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ABSTRACT
This paper presents the newly proposed method Sparse Cardinal
Sine Decomposition that allows fast convolution on unstructured
grids. We focus on its use when coupled with finite element
techniques to solve acoustic problems with the (compressed)
Boundary Element Method. In addition, we also compare the
computational performances of two equivalent MATLAB® and
Python implementations of the method. We show validation test
cases in order to assess the precision of the approach. Eventually,
the performance of the method is illustrated by the computation
of the acoustic target strength of a realistic submarine from the
Benchmark Target Strength Simulation international workshop.
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1. Introduction

Convolutions on unstructured grids are at the heart of many numerical meth-
ods used for solving problems arising from the physical modelling in many
different fields. Indeed, it is one of the main ingredients for the use of the
Boundary Element Method (BEM) in electrostatics, magnetostatic, acoustics,
linear elasticity or electromagnetism, to quote only a few domains. Classical
methods used to compute the convolution have a quadratic complexity, O(N2),
in terms of the number N of discretisation points in the considered object.
Dependingon themachineused, this usually forbids touse themethod inpractice
when N exceeds a few tens of thousands. To overcome this limit, fast methods,
such as the Fast Multipole Method (FMM) (Greengard, 1988; Greengard &
Rokhlin, 1987) and the H-Matrices (Hackbusch, 1999), have been developed
to reduce the overall complexity to O(N logN), to the price of a much higher
implementation complexity. More recently, a new method, referred to as the
Sparse Cardinal Sine Decomposition (SCSD) method (Alouges & Aussal, 2014;
Aussal, 2014), was invented to address this particular problem in a simpler way.
Originally developed for point-to-point interactions, it is based on a suitable
Fourier decomposition of the Green kernel, sparse quadrature formulae and
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Type-III Non-Uniform Fast Fourier Transforms (Greengard & Lee, 2004; Lee &
Greengard, 2005).

We propose in this paper to extend the use of the SCSD, in particular to Fast
BEM problems, where we also need to consider a finite element discretisation.
We show in particular that we can use the point-to-point interaction with the
integration points. For the sake of simplicity, we focus on the acoustic scattering
problems, although the method can be extended to other problems.

This paper is organised as follows. We first introduce the problem of in-
terest and explain the motivation behind the development of methods for fast
numerical convolution. The basic SCSD methodology is then outlined and we
provide numerical evidence of the efficiency of the method. In particular, we
give comparisons between the SCSD and other established techniques such as
H-Matrix compression (Hackbusch, 1999) and FMMs (Greengard, 1988; Green-
gard & Rokhlin, 1987).

Eventually, we provide the reader with a complete industrial test case that con-
sists in computing the acoustic target strength of a realistic submarine that was
proposed in the Benchmark Target Strength Simulation international workshop
(Schneider et al., 2003).

2. Integral equation formulation

Let us first introduce the problem of interest. We consider a surface obstacle �

dividing the spaceR
3 in two open interior�i and exterior�e domains. Given an

incident acoustic field pinc defined in R
3, we aim at evaluating the total acoustic

field p = psca + pinc resulting in the scattering by the obstacle and characterised
by the scattered acoustic field psca. We suppose in the following that the obstacle
has sound-hard or Neumann boundaries.

The scattering problem can be written as the following Boundary Value
Problem (BVP)

− (
�psca + k2psca

) = 0, in �e, (1)
∂npsca = −∂npinc, on �, (2)

r(∂rpsca − ikpsca) → 0, as r → ∞. (3)

The Equation (3) is the so-called Sommerfeld radiation condition ensuring
sufficient decay at infinity of the scattered field psca.

The approach thatwe choose to adopt is to reformulate this BVPas aBoundary
Integral Equation (BIE) on the boundary of the scatterer �. To do so, we define
the single-layer potential S and double-layer potential D, for sufficiently regular
functions, as

Sλ(x) :=
∫

�

G(x, y)λ(y) d�y , x ∈ R
3\�, (4)
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Dμ(x) :=
∫

�

∂nyG(x, y)μ(y) d�y , x ∈ R
3\�. (5)

Here, G(x, y) = e−ik|x−y|/(4π |x − y|) is the free space Green’s function in R
3.

