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ABSTRACT
The magnetohydrodynamic (MHD) pipe flow in annular-like
domains with electrically conducting walls is investigated using
both the extended-domain-eigenfunction method (EDEM) and
the boundary element method (BEM). EDEM aims to reformulate
theoriginal problemonanextended symmetric domainobtained
by transforming the inner boundary to a smaller circle towards
the centre of the pipe, so that an eigenfunction solution can
be obtained theoretically. By collocating only the inner circular
boundary, the solution is transformed back to the original inner
wall, which can be regarded as a semi-theoretical solution. On
the other hand, BEM is a boundary only nature technique which
transforms the differential equation into a boundary integral
equation using the fundamental solution of the differential
equation. Calculations are carried out for increasing values of
Hartmann number (M) in annular-like domains with several
shapes of inner wall at various wall conductivities. It is observed
that although the results obtained by EDEM and BEM are very
compatible for small M, EDEM is computationally less expensive
and faster in convergence compared to BEM. However, BEM
gives more accurate results than EDEM for large M due to the
accumulation of numerical errors close to inner boundary in
EDEM.
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1. Introduction

The analytical solutions to elliptic boundary value problems (BVPs) on domains
with complex geometries are very rarely obtainable. Thus, these type of problems
are preferably solved by some traditional numerical techniques such as the
finite difference method (FDM), the finite element method (FEM) and the
boundary elementmethod. However, researchers recently have considered some
alternate semi-analytic approaches to solve elliptic BVPs. One of these numerical
implementations is the Trefftz method (Herrera, 2000) which is a boundary
approximation method and utilises eigenfunctions of the differential operator
to construct a finite sum approximation to the elliptic BVP. Cheung, Jin, and
Zienkiewicz (1991) and Li (2008) proposed Trefftz method for the solution of
Helmholtz equation and for the solution ofHelmholtz equationwith degeneracy,
respectively. The method of embedding is suggested for the solution of a linear
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partial differential equation in terms of eigenfunction expansions in an arbitrary
domain by Shankar (2005) and in unbounded and multiply connected domains
by Shankar (2006) to overcome the limitations on the geometry of the domain.
Another semi-analytic method, which is called extended-domain-eigenfunction
method, has been introduced by Aarão, Bradshaw-Hajek, Miklavcic, and Ward
(2010) for solving elliptic BVPs on annular-like domains. In this technique, the
original domain of the problem is embedded into an extended or larger one with
simple boundarieswhere an eigenfunction solution like in theTrefftzmethod can
be generated using standard techniques such as separation of variables. When
the solution in the larger domain is restricted to the original domain, one can
obtain the solution of the original problem. In the work Aarão et al. (2010),
the Laplace’s equation in an annular-like domain is solved by EDEM. Later, the
EDEM is also employed to solve the modified Helmholtz BVPs in annular-like
domains by Aarão, Bradshaw-Hajek, Miklavcic, and Ward (2011).

In this paper, we aim to extend the implementation of the extended-domain-
eigenfunction method to solve the magnetohydrodynamic flow in annular-like
domains, for the first time to the best of author’s knowledge. The MHD is the
discipline combining the classical fluid mechanics and electrodynamics. The
MHD effects are widely exploited in technical devices (e.g. in pumps, flow
meters, generators) and industrial processes in metallurgy, material processing,
chemical industry, industrial power engineering and nuclear engineering. The
flow of an incompressible, viscous, electrically conducting fluid in pipes gives
rise to coupled convection–diffusion type equations in velocity and induced
magnetic field. Due to this coupling, the analytical solutions for the MHD
flow equations are available only for some simple geometries subject to simple
boundary conditions. Therefore, some numerical techniques have been used
for the solution of MHD flow problems in ducts with no holes under various
wall conductivities, namely: FDM (Seungsoo & Dulikravich, 1991; Sheu & Lin,
2004), FEM (Barrett, 2001; Gardner & Gardner, 1995), BEM (Bozkaya & Tezer-
Sezgin, 2007; Carabineanu, Dinu, & Oprea, 1995; Liu & Zhu, 2002; Tezer-Sezgin
& Bozkaya, 2008), spectral method (Carabineanu & Lungu, 2006) and meshless
methods (Bourantas, Skouras, & Loukopoulos, 2009; Loukopoulos, Bourantas,
Skouras, & Nikiforidis, 2011). On the other hand, the MHD problem inside
a circular pipe when both the pipe wall and the surrounding medium are
electrically conducting, and have small magnetisations compared to the fluid
inside the pipe has been simulated using BEM in Tezer-Sezgin and Han-Aydın
(2013). The same problem when the thickness of the pipe wall is taken into
account, has been also solved using the dual reciprocity BEM in the work of
Han-Aydın and Tezer-Sezgin (2014). In the present study, we also employ the
BEM for the solution ofMHD flow in annular-like domains not only to compare
but also to validate the results obtained by the semi-theoretical EDEM, since
there are no analytical solutions for MHD flow in annular-like domains.
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(a) (b)

