point zs (by definition, 
zL0 ≡ zs).

The above definitions of a pole zck that is close (lower case c) to the field point z 
and of a pole zLl that is local (upper case L) to the source point zs follow the nota-
tion introduced by Liu (2009). In the following developments, each close pole zck 
and each local pole zLl are actually array representations of different hierarchical 
levels of poles, as illustrated in Figure 2, where the attached superscripts (here 
omitted, for simplicity) denote an individual pole in the array.

The expression of a generic fundamental solution for 2D problems is ultimately 
expanded for the field point z about the close pole zcnc (of highest level, as devel-
oped next) using n terms as well as for the source point zs about the local point 
zLnL (also of highest level) using m terms:
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Using Δz as a generic difference between poles, the expansion terms of the array 
Q(Δz) in the above equation are
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The terms Pi(z − zcnc ) and Pj(zLnL − zs) in Equation (21) are polynomials evalu-
ated recursively as shown in the following for Pi(Δz) ≡ Pi(z − zcl ). If Δz ≡ z − zcl 
characterises the difference between two consecutive poles, then

 

On the other hand, if Δz ≡ z − zcl refers to differences between poles that are not 
consecutive, Pi(z − zcl ) is expressed recursively in terms of a lower level polynomial 
Pj(z − zcl−1) and the polynomial Pi+1−j(zcl−1 − zcl ) of Equation (23) by

 

where Cij = 1 if i = 1 or j = 1, otherwise, Cij = Ci−1,j + Ci,j−1. With this recursive 
approach, the polynomials Pi(z − zcnc ) and Pj(zLnL − zs) in Equation (21) always 
end up expressed in terms of arguments given as differences of poles in two con-
secutive levels, according to Equation (23).

In general, the higher derivatives in Equation (22) of the fundamental solution 
tend rapidly to zero when evaluated for large arguments. Equation (21) is the start-
ing point for a procedure that leads to a computationally fast and economical eval-
uation of a given fundamental solution f(z−zs) for a very large number of source 
points zs by means of a sufficiently approximate expression. As shown, f(z−zs) is 
expanded in terms of successive arrays of source poles zLl as well as of field poles 
zck. The expansion ends up with a series of products of polynomials Pi(z − zcnk ) and 
Pi(zs − zLnl ), which are independent from the complexity of the function f(z−zs), 
multiplied by functions Qi(zLnl − zcnk ) that are given as f (zLnl − zcnk ) and its 2n first 
derivatives, for the expansion indicated in Equation (21). Although these latter 
functions may be computationally intensive to evaluate, they are only needed 
for the multiplication of the arrays of poles represented by zLl and zck. Then, the 
evaluation of Qi(zLnl − zcnk ) may end up orders of magnitude less intensive than 
the direct evaluation of f(z−zs) for all source and field points.

6.1.  Adjacency search

The adjacency information to a boundary segment is based on a hierarchical 
boundary refinement. This scheme consists in splitting an element – be it constant, 
linear, quadratic or cubic, as implemented, – into two smaller ones and sequen-
tially assigning a global numbering to the new nodes as they are created (Figure 1).

Figure 2 shows three cases of possible refinements, with 2, 4 or 8 child elements 
(nc) per element. As each element is split into two new elements, nc is always a 
power of 2 for a 2D problem.

This splitting scheme provides a direct way of assessing adjacency by node num-
bering (topological adjacency), which is adequate in the case of a convex domain 
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– or when its shape is not too irregular. For domains with holes, sharp corners or 
notches, for instance, a geometry-based adjacency assessment is required, which 
may become computationally expensive. The proposed adjacency search uses the 
hierarchical refinement shown in Figure 2 to reduce the number of possible adja-
cent elements, therefore reducing the need of evaluating distances geometrically.

Figure 3 shows a square domain with a hole to be assessed at two different 
refinement levels. If the topological adjacency were to be considered in such a 
domain for the refinement level k = 0, on the left, element 5 would not be detected 
as adjacent to element 1, as they are 4 elements apart. This illustrates a case that 
requires a geometry-based assessment. Using the hierarchical refinement, it is 
possible to assign to a given element at level k its child, split elements at level k + 1. 
This information is used to reduce the number of candidate adjacent nodes, and 
therefore the number of distance evaluations.