Let p be a solution to the Helmholtz equation in R
3\� = �i ∪ �e that satisfies

the Sommerfeld radiation condition at infinity. Then, it is well known that the
following integral representation holds

p = Sλ − Dμ, in R
3\�. (6)

where the jumps μ and λ are defined as

μ := [p] = pi − pe, λ := [∂np] = ∂npi − ∂npe, on �. (7)

In the previous definitions, the superscripts i, e denote, respectively, the interior
and exterior traces on � of p. Taking the Neumann exterior trace on � in (6)
yields the following BIE

∂np = −Hμ +
(

−1
2
I + D∗

)
λ, on �, (8)

where I is the identity boundary operator and where the adjoint double-layer
D∗ and hypersingular H boundary operators are defined, for sufficiently regular
functions, as

D∗μ(x) :=
∫

�

∂nxG(x, y)μ(y) d�y , x ∈ �, (9)

Hμ(x) :=
∫

�

∂2nxnyG(x, y)μ(y) d�y , x ∈ �. (10)

In order to apply this result to our problem, one needs to formally prolongate
the unknown psca by a function satisfying the Helmholtz equation in the interior
domain �i. Several formulations are then possible depending on the choice of
the prolongating function. To obtain a well-posed problem, we use the Burton–
Miller/Brakhage–Werner approach (Burton&Miller, 1971). It rests on a suitable
prolongation that yields a proportionality relation between the two jumps on �:
λ = ikβμ, for a suitable scalar constant β ∈ C with a strictly positive real part.
The following BIE in the unknown μ on the boundary � is finally obtained

(
−H + ikβ

(
−1
2
I + D∗

))
μ = −∂npinc, on �. (11)

UsingGalerkin approximation,wewrite theEquation (11) inweak form.Namely,
calling R = (−H + ikβ

(− 1
2 I + D∗)), we seek μ such that for all test functions

μt we have
〈Rμ, μt〉� = −〈∂npinc,μt〉�. (12)



380 F. ALOUGES ET AL.

To solve numerically the integral Equation (11) or its variational counterpart
(12), we introduce a discrete approximation space VN in which to look for the
unknown μ. Here, N denotes the number of degrees of freedom or equivalently
the dimension of the discrete space. Let T be a discretisation of the boundary
� with triangular elements. We construct the approximation space using P1

Lagrange finite elements on the grid T . We now seek μ ∈ VN such that (12) is
satisfied for all test functions μt ∈ VN .

The discrete problemnow takes the form of a linear system, of sizeN byN and
the computation of the elements of this system mostly involves the numerical
evaluation of the boundary operators D∗ and H . This is typically conducted
via Gauss quadrature methods.1 One is then faced with the evaluation of terms
(convolution products) that take the form

K̃f (xi) =
∑
yj

K(xi, yj)f (yj), for some xi ∈ �, (13)

where K is a Green kernel, f is a scalar function and the points (yj)
Nq
j=1 are the

quadrature points on �. In a sense, this amounts to evaluate all interactions
between two point clouds in x and y. Moreover, since the Green kernel is not
compactly supported, the coefficients K(xi, yj) do not vanish and the support of
Rμ is the whole boundary �. As a result, the matrix involved is dense, which
is one of the peculiarities of the BEM. We have rewritten the initial problem in
R
3 to the boundary � to the price of having now a dense matrix instead of the

classical sparse matrices that are characteristic of finite element methods. As a
consequence, the memory cost in a classical BEM for computing and storing
the dense matrix of the linear system is O(N2). Solving the linear system using
direct solvers then requires typically O(N3) operations, making any attempt
impractical for large problems (e.g. whenN is bigger than a few tens of thousands
for a typical machine). Even if one turns to iterative solvers, relying only on
matrix–vector products, having a dense matrix still implies a quite important
cost of O(N2) operations per iteration. There is therefore a need for fast and/or
compressionmethods that aim at reducing this time and storage complexity from
quadratic to quasi-linear O(N logN). A successful attempt in this direction was
first achieved with the FMMs (Greengard, 1988; Greengard & Rokhlin, 1987)
and later with hierarchical matrix compression (Hackbusch, 1999).