Figure 1. Cross-section of the annular-like pipe.
Note: (a) original domain� between �1 and �2, (b) extended domain�E between �0 and �2.

2. Problem definition and governing equations

The equations governing the steady, laminar, fully developed flow of an incom-
pressible, viscous, electrically conducting fluid in an annular-like pipe subject to
a constant and uniform horizontally applied magnetic field of intensity H0, are
the same as those MHD duct flow equations given in Dragoş (1975), and can be
expressed in non-dimensional form as

∇2V + M ∂B
∂x = −1

∇2B + M ∂V
∂x = 0

in � , (1)

where � is the annular-like domain (the cross-section of the pipe) between
the inner boundary �1 and the outer boundary �2 as shown in Figure 1(a).
The unknowns V(x, y) and B(x, y) are respectively the dimensionless velocity
and induced magnetic field in the z-direction which is the axis of the annular
pipe. Hartmann number M is defined by M = H0L0

√
σ/

√
μ, where L0 is the

characteristic length, σ and μ are the electrical conductivity and the coefficient
of viscosity of the fluid, respectively.

The corresponding boundary conditions are given as

V = 0 on � = �1 ∪ �2, B = k on �1, and B = − x
M

on �2 , (2)

where k is a constant which indicates the conductivity of the inner pipe wall. The
Equation (1) can be transformed into twomodifiedHelmholtz equations through
appropriate transformations. First, the governing Equation (1) are decoupled
into twohomogeneous equationswith the change of variablesw1 = V+B+x/M,
w2 = V − B − x/M. Thus, the resulting equations and the corresponding
boundary conditions become as follows:
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∇2w1 + M
∂w1

∂x
= 0

∇2w2 − M
∂w2

∂x
= 0

in �,
w1 = k + x

M , w2 = −k − x
M on �1

w1 = w2 = 0 on �2 .

(3)

Then, by the transformations u1 = w1eνx and u2 = w2e−νx with ν = M/2, one
can obtain the following modified homogeneous Helmholtz equations with the
corresponding boundary conditions

∇2u1 − ν2u1 = 0
∇2u2 − ν2u2 = 0

in �,
u1 =

(
k + x

M

)
eνx , u2 = −

(
k + x

M

)
e−νx on �1

u1 = u2 = 0, on �2.
(4)

Once the problem (4) is solved for u1 and u2, the solution in terms of the
original variables velocity V and induced magnetic field B can be obtained
backward by the formulas:

V = 1
2
(e−νxu1 + eνxu2), B = 1

2

(
e−νxu1 + eνxu2 − 2

x
M

)
. (5)

3. Numerical methods

3.1. Application of EDEM

In this section, the extended-domain-eigenfunction method is briefly presented
for the solution of MHD flow in annular-like pipe. The EDEM based on the
methodology introduced in Aarão et al. (2010), (2011), is employed for the
elliptic BVP involving the modified Helmholtz equation

Original
A :

Problem

⎧⎨
⎩

∇2u − ν2u = 0 in �

u|�1 = f1
u|�2 = 0 ,

(6)

where f1 ∈ L2(�1) is a given function and � is the annular-like domain which is
enclosed by the curves �1 : r = t1(θ) and �2 : r = t2(θ) = r0 (see Figure 1(a))
in polar coordinates. Both �1 and �2 are centered at the origin. Here, u can be
considered as either u1 with f1 = (k+x/M)eνx or u2 with f1 = −(k+x/M)e−νx

as given in Equation (4). The basic idea of EDEM is to extend the original domain
� to a larger annular domain, denoted by�E, such that the new extended domain
contains greater symmetry. This extension is done by choosing two concentric
circles �2 and �0 : r = t0(θ) = r1 ≤ min (t1(θ)) (that is, the curve �0 is
enclosed by �1) (see Figure 1(b)). Then, a related BVP is formulated as