As illustrated on the left of Figure 3 for the level k = 0, a search is carried out 
for element 1 using the two circles centred on its nodes, and it comes out that 
the nodes inside the circles (corners of the square hole) are adjacent. Then, any 
element that contains at least one of these nodes is considered adjacent to element 
1. The search radius is AdjTOL × L, where L is the length of the reference element. 
Good numerical results have been obtained in the frame of the implemented fast 
multipole algorithm using 0.7 ≤ AjdTOL ≤ 2.

Figure 1. Scheme of three different elements that are split each into two sub-elements.

Figure 2. Schematic pole expansions using numbers of child poles nc = 2, 4 or 8 (Novelino, 2015).
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Element 1 on the right of Figure 3 corresponds to a level k = 1 and has been 
generated from element 1 at level k = 0. Since the adjacent elements of element 
1 at level k = 0, on the left figure, are already known, they are the candidates to 
have adjacent child elements at level k = 1, that is, all elements in the figure except 
for elements 5 and 6. Once more, search circles with radius proportional to the 
element length are drawn and nodes inside them are marked as adjacent.

An element’s adjacency list is built as the hierarchical mesh refinement proceeds 
up to the highest level. This list is generated and stored for just one element at a 
given refinement level.

6.2.  Implemented FM algorithm

This section describes a compact version of the implemented fast-multipole algo-
rithm, as applied to potential problems in the conventional BEM and described 
above. The number of code lines is actually very small. However, as the algo-
rithm calls a recursive routine (PoleExpansion) inside another recursive routine 
(Adjacencies), this makes it fairly convoluted and difficult to explain verbally, 
although the flowcharts can be easily translated into a code. The basic version 
presented below gives an overview of the algorithm’s four major routines: Main, 
Adjacencies, Source and PoleExpansion (see also Dumont & Peixoto, 2016a).

The procedure Main (Figure 4) loads the input data, generates the hierarchical 
mesh according to the concepts briefly discussed in the Introduction and evaluates 
the kernel expansions according to Equation (22), which is the only part of the 
code that is kernel dependent. Then it executes a small loop over all elements of the 
first level (k = 0) of the hierarchical mesh in order to create the adjacency structure 
for each macro-element (ie), carrying out, at the same time, all the possible field 
evaluations for the child elements of element ie.

Figure 3. Schemes for the adjacency search at the coarser refinement level k = 0 and at the next 
refinement level k = 1 (Peixoto & Dumont, 2016b).
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The routine Adjacencies (Figure 5), which is actually preceded by an initial-
ising routine Adjacencies0 also called by the procedure Main, assembles the 
adjacency structure and when it reaches the most refined level (k  =  nv), calls 
the routine Source. This routine (Figure 6) handles integrations in terms of the 
conventional BEM matrix-vector products (routine BEMAdj, not shown) for the 

Figure 4. Procedure Main (Dumont & Peixoto, 2016a).
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adjacent elements, as well as in terms of FM expansions (routine BEMFM, also 
not shown). The analytical integrations carried out in the frame of the routine 
BEMFM refer to the closest field pole and are successively stored for use with 

Figure 5. Recursive procedure Adjacencies (Dumont & Peixoto, 2016a).

Figure 6. Procedure Source (Dumont & Peixoto, 2016a).
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far-field elements in the routine PoleExpansion. The routine Source also leads to 
the successive expansion of the FM integration terms, thus delivering data infor-
mation to the upper refinement levels, if this is the case, by calling the recursive 
routine PoleExpansion.