A more recent approach with a similar complexity, the SCSD method, was
proposed by some of the authors (Alouges & Aussal, 2014; Aussal, 2014) in the
case of point-to-point interactions, and mostly with Laplace Green kernel. We
aim at extending the approach to Helmholtz equation and, using the quadrature
formula described above, to finite element discretisations.
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3. Sparse Cardinal Sine Decomposition

The building block of the SCSD is the integral representation of the cardinal sine
on the unit sphere S in R

3, namely

sinc(|x − y|) = sin(|x − y|)
|x − y| = 1

4π

∫
S
eis·(x−y)dS(s). (14)

We use a quadrature formula on the sphere S constructed from a set of nodes
(sm)1≤m≤Ns associated with weights (ωm)1≤m≤Ns that enable to write, in the
formula above, the cardinal sine as a sumof terms that involves x and y separately

sinc(|x − y|) ≈ 1
4π

Ns∑
m=1

ωmeism·xe−ism·y . (15)

Notice that with such an equation, the (fast) convolution with the cardinal
sine is already at hand. Indeed, for all i = 1, · · · ,Nq

Nq∑
j=1

sinc(|xi − yj|)fj ≈ 1
4π

Ns∑
m=1

eism·xi
⎛
⎝ωm

⎛
⎝

Nq∑
j=1

e−ism·yj fj

⎞
⎠

⎞
⎠ . (16)

Therefore, the convolution with the cardinal sine follows the three steps:

• Knowing the set of values (fj), compute gm = ∑Nq
j=1 e

−ism·yj fj for all m ∈
{1, · · · ,Ns}. This can be done with a Type-III Non-Uniform Fast Fourier
Transforms (NUFFT) (Greengard & Lee, 2004; Lee & Greengard, 2005)
with a complexity O(Nq log (Nq)).

• Compute g̃m = ωmgm for all m ∈ {1, · · · ,Ns}. This step is of complexity
O(Ns).

• From (g̃m)1≤m≤Ns , compute 1
4π

∑Ns
m=1 e

ism·xi g̃m. This evaluation can be
done inO(Ns log (Ns)) using an inverse (or sometimes called adjoint) Type-
III Non-Uniform Fast Fourier Transforms.

For a general (radial) kernel K(x, y) = K(|x − y|), the generalisation of
the preceding idea to K consists in decomposing K as a sum of cardinal sine
functions. More precisely, we look for two series (αn)n=1,··· ,NK and (ρn)n=1,··· ,NK

in order to approximate K as

K(|x − y|) ≈
NK∑
n=1

αnsinc(ρn|x − y|). (17)

Notice that once this approximation is known, one can adapt (15) as

sinc(ρn|x − y|) ≈ 1
4π

Ns∑
m=1

ωmeiρnsm·xe−iρnsm·y
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= 1
4π

N ′
s(n)∑

m=1

ωmeis
′
m,n·xe−is′m,n·y (18)

with s′m,n = ρnsm. It is worth noting that the formula becomes a quadrature
formula on the dilated sphere ρnS. The number of points (and the weights),
here denoted byN ′

s(n), needs to be adapted depending on the required precision
and the radius ρn of the sphere. For our applications, we use a Gauss–Legendre
quadrature on the sphere, although other choices could be, a priori, possible.

Collecting all terms in (17), we obtain

K(|x − y|) ≈ 1
4π

NK∑
n=1

N ′
s(n)∑

m=1

αnωmeis
′
m,n·xe−is′m,n·y , (19)

which is of a form similar to (15) and for which a procedure similar to the one
given above for sinc can be applied.

The preceding explanations give an overview of the method. Many details
have been omitted that are very important for the method to work in practice.
In particular, a precise control of the error needs to be done. Besides the error
chosen by the user for the NUFFT, the algorithm has two sources of error that
have been studied in Alouges and Aussal (2014):

• The error of each of the spherical quadrature (18). This one is easily con-
trolled by the maximum value of |x − y|. Depending on the clouds of
points to which they, respectively belong, we callRmax themaximal distance
between x and y.

• The error in the cardinal sine decomposition (17). This point ismore subtle.
It turns out that the approximation as a series of cardinal sine functions of
traditional kernel (e.g.Helmholtz kernel) is actuallymore difficult to achieve
for small values of |x − y|. We therefore fix a value Rmin and look for an
approximation that works up to a given precision in the range

|x − y| ∈ [Rmin,Rmax] . (20)

Since the SCSD quadrature is only valid for far interactions |x − y| ≥ Rmin,
the close interaction terms (|x−y| ≤ Rmin) are inexact and need to be corrected.
Fortunately, those terms correspond to short-range interactions and can be
efficiently taken into account by assembling a sparse correcting matrix. The
performance of the method then relies on choosing the right value for Rmin that
balances the number of points in the Fourier grid s′m,n and therefore the time
spent in the NUFFT computations with the size of this sparse matrix.