Extended
AE :

Problem

⎧⎨
⎩

∇2w − ν2w = 0 in �E
w|�0 = f0
w|�2 = 0

(7)
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in which f0 is initially unknown.
Due to the symmetry of the extended domain, an eigenfunction solution to

problemAE can be obtained by using separation of variables technique. Themost
general solution to the modified Helmholtz equation satisfying homogeneous
Dirichlet condition on the outer boundary �2 is (Polyanin, 2002)

w(r, θ) =
∞∑

m=0

(
Km(νr) − Km(νb)Im(νr)

Im(νb)

)
(Am cos (mθ) + Bm sin (mθ)), (8)

where Im andKm aremth ordermodified Bessel functions of the first and the sec-
ond kind, respectively. The unknown coefficients {Am,Bm}∞m=0 are determined
through the application of the boundary condition at �0 as in the Fourier series
representations. However, since the boundary condition f0 is not yet specified,
as an alternative the boundary condition on the original inner boundary �1 is
used to determine the coefficients {Am,Bm}. This is accomplished by defining an
invertible mapping F of f1 on �1 to f0 on �0, such that the solution w of problem
AE , when restricted to�, is the solution of problemA, (Aarão et al., 2010). Thus,
an f0 is required such that w|� = u and w|�1 = f1.

Now, to determine the coefficients {Am,Bm}, first the expansion (8) is trun-
cated to a finite sum

w(r, θ) =
L∑

m=0

(
Km(νr) − Km(νb)Im(νr)

Im(νb)

)
(Am cos (mθ) + Bm sin (mθ)) (9)

then, we consider a finite number (2L + 1) of points on the inner boundary
�0. This identifies 2L + 1 unique points, {xj = (θj, t1(θj))}2L+1

j=1 , on the original
inner boundary �1 corresponding to those points chosen on �0. Imposing the
boundary conditions w|�1 = f1 in the system (9) for those 2L + 1 points results
in 2L + 1 equations in terms of the unknown coefficients {Am,Bm}Lm=0 (where
B0 ≡ 0), which can be written as the matrix equation Az = C, (Aarão et al.,
2011), where

A =

⎡
⎢⎢⎢⎣

α01 α11 · · · αM1 β11 · · · βL1
α02 α12 · · · αL2 β12 · · · βL2
...

... · · · ...
... · · · ...

α0,2L+1 α1,2L+1 · · · αL,2L+1 β1,2L+1 · · · βL,2L+1

⎤
⎥⎥⎥⎦ , z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0
A1
...

AL
B1
...

BL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C =

⎡
⎢⎢⎢⎣
f1(r(θ1), θ1)
f1(r(θ2), θ2)
...

f1(r(θ2L+1), θ2L+1)

⎤
⎥⎥⎥⎦

(10)
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with αij = gi(r(θj)) cos (iθj), βij = gi(r(θj)) sin (iθj), and for non-zero ν,

gi(r(θj)) = Ki(νr(θj)) − Ki(νb)Ii(νr(θj))/Ii(νb), i = 1, . . . , L .

The unknown coefficients {Am,Bm}Lm=0 are found by solving the system (10) for
z, see (Aarão et al., 2011). Then, the solutionw within the original domain�, i.e.
u = w|�, is obtained by direct application of Equation (9). Thus, the solutions
u1 and u2 given in problem (4) are obtained by taking f1 = (k + x/M)eνx and
f1 = −(k + x/M)e−νx , respectively, in the problem A given in (6). Once u1 and
u2 are obtained, the original unknowns, velocity V and the induced magnetic
field B, can be determined back through relationships in (5).

3.2. Application of BEM

Adirect BEMwith constant elements is also applied to theMHDflowproblem in
annular-like pipes for comparison with EDEM. BEM transforms the differential
equation defined in a domain into an equivalent boundary integral equation
using the fundamental solution of the governing equation and discretizes only
the boundary of the problem under consideration. The application of BEM to
problem A in (6) by using the fundamental solution u∗ = K0(νr)

2π of the modified
Helmholtz equation, r being the magnitude of the distance vector between the
source and field points, results in (Tezer-Sezgin & Dost, 1994).