Finally, the recursive routine PoleExpansion (Figure 7) delivers the 
FM-integrated data to the source poles that are considered sufficiently far by 
calling the routine Qvector to evaluate the array of kernel expansions defined 
in Equation (22) and then evaluating the expansion series for the source point, 
Equation (21). It also checks if the level k = kexp has been reached, as expansions 
stop at this level, indicating that the results obtained so far are directly delivered 
to the remaining source points. If k = kexp has not been reached, the routine calls 
routine Pvector (not shown) to convey the obtained data, according to Equation 
(24), to the upper pole levels and, when all elements of level k have been processed, 
calls itself (thus recursively) to proceed to the immediately upper refinement level 
of the hierarchical structure.

7.  Numerical results

In the following, some basic results obtained in the frame of the conventional 
boundary element method (CBEM), that is, using Equation (8), are displayed 
in order to set the highest accuracy one may expect to achieve in the analyses. 

Figure 7. Recursive procedure PoleExpansion (Dumont & Peixoto, 2016a).
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Some numerical experimentations with the expedite boundary element method 
(EBEM) are shown subsequently.

7.1.  Some target results for the implemented fast multipole method

Figure 8 shows two irregularly shaped domains that will undergo an hierarchical 
mesh refinement and then will be submitted to a testing potential field (Peixoto & 
Dumont, 2016). Given an in principle arbitrary analytical solution of the Laplace 
equation, for the present potential problem, a vector d of potential values and a 
vector q of normal flux values are obtained along the nodal points of the boundary 
drawn in the open field, as illustrated in the figure. This is called a cut-out test, 
as the accuracy of the BEM Equation (8), that is, of the matrices H and G, can be 
assessed for arbitrarily distorted domains and different mesh refinements, as the 
vectors d and q are always known analytically. The code is implemented in the 
language C++ and runs on a desktop computer (i7™-4770 CPU 3.4 GHz, 16 GB 
RAM in Windows® 7). The errors presented on the right of Figures 9 and 10 rep-
resent the Euclidean error norm

 

For the domain on the left of Figure 8, a quadratic field x2 − y2 is applied as a tar-
get, analytical solution of the Laplace equation. The boundary is discretised with 
constant, linear and quadratic elements with up to 224 = 16, 777, 216 degrees of 
freedom as represented in the horizontal axis of both graphs in Figure 9.

Figure 9 shows on the left the time required for running simulations with dif-
ferent degrees of freedom (horizontal axes) and different numbers n of terms in 
the series, according to Equation (21), for each element type. It is worth noticing 
that, for a given element type, increasing the number of terms in the series does 

(25)� =
|Hd − Gq|

|Gq|

Figure 8. Domains used in the numerical assessments.
Notes: Left: stepwise linear boundary submitted to a quadratic field. Right: irregularly shaped domain submitted to 
a logarithmic field with source applied at the point marked * (Peixoto & Dumont, 2016a).
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not lead to a considerable increase in the execution time. On the other hand, 
the graph on the right of Figure 9 shows that the number n of expansion terms 
considerably affects the numerical accuracy. The full circles characterise in both 
graphs of Figure 9 results obtained by evaluating the matrix-vector products Hd 
and Gq as in a CBEM implementation. Since the applied analytical open-field is 
quadratic, the CBEM solution for quadratic elements (dashed lines) is as accurate 
as the numerical integration and round-off errors allow. However, when evaluated 
via the FMM, there is an intrinsic error due to the series expansions. This error 
poses an accuracy threshold to simulations with the lower order elements.

For the curved domain on the right of Figure 8, only quadratic elements are 
used. This structure is discretised with up to 5 × 218 = 1, 310, 720 degrees of free-
dom and is submitted to a logarithmic field ln ||z − zs

||, where zs = 12.5 + 15i is the 
source point, represented by (*) in Figure 8, and z = x + iy is a generic field point. 
The execution time and error results are given in Figure 10 exactly as outlined for 
the previous numerical example.

As already observed, one sees on the left of Figure 10 that the computational 
effort increases only slightly as the number n of expansion terms increases. This 
graph also displays the curves proportional to N (dotted line), N log N (dashed 
line) and N2 (dash-dot line). One observes that, while the implementation of the 
matrix-vector product in terms of the CBEM requires a computational time pro-
portional toN2, the present FMM implementation performs close to N, as already 
suggested by Liu (2009) as an achievable goal.