The SCSD method has been applied with success to several problems with
radial Green kernels, and not only to the exterior Neumann problem which
is the focus of this paper. In particular, we refer the reader to applications of
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the method to Laplace equation in Alouges and Aussal (2014) and to Stokes
equations in Alouges, Aussal, Lefebvre-Lepot, Pigeonneau, and Sellier (2016).
For other applications in acoustics, see also Aussal (2014).

4. Implementation details

To test and evaluate the SCSDmethod, two similar implementationswere carried
out. A first implementation was done in MATLAB (2013), the MyBEM code, and
a second implementation in Python (Python Software Foundation, 2016), the
PyBEM code. In this section, we sketch the structure of both codes and give
some implementation details.

The two libraries are divided in several modules that implement the different
parts of the finite element method.

(1) Module 1: Mesh handling. The libraries do not encapsulate meshing
capabilities. The input of the code must therefore be already constructed
meshes, in the form of two arrays, one containing the vertex coordinates
and one containing the elements defined from their vertex indices. The
module contains all routines to read and import mesh objects from mesh
files, and to export the computed solution. Several formats are supported
(.ply, .vtk, .msh). More importantly, this module contains the functions to
compute useful mesh-related quantities that are used by the code such as
element normals, element surfaces and so on.

(2) Module 2: Implementation of numerical quadrature rules, to evaluate
boundary integrals on surface triangular meshes. Numerical quadrature
is achieved using Gauss–Legendre quadrature rules of several orders. For
typical applications, we use a rule of order two, based on three Gauss
points per triangle.

(3) Module 3: Finite Elements. The two codes support P0 and P1 Lagrange
finite elements on surface triangularmeshes. Perhaps one originality of our
codes lies in the implementation of the finite elements basis functions in
the form of sparse matrices. Such matrices allow for the direct evaluation
on the quadratures nodes of the basis functions from a vector of DOF
values. For instance, let x = (xi)Mi=1 be the vector containing the M
quadrature nodes on the whole mesh. Let also v = (vi)Ni=1 be the vector
containing theN DOFvalues associatedwith theN basis functions (φi)

N
i=1.

An element v of the approximation space is then written as

v =
N∑
i=1

viφi. (21)

The sparse matrix , of size (M,N), allowing for the evaluation of the
function v(x) = (

v(xi)
)M
i=1 on the quadrature nodes x is such that
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v(x) = v. (22)

Further, let w = (wi)
M
i=1 denote the vector containing the M quadrature

weights associated to the corresponding quadrature nodes x. Then, the
evaluation of the boundary integral on� of v can then simply computed as∫
�
vd� = wTv, where the superscript T denotes the transpose. Similar

sparse matrices corresponding to the evaluation of the basis functions
composed with differential operators (divergence, gradient) can also be
computed.

(4) Module 4: Classical BEM. This module enables the direct assembly of the
dense matrices arising in the classical BEM.

(5) Module 5: implementation of the SCSDmethod (Alouges &Aussal, 2014),
in particular the routines for computing the radial quadrature of the Ker-
nels, the Fourier points and weights and the close interaction correction
matrix. The NUFFT (Non-Uniform Fast Fourier Transform) (Dutt &
Rokhlin, 1993; Greengard & Lee, 2004; Lee & Greengard, 2005) which
is at the core of the SCSD matrix–vector product is not written in MATLAB

or Python. We use a Fortran code obtained from L. Greengard’s web-
site (http://www.cims.nyu.edu/cmcl/nufft/nufft.html). The NUFFT For-
tran routine is interfaced in MATLAB using a Mex file and in Python using
the Fortran to Python interface generator, f2py.

(6) Module 6: implementation of a H-matrix compression algorithm
(Hackbusch, 1999). The routines present in this module can be used in
particular for assembling the cluster tree and computing the low rank
approximations of the blocks via the Adaptive Cross Approximation
algorithm. No H-matrix algebra is yet implemented in the libraries.