−cSu(S) + Hu + Gq = 0 , (11)

where H and G are the BEMmatrices with entries

Hij = ν

2π

∫
�j

K1(νr)
∂r
∂n

d�j and Gij = 1
2π

∫
�j

K0(νr)d�j

and q = ∂u
∂n

. Here, the constant cS = θS/2π where θS is the internal angle at the
source point S. After the imposition of the corresponding boundary conditions
given in Equation (4) for the unknowns u1 and u2 in (11), one can obtain
solutions u1, u2 and their normal derivatives on the boundaries �1 and �2. The
interior values for u1 and u2 can be obtained by taking cS = 1 in Equation (11).
Then, the velocity V and the induced magnetic field B are computed through
Equation (5).

4. Results and discussions

The two-dimensional MHD flow subject to an external horizontally applied
magnetic field is considered in annular-like domains of which inner wall has
several geometry (e.g. an ellipse, a square and a sinusoidal loop). In all cases, the
outer pipe wall is determined by a circle �2 : r = r0 and in calculations r0 is
taken as r0 = 3. The numerical simulations are carried out for various values
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of Hartmann number ((0.2 ≤ M ≤ 20 in EDEM and BEM) and (M ≤ 300
in BEM)), and the inner boundary is taken as either insulated (k = 0) or with
conductivity k = 1. The results are presented in terms of equi-velocity and
current lines including a comparison of the EDEM and BEM methods. The
EDEMsolutions are obtained usingmaximum2L+1 = 79 collocation points for
the discretization of the inner boundary �1, while in BEM maximum N = 250
constant boundary elements are used for the discretization of the boundary
� = �1 ∪ �2.

4.1. Problem 1: annular-like domainwith elliptic inner pipe wall

In the first problem, we consider the MHD pipe flow in an annular-like domain
with elliptic inner pipe wall �1 : x2/a2 + y2/b2 = 1 (a and b are the semi-
axes of the ellipse) and circular outer wall �2 : r = r0. The elliptical inner
boundary and the circular outer boundary can be written in polar coordinates
(r, θ), respectively, as �1 : r = t1(θ) = ab/

√
a2 sin2 (θ) + b2 cos2 (θ), and

�2 : r = t2(θ) = r0, for θ ∈ [0, 2π).
The comparison of the EDEM and BEM solutions under the effect of in-

creasing Hartmann number (M = 0.2, 8, 16, 20) is displayed by taking a = 1,
b = 1/2 in Figure 2 when the inner wall is insulated (k = 0) and in Figure 3
when the inner wall is with conductivity k = 1. In the case of insulated inner
wall, flow is symmetrically divided into four loops when the magnetic field effect
is negligibly small (M = 0.2). This symmetry is preserved for higher values of
M = 8, 16, 20 but the loops along the vertical centreline vanish. On the other
hand, the symmetry about the vertical centreline x = 0 in both the velocity and
the induced magnetic field is destroyed for each value ofM when k is increased
from 0 to 1 (see Figures 2 and 3). Hartmann layers in V on the portions of inner
and outer walls which are perpendicular to the applied magnetic field are well
observed for both k = 0 and k = 1. The fluid concentrates around the inner pipe
in the direction of applied magnetic field as M increases and the fluid becomes
stagnant in the rest of the region for both k = 0 and k = 1. However, the
induced magnetic field profile at k = 1 alters significantly compared to the case
of k = 0 for increasing M. That is, the current lines circulate and form a thick
boundary layer around the inner wall in the direction of appliedmagnetic field as
M increases. These figures show that the solutions obtained by EDEM and BEM
are in very good agreement. It is also observed that for low values ofM the EDEM
with coarse discretization produces as accurate results as does the BEM. On the
other hand, the EDEM solution suffers from large numerical errors particularly
close to �1 whenM is increasing (see Figure 2), and the rate of the formation of
boundary layer is slower than the rate in BEM. Increasing the number of points
in EDEM does not improve this rate significantly. However, BEM is able to give
quite accurate results by using an adequate number of boundary elements for
higher values of Hartmann number as shown in Figure 4. Hartmann layers are
more pronounced and the current lines are distributed symmetrically about the
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Figure 5. Effect of the size of the ellipse on V and B when k = 0,M = 10 by EDEM.

vertical centreline x = 0. Moreover, both the velocity and induced magnetic
field values decrease with an increase in M, indicating the retarding effect of
the external magnetic field. As M increases, the velocity becomes uniform with
stagnant flow except in the region of Hartmann layers where the fluid action
takes place.