The error assessment on the right of Figure 10 goes up to 5 × 218 degrees of 
freedom, although the error threshold for the FMM expansions is already arrived 

Figure 9. Execution times (left) for the evaluation of Equation (8) for the domain on the left of 
Figure 8 using constant, linear and quadratic elements, and accuracy results (right) for different 
numbers n of expansion terms (Peixoto & Dumont, 2016a).
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at for 5 × 210 degrees of freedom, with the same convergence behaviour observed 
in the previous example.

7.2.  Assessment of the expedite approximation of the boundary element 
method

Computation cost and numeric accuracy of the expedite approximation of the 
CBEM are assessed in this section by means of a few simulations using either 
linear or quadratic (and curved) elements. The proposed approximations of the 
single- and double-layer potential matrices are given in Equation (20).

Two different domains, as depicted in Figure 11, are considered. The square 
domain on the left is discretised with either linear or quadratic elements with 
up to 1024 degrees of freedom. On the right of Figure 11 is shown an irregularly 
shaped domain defined by 16 initial nodes and discretised with quadratic elements 
with up to 2048 degrees of freedom. Both domains are submitted to a logarithmic 
field due to a point source applied at zs = 3 + 11i for the domain on the left, and 
zs = −3−i for the one on the right of Figure 11. Corresponding nodal potentials d 
as well as normal fluxes q are evaluated along the boundary nodes to assess the 
accuracy of Equation (8) by applying the Euclidean error norm of Equation (25).

7.2.1.  Results for the square domain of Figure 11
The times required to run the simulations for the square domain (left of Figure 11) 
with linear and quadratic discretisations are shown on the left and right graphics 
of Figure 12. Four AdjTOL parameters, as presented in the section on adjacency 
search, are studied: 10−4, 3, 6 and 10. The value AdjTOL = 10−4 leads to the same 
results of a topological adjacency.

Figure 10. Execution times (left) for the evaluation of Equation (8) for the domain on the right 
of Figure 8 using quadratic elements, and accuracy results (right) for different numbers n of 
expansion terms (Peixoto & Dumont, 2016a).
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In both sets of simulations it may be seen that the CBEM is by far more time 
expensive than the EBEM, even for large AdjTOL values (when an element has 
a large number of adjacent elements and thus few expedite approximations take 
place). If the AdjTOL parameter is large enough all elements of a problem end up 
located inside the search circles and the EBEM simulation performs as a CBEM 
one. This threshold case happens for the first two quadratic discretisations with 
AdjTOL = 10. The results of Figure 12 show that the computational costs with 
the EBEM in general increase at a by far lower rate than in the case of the CBEM.

Euclidean error norms, evaluated as in Equation (25) for either case of lin-
ear or quadratic element, are shown in Figure 13 for several mesh refinements. 
As expected, the EBEM simulations lead to larger errors when compared to the 

Figure 11.  Regular square and deformed quadrilateral domains used for the numerical 
assessments (Peixoto & Dumont, 2016b).

Figure 12. Execution times for the discretisation of the square domain of Figure 11 with linear 
(left) and quadratic (right) elements (Peixoto & Dumont, 2016b).



370   ﻿ N. A. DUMONT AND H. DE F. C. PEIXOTO

CBEM simulations, except for some trivial cases when they actually coincide 
computationally. For small values of AdjTOL – that is, more expedite approxi-
mations –, it may be seen that the errors are not satisfactory. In fact, the errors 
for simulations with the EBEM using the topological adjacency (equivalent to 
AdjTOL = 10−4) are at least one order of magnitude larger than with the CBEM 
whether using linear or quadratic elements.

If one weighs computational effort and accuracy convergence in Figures 12 
and 13 it is reasonable to conclude that the CBEM and the EBEM are equivalent 
in terms of performance if a not too high accuracy is pursued.

7.2.2.  Results for the curved domain of Figure 11
In a second assessment, the curved domain on the right of Figure 11 is discretised 
with quadratic elements, which keep the problem’s original geometry throughout 
refinement. Figure 14 presents both the execution times (left) and the Euclidean 
error norms (right) for a numerical analysis carried out with up to 2048 nodes. 
The same four vales of AdjTOL of the preceding study are used.