(7) Module 7: interface of the FMM routine by L. Greengard (http://www.
cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html). The Fortran code is
wrapped in MATLAB using aMex file and has been interfaced inMyBEM for
the sake of comparisonwith the SCSD.Note that this version of the Fortran
routine only computes the point-to-point interactions via the FMM and
doesnot solve the integral equations. Thismodule is not present inPyBEM.

(8) Module 8: definition of linear operators. This module allows to compose
linear operators from the objects constructed using the BEM, SCSD, H-
matrix and FMMmodules and defines for eachmethod the matrix–vector
product associated. Object-oriented capabilities of MATLAB and Python
languages are used to be able to write linear operators as they appear in
the equations.

(9) Module 9: regularisation of operators arising from the BEM. This module
contains functions used for correcting the numerical errors arising from
the numerical quadrature rules in the presence of singularities. This cor-
rection rests on semi-analytical integration of singularities and takes the
form of a sparse matrix.

http://www.cims.nyu.edu/cmcl/nufft/nufft.html
http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html
http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html
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Let us now expose how the operators are defined in our libraries. Suppose
that we want to evaluate the matrix arising from the discretisation of the single-
layer BIO in its variational form

[〈Sφi, φj〉�
]N
i,j=1 within a Galerkin framework.

Let G = [
G(xi, xj)

]M
i,j=1 be the matrix of the Green’s kernel evaluated at the

quadrature nodes x = (xi)Mi=1. Let also � = diag(w) be the diagonal matrix
constructed with the M quadrature weights, w = (wi)

M
i=1. Then, the Galerkin

matrix of the single-layer BIO is numerically computed as

[〈Sφi, φj〉�
]N
i,j=1 = (

�
)T G

(
�

)
. (23)

Note that here � is a sparse matrix. The methods implemented in the libraries
differ on the way the Galerkinmatrix is computed or approximated.When using
the classical BEM, the matrix G is assembled directly and the Galerkin matrix is
readily obtained by right and left multiplication by� and its transpose. TheH-
matrix algorithm provides a (hierarchical) block approximation of the Galerkin
matrix using low rank matrices. The matrix vector product is defined by the
product of these low rank matrices with the vector of DOFs. The SCSD on the
other hand only provides an approximation of the matrixG. When solving a lin-
ear system involving the Galerkin matrix, the matrix–vector product is obtained
by first applying the sparse matrix � to the vector of DOFs, then applying
the SCSDmatrix–vector product approximation (NUFFT, multiplication by the
Fourier weights, inverse NUFFT) and finally multiplicating by the transposed
matrix (�)T .

Both implementations rely on an extensive use of vectorised operations to
obtain the maximum efficiency. Vectorisation is embedded natively in MATLAB

and is achieved in Python using the numpy package, together with the corre-
sponding scipy package for some linear algebra functions. It is interesting to
note that if MATLAB includes some native multi-threading, python programs are
single-threaded due to the Global Interpreter Lock (GIL). However, numpy and
scipy functions are outside the scope of the GIL, providing some level of multi-
threading. The library MyBEM includes in addition multicore parallelisation
which is achieved using the Parallel Computing Toolbox.

5. Numerical results

5.1. Validation

Wefirst present a validation test run by the two codes and for which an analytical
solution is available. It consists in the acoustic scatteringof an incident planewave
pinc = e−ik·x , with k = (k, 0, 0) by the unit sphere inR

3.We plot themagnitude
of the total pressure field p = psca + pinc on the boundary of the scatterer and in
the near field in Figure 1 for k = 4.
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Figure 1. Magnitude of the acoustic pressure p = psca + pinc on the boundary and in the near
field due to the scattering of an incident plane wave by the unit sphere with wavenumber k = 4.