The effect of the size of the elliptic inner wall on the velocity and the induced
magnetic field is also investigatedbykeepingM = 10 and k = 0. Figure 5displays
the EDEM solution in terms of equi-velocity and current lines at various semi-
axes values (a, b) of inner ellipse. It is observed that as the size of the ellipse
increases there is no significant change in the profiles and the magnitudes of the
velocity and induced magnetic field. However, when the area of the ellipse gets
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larger, fluid is squeezed and the flow extends in the narrowed annular region
forming thicker boundary layers along the inner and outer pipe walls in the
direction of applied magnetic field. Fluid starts to form secondary flows on the
bottom and top of the inner wall as the ellipse gets larger.Moreover, EDEM starts
to suffer from computational difficulties due to the need of more collocation
points (L) in the discretization of a larger inner wall.

4.2. Problem 2: annular-like domainwith square inner pipe wall

In this case, the annular-like domain is taken as the region between the square
of side length � = 1.5 as the inner wall and the circle r = 3 as the outer wall.
The effect of Hartmann number on the velocity and the inducedmagnetic field is
visualised in Figure 6 when the inner pipe wall is conducting (k = 1) using both
EDEM and BEM. The velocity and induced magnetic field have similar profiles
with very slight alteration in magnitudes when compared to the case of elliptic
inner wall (see Figure 3). As it is expected, the most-inner dense current lines are
distributed evenly on the square inner pipe wall with an increase in M, which
are Hartmann and side layers. Both BEM and EDEM give expected behaviour of
MHD flow but EDEM has difficulties for increasingM due to the corners of the
square which breaks the smoothness of the boundary. Thus, it can be concluded
that the EDEM produces better results for the domains with smooth boundaries
as given in Problem 1 in which the inner boundary is elliptical.

4.3. Problem 3: annular-like domainwith sinusoidal inner pipe wall

Finally, we consider theMHDpipe flow in annular-like domainwith a sinusoidal
inner wall defined by r = r1 + w cos (nθ), where r1 is the radius of base circle,
w and n are the amplitude and the number of undulations, respectively. In the
calculations, we take r1 = 1, w = 1.15, and n = 3 and 4. Figures 7 and 8 display
the velocity and inducedmagnetic field lines for different inner pipewalls (ellipse,
square, sinusoidal wall with n = 3 and 4 from top to bottom) atM = 10 and for
k = 0 and 1, respectively, using both EDEM and BEM. One can see from these
figures that, when the inner pipe wall is insulated, velocity develops Hartmann
layers for increasingM regardless of the shape of the inner wall. For conducting
inner wall, boundary layers in B surround all over the inner wall again regardless
of its shape, but velocity boundary layers are more emphasised when inner wall
is sinusoidal.

5. Conclusion

The MHD flow in an annular-like pipe under the effect of an externally applied
magnetic field is solved numerically by EDEM and BEM. The effects of the
Hartmann number, the shape and the conductivity of the inner boundary on
the velocity and induced magnetic field are investigated. It is observed that when
the intensity of external magnetic field increases, flow is in terms of Hartmann
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layers around the inner wall regardless of its shape, and it extends in the annular
regionwith the enlargement of the innerwall. Conductivity of the inner boundary
forces the current to concantrate near the inner pipewall. EDEMgives difficulties
in obtaining the solution when the inner pipe wall is a square due to the passage
from the corners. It is found that the EDEM is computationally less expensive
and faster than BEM for small values of M, while it does not give reasonable
solutions for large values of M. On the other hand, the BEM is more effective
and accurate than EDEM to obtain the solution for higher values of M. The
well-known behaviour of MHD flow, namely the flattening tendency of the flow
and the boundary layer formation as Hartmann number increases, is captured
by both methods.
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