As the adjacency search radius increases, the time needed to execute the simu-
lations with the EBEM also increases, although with significant accuracy improve-
ment, as shown on the right of Figure 14. In the results for AdjTOL = 10, that is, 
for a search radius ten times an element length, the simulation with 1024 nodes 
shows an error ε = 1.6 × 10−7 after about 1.2s execution time (result marks sur-
rounded by circles). To achieve such a precision with the CBEM, it is needed to 
run a simulation with 700 DOFs, which takes slightly more computational time. 
This analysis shows that the EBEM is capable of delivering small errors with com-
petitive computational time. This method may be recommended as a fast means 
of obtaining a fair approximation of a complex problem in a reduced amount of 

Figure 13. Euclidean error norms for the discretisation of the square domain of Figure 11 with 
linear (left) and quadratic (right) elements (Peixoto & Dumont, 2016b).
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time, such as in the evaluation of initial results for iterative methods, as well as 
for initial mesh approximations in highly convoluted domains.

7.3.  Assessment of the expedite fast multipole boundary element method

The fast multipole technique briefly presented in this paper – and thoroughly 
discussed in Peixoto (2014), Novelino (2015) and Dumont & Peixoto (2016a) – 
may be applied together with the EBEM in order to push even further the gain 
in the algorithm speedup delivered solely by the EBEM. Since the FMM relies on 
polynomial expansions of the fundamental solution in the complex z direction 
and the EBEM consists in approximating the same fundamental solution along 
boundary segments, it is worth assessing the error when these two methods are 
combined.

The expansion of the fundamental solution of Equation (1) as in Equation (21), 
when applied to the matrices of Equation (20), leads to the fast multipole expan-
sions for the boundary element method together with the expedite approximation:

 

 

(26)

HC
sf ≈ TC

�sL�f

= qCs n
|||(at�)L�f = qCs ñ

|||(at�)L̃�f

≈ ñ|(at�)L̃�f

n+2∑
i=2

1

(i − 1)!
Pi−1(z� − zc)Qi(zc − zs)

(27)GC
s� ≈ UC

sf L�f = UC
sf L̃�f |J|(at�) ≈ L̃

�f |J|(at�)
n+1∑
i=1

1

(i − 1)!
Pi(zf − zc)Qi(zc − zs)

Figure 14. Execution time (left) and Euclidean error norms (right) for the curved domain on the 
right of Figure 11 discretised with quadratic elements.
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Equations (5) and (6) were also used in the above transformations. These expan-
sions are only carried out when the source point s is sufficiently far from the 
field points f or ℓ, as both the expedite and the fast multipole methods depend 
on a sufficient distance in order to arrive at a reasonable accuracy. Otherwise 
the integrals indicated in Equations (10) and (11) are to be evaluated as usually, 
which includes the correct consideration of the cases when the integrals become 
singular or improper.

7.3.1.  Some numeric results for the FMM applied to the EBEM
The square domain on the left of Figure 11 is used to assess both accuracy and 
computational cost for the FMM applied to the EBEM. The domain is discretised 
with linear and quadratic elements, and two adjacency parameters (AdjTOL) are 
studied for each discretisation: 0.1 and 5. The parameter AdjTOL = 0.1 corre-
sponds to the topological distance, for which computational time is very low at 
the expense of accuracy. The same logarithmic field of the first numeric exam-
ple – for a source at point (zs = 12.5 + i15) – is applied. The discretisations with 
linear and quadratic elements go up to 218 = 262, 144 and 217 = 131, 072 degrees 
of freedom, respectively.

For the simulations using linear elements, time and error results, evaluated 
as in the previous examples, are presented in Figures 15 and 16 using the rather 
topological adjacency search with AdjTOL = 0.1 as well as AdjTOL = 5. In all 
cases, the execution times for the CBEM are shown to be proportional toN2, 
while the fast multipole simulations present an execution time proportional to N. 
Independently of the AdjTOL value, all fast multipole simulations perform faster 
than the CBEM, even for a small number of degrees of freedom.