Another quantity of interest in applications is the far field pattern. In the far
field, one can obtain an asymptotic expansion of the integral representation (6).
The scattered pressure field psca reads, for large arguments |r|,

psca(r) = eik|r|

|r| p∞
sca(r) + O

(
1

|r|2
)
, (24)

p∞
sca(r) = S∞λ(r) − D∞μ(r), (25)

with

S∞λ(r) := 1
4π

∫
�

e−ikr·yλ(y) d�y , (26)

D∞μ(r) := − ik
4π

∫
�

ny · ye−ikr·yμ(y) d�y , (27)

and λ and μ are solutions of the integral Equation (11). We plot in Figure 2
the quantity |psca(r(α))|2 in decibels, representing the far field pattern in 361
evenly distributed directions r(α) = ( cosα, sin α, 0), with aspect angle α ∈
[−π , π ]. This is usually referred to as the bistatic Radar Cross Section (RCS). To
obtain more quantitative results, we show convergence in the infinity norm of
the approximated far field pattern p∞

sca, h towards the reference analytical solution
p∗ as the grid is refined. Note that the dependence of the approximate solutions
with respect to the grid size h, which we choose to be the maximum edge size in
the considered grids, is here introduced explicitly in the notations. Specifically,
the approximate and reference far field solutions are sampled in 36001 uniformly
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Figure 2. Bistatic RCS of a unit sphere (k = 20).

Figure 3. Convergence of the relative error in the infinity normwith respect to the grid size (h) in
the computation of the bistatic RCS of a unit sphere (k = 2).

distributed directions and we compute the relative error

e(h) = ||p∞
sca, h − p∗||∞
||p∗||∞ . (28)

The convergence of the error e(h) with respect to h is reported in Figure 3, for a
constant wavenumber k = 2.



388 F. ALOUGES ET AL.

Table 1. Characteristics of the machine used.

Processor Intel® Xeon™ E5-2667 v3
CPUs Max/Used 16/12
Cache 20M
Frequency 3.2 GHz
Memory 128 Go

5.2. Performance

We now compare numerically the performance of the SCSD with respect to
the classical BEM and other established techniques: H-Matrix compression
(Hackbusch, 1999) and FMMs (Greengard, 1988; Greengard & Rokhlin, 1987).
For the purpose of this comparison, we use the simple validation test case of the
unit sphere as the obstacle. In all the results presented in this section, one run
consists in assembling the problem, solving the integral Equation (11) for one
incidence and computing the bistatic RCS in 361 evenly distributed directions.
The wavenumber k is here set to 2. The number of nodes in the meshes ranges
fromN = 103 toN = 5 105. The characteristics of themachine used The MATLAB

version is R2013a. The Python version is 2.7.5with numpy 1.11.1 and scipy 0.17.1.
This benchmark is conducted with the fastest versions of the codes available. A
maximum of 12 CPUs, out of the 16 available, are used by the pool of workers in
MATLAB (Table 1).

The computing times of the differentmethodswith respect to the total number
of degrees of freedom are reported in Figure 4. The maximum memory usage
of the software during the runs is recorded and plotted with respect to the
total number of degrees of freedom. The result is given in Figure 5. Note that
because all these figures account for one complete run (therefore including
the precomputations, the preconditionning, the iterations and the radiation,)
the complexity of the underlying methods used does not appear on the graph
presented. These results highlight the good performance of the SCSD method.
We remark that it performs similarly compared to the other methods sharing
the same complexity, the FMM and H-matrix compression. The more in-depth
parallelisation of the MATLAB code explains its better efficiency compared to the
Python version. Note that rather than the computing time, it is really the storage
requirement of the classical BEM, scaling like O

(
N2), that puts a limit on the

problem size one can achieve with such a method.

5.3. BeTSSi workshop test case

We finally consider the case of a submarine model from the Benchmark Target
Strength Simulation (BeTSSi) international workshop (Schneider et al., 2003). In
undersea warfare, being able to develop stealthy submarines is a long-standing
concern. As such, the goal is to develop efficient predictive tools for evaluating
acoustic target strength of submarines. Several approaches are typically used to
address underwater acoustic scattering. Due to the difficulty of the problem at
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Figure 4. CPU time with respect to the number of degrees of freedom N.
Notes: Results for the SCSD method with MyBEM (SCSD MATLAB) and PyBEM (SCSD Python), the BEM with MyBEM
(BEM MATLAB) and PyBEM (BEM Python), the H-matrix approach of MyBEM (HMX MATLAB) and the FMM from the
Fortran routine of Greengard (http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html) interfaced with MyBEM
(FMM Fortran).

Figure 5.Maximummemory used with respect to the number of degrees of freedom N.
Notes: Results for the SCSD method with MyBEM (SCSD MATLAB) and PyBEM (SCSD Python), the BEM with MyBEM
(BEM MATLAB) and PyBEM (BEM Python), the H-matrix approach of MyBEM (HMX MATLAB) and the FMM from the
Fortran routine of Greengard (http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html) interfaced with MyBEM
(FMM Fortran).

hand and the high frequency regime considered, Kirchhoff diffraction and ray-
tracing codes are often used. In contrast to our approach, involving BIEs, such
codes only compute an approximation of the scattering by the obstacle. In this
context, the precision of BEM is appreciated and BEM solutions may be used as
references, at the expense of a more important computational cost.

http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html
http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html
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Figure 6.Magnitude of the acoustic pressure p = psca + pinc on the boundary at 1 kHz (α = 0◦).

Figure 7.Magnitude of the acoustic pressure p = psca + pinc in the Oxy plane at 1 kHz (α = 0◦).

Several different objects are included in this benchmark. Among the possible
choices, we choose a rather complicated shape, a complete submarine model.
This is a more challenging test case, close to industrial applications. The mesh
used for the computations was provided by ESI group. We consider an inci-
dent field in the form of a plane wave, as a model for the signal generated by
radar devices. The incident wave then takes the form of pinc(x) = e−ik·x with
k = ( − cosα,− sin α, 0) where α is the aspect angle, measured from the x-
axis. Although such computations were not required in the benchmark, we
provide the acoustic pressure magnitude p = psca + pinc on the boundary of
the submarine and in theOxy plane. The representations are given, respectively,
in Figure 6 and 7.
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Figure 8.Monostatic target strength TS(α) at 200 Hz (elevation β = 0◦).
Notes: Results obtained with the SCSD (dots) and reference from the BEM code AVAST (Nell and Gilroy, 2003)
(solid line).

The target strength TS(r) at range r is the quantity of interest for evaluating
the stealth capabilities of submarines. It is defined as

TS(r) = 10 log
|r − r0|2p2sca(r)

p2inc(r0)
, (29)

where r0 is the geometric centre of the obstacle. The target strength is typically
evaluated in the far field, for large |r|, where it become effectively independent
of |r|.

The computation of this quantity was the task assigned in the benchmark.
Specifically, we need to compute the monostatic target strength TS(α) at 200Hz
evaluated in the far field at elevation angle β = 0◦, with respect to the source and
receiver aspect angle α running from 0◦ to 180◦ with 1◦ steps. This represents
181 different integral Equations (11) to solve for, with only the right-hand side
(RHS) of the equation changing from one another. To perform this efficiently,
we use the Multi-Generalized Conjugate Residual allowing for simultaneous
resolution of all incidences (Simon, 2003; Soudais, 1994). In this algorithm,
one single new descent direction is computed from a different RHS at each
iteration (corresponding to the maximum residual) and is orthonormalised with
respect to the previous ones. This is the descent direction that is then used for
all the given RHS. This approach implies that only one matrix–vector product is
computed at each iteration, therefore saving computational time. The algorithm
is not restarted during convergence. We use as preconditioner of the system
the sparse local correction matrix arising in the SCSD method, after performing
an incomplete LU decomposition. The monostatic target strength is given in
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Figure 8 and is in very good agreement with the reference, reported from Nell
and Gilroy (2003).

6. Conclusion and future works

We presented a recently developed method for fast numerical convolution in
the context of integral equations within BEMs. It is based on a suitable Fourier
decomposition of theGreen’s kernel as a sumof cardinal sine. The final algorithm
relies on Non-Uniform Fast Fourier Transforms for fast evaluation and exhibits
a similar complexity as other established techniques. The performance of the
method allows to tackle real-life size problems. In particular, we computed the
monostatic target strength at 200Hz of the BeTSSi submarine model.

Current and future researchwork on related subjects includes extension of the
SCSD toother physics, e.g. electromagnetism, elastodynamics or Stokes flow.An-
other research direction focuses on Finite Element Method and BEM coupling.
Some implementation efforts are also ongoing, in particular parallelisation on
distributed memory systems and on GPUs.

Notes

1. We draw the attention of the reader that a special treatment needs to be done in order
to account for the singularity of the Green kernelG(x, y)when x ∼ y. Indeed, classical
quadrature formulae are not accurate enough and one needs to take care of integration
points that are close one to another.
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