Figure 15.  Execution time (left) and error measure (right) for the square domain of Figure 11 
discretised with linear elements and with AdjTOL = 0.1: topological distance (Peixoto & Dumont, 
2016b).
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The execution times for the FM algorithm applied to the CBEM and to the 
EBEM are visually indistinguishable, but the EBEM runs always slightly faster. This 
is an expected result, as instead of evaluating polynomial integrations in a CBEM 
context, the EBEM pre-evaluates only polynomial interpolations, according to the 
array of results given in Equation (17).

Although the simulations with the EBEM run slightly faster, accuracy is defi-
nitely worse than with the CBEM, as shown on the right of Figures 15 and 16.

Results for a quadratic discretisation are shown in Figures 17 and 18 for 
AdjTOL  =  0.1 and AdjTOL  =  5. The same behaviour observed for the linear 

Figure 16.  Execution time (left) and error measure (right) for the square domain of Figure 11 
discretised with linear elements and with AdjTOL = 5 (Peixoto & Dumont, 2016b).

Figure 17.  Execution time (left) and error measure (right) for the square domain of Figure 11 
discretised with quadratic elements and with AdjTOL  =  0.1: topological distance (Peixoto & 
Dumont, 2016b).
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discretisation is seen in these results. The error norms are of a smaller order of 
magnitude, just as expected when comparing linear and quadratic elements.

8.  Concluding remarks

This paper presents a novel, kernel-independent fast multipole formulation to be 
used with the BEM. The formulation relies on a hierarchical mesh refinement strat-
egy for generally curved boundary elements, which is also used in the evaluation 
of element adjacencies and is key to the proposed algorithm. A compact version 
of the implemented algorithm is presented, and its application is illustrated for 
two irregularly shaped domains with up to N = 16, 777, 216 degrees of freedom.

The numerical assessments show that the proposed algorithm is seamlessly 
applicable to generally curved elements of any order. The simulation of extremely 
convoluted shapes including multiply connected domains seems to present no 
difficulties. The computational cost for all examples run so far has shown to be 
proportional to O(N), as opposed to a conventional BEM implementation, which 
requires operations of order O(N2). As a matter of fact, the proposed FMM imple-
mentation is superior to a conventional BEM implementation in terms of com-
putational costs even for a very small number of degrees of freedom, as observed 
in the graphs on the left of Figures 9 and 10.

Although the proposed expedite implementation of the boundary element 
matrices seems to be competitive in a conventional formulation, as shown for 
some examples, its use in the frame of a fast multipole method does not seem to 
lead to a substantial gain in computational time and presents a bad convergence 
rate. As already mentioned, this method may be recommended as a fast means 
of obtaining a fair approximation of a complex problem in a reduced amount of 

Figure 18.  Execution time (left) and error measure (right) for the square domain of Figure 11 
discretised with quadratic elements and with AdjTOL = 5 (Peixoto & Dumont, 2016b).
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time, such as in the evaluation of initial results for iterative methods, as well as 
for initial mesh approximations in highly convoluted domains.

The simplified hybrid boundary element method, briefly outlined in this paper, 
is being presently implemented in the frame of the proposed fast multipole algo-
rithm. As shown, this method makes use of the transpose of the double-layer 
potential matrix of the conventional method, which requires special care for a 
fast multipole implementation. The conclusions regarding an expedite evaluation 
of the matrices of the conventional method should apply to the simplified hybrid 
boundary element method as well.

The present fast-multipole algorithm is being implemented for elasticity prob-
lems, as well. Its generalisation to three-dimensional problems should not offer 
any conceptual difficulties, although the series expansions of the fundamental 
solution no longer relies on a complex-variable representation (see Y. Liu, 2009, 
for instance, and references in there). The authors are also working on the imple-
mentation of the proposed technique in the frame of an available iterative solver, 
which is of large practical interest but not at all in terms of research achievements.
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