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Fundamental MHD creeping flow bounded by a
motionless plane solid wall
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ABSTRACT
This work determines the three-dimensional (3D) fundamental
MHD creeping flow and associated electric potential produced by
a concentrated source point, with given unit strength e, located
in a conducting Newtonian liquid bounded by a plane solid and
motionless wall and subject to a given uniform magnetic field
normal to the wall. The wall is no-slip but may be either perfectly
conducting or insulating. By linearity, the analysis is confined to
the cases of e either normal or parallel to the wall. Such different
wall natures and force orientations result in different flows and
electric potential functions which are obtained using direct and
inverse two-dimensional Fourier transforms. As a result, it has
beenpossible to analytically express in closed-formeach resulting
fundamental flow and potential.
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1. Introduction

It is of basic importance for some applications to calculate the flow produced
by a solid body moving in a quiescent conducting Newtonian liquid subject to
a prescribed ambient uniform and steady magnetic field B0. In general, such a
problem is tremendously involved because one has to gain four different fields in
the conducting liquid: the liquid pressure field p, the liquid velocity field u and
also the induced electric and magnetic fields E and B. The flow (u, p) is driven
by the Lorentz body force fL = j∧B with j, the current density given in practice
by the Ohm’s law j = σ(E + u ∧ B) where σ > 0 designates the liquid uniform
conductivity. One has then to solve coupled unsteady Maxwell and non-linear
incompressible Navier–Stokes equations (Branover & Tsinober, 1970; Moreau,
1990, Tsinober, 1970) to get (B,E, u, p).

For a body with typical length scale a and a MHD flow (u, p) with velocity
scale V > 0, one introduces the magnetic Reynolds number Rem = μmσVa
with μm > 0 the fluid uniform magnetic permeability. Assuming that Rem � 1
(a very good assumption in practice) and that the liquid domain boundary (made
of the body surface and eventually solid boundaries) has the same permeability
as the fluid then yields B = B0 in the entire liquid. In other words, we shall
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consider that the magnetic field B is steady, uniform and prescribed in the
liquid. Consequently, ∇ ∧ E = 0 and therefore E = −∇φ with φ one unknown
electric potential satisying, from the charge conservation ∇.j = 0, the equation
�φ = ∇.(u ∧ B) which in general couples φ and u. Accordingly, one ends
up with three unknown fields (u, p,φ). Those fields deeply depend upon the
flow Reynolds number Re = ρlVa/μ and the Hartmann number M = a/d
where ρl and μ denotes the liquid uniform density and viscosity, whereas
d = (

√
μ/σ)/|B| is the so-called Hartmann layer thickness (Hartmann, 1937).

Unfortunately, determining p, u and φ remains a very challenging task still
because the Navier–Stokes equations are non-linear ones!

For some applications (small particles and/or viscous liquid), it turns out that
Re � 1. Since usually Rem � Re, the MHD flow (u, p) is then governed by
the quasi-steady Stokes equations driven by the Lorentz body force fL = σ(u ∧
B − ∇φ) ∧ B in which B is uniform in the liquid. Since the Stokes equations are
linear, one gets, within this Low-Reynolds-Number framework, a more tractable
MHD problem for (u, p,φ). In the absence of symmetries (for the body shape
or motion), this problem is fully three-dimensional and this explains why, to
the author’s very best knowledge, no solution has been yet given for the MHD
flow (u, p) and electrostatic potential φ about a solid body with arbitrary shape
and rigid-body motion. The only three-dimensional solution is the nice one
derived in Priede (2013) for the fundamental MHD Stokes flow and electrostatic
potential produced by a concentrated force. When the Stokes flow is without
swirl and axisymmetric about an axis parallel with B, it fortunately turns out that
E = 0 (Chester, 1957; Gotoh, 1960a, 1960b)! In such pleasant circumstances,
one has only to determine the axisymmetric flow (u, p). A very simple example
is the one of a sphere with radius a, translating parallel with B. It has been
addressed for small Hartmann numberM = a/d in Chester (1957), for largeM
in Chester (1961) and recently for arbitrary M in Sellier and Aydin (in press),
(2016a). Actually, Sellier and Aydin (in press), (2016a) develop a new boundary
approach of the problem involving two basic fundamental axisymmetric MHD
Stokes flowswithout swirl produced by a ring distribution of axial or radial forces
and obtained earlier in Sellier andAydin (2016b). The determination of those two
key fundamental axisymmetric MHD Stokes flows appeals to the fundamental
three-dimensional solutions derived in Priede (2013).

Since boundaries are also encountered in applications, it is worth examining
to which extent a general (creeping or not) MHD flow may be affected when
bounded. This issue has been investigated in Tsinober (1973a) for different low
Reynolds Number steady axisymmetricMHDflow bounded by a plane solid wall
� normal to a uniform magnetic field B prevailing in the entire liquid domain.
One should note that Tsinober (1973a) handles different boundary conditions
at the motionless plane wall both for u (not necessarily a no-slip condition) and
when needed (case of a swirling flow) for φ. Moreover, it considers two types of
axisymmetric flows: flows without swirl (for which E = 0, as mentioned above)
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and also pure swirling Stokes flow (with velocity having only a swirl component)
for which E = −∇φ �= 0 with additional boundary conditions prescribed for φ
on�.

In a second paper, Tsinober (1973b) the Green function for a Stokes axisym-
metricMHDflowwithout swirl produced near a planemotionless wall by a point
force oriented normal to the wall has been investigated. Unfortunately, formulae
for the associated velocity components and pressure are not given in Tsinober
(1973b). In the present work, we look at the general three-dimensional MHD
Stokes flow (u, p,φ) produced by a point force with arbitrary unit strength e near
a plane motionless and no-slip wall� which may be either perfectly conducting
or insulating. The paper is organised as follows. The addressed fundamental and
resulting auxiliary MHD problems due to a concentrated point force with unit
strength e and located in a conducting liquid bounded by amotionless plane solid
(either perfectly conducting or insulating) wall are given Section 2. The solution
is then derived, using direct and inverse two-dimensional Fourier transforms, in
Sections 3 or 4 for e normal or parallel to the wall, respectively. Finally, some
concluding remarks close the paper in Section 5.

2. Addressed fundamental and auxiliary MHD problems for a Stokes
flow in a bounded domain

This section introduces the considered fundamental three-dimensional MHD
problem in a conducting liquid bounded by a plane wall and shows how to
reduce the task to the treatment of another auxiliary MHD problem.

2.1. Fundamental MHD problem for a Stokes flow in a bounded domain

As sketched in Figure 1, we put a concentrated force with arbitrary unit strength
e at point x0 in a conducting Newtonian domain with uniform density ρl and
viscosity μ occupying the z > 0 domain D bounded by the solid and motionless
z = 0 plane wall�.

Figure 1. A concentrated force with unit strength e located at point x0 in the z > 0 liquid domain
D bounded by the z = 0 plane motionless wall�.
Note: The point x′

0 is the symmetric of x0 with respect to the wall.
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The liquid has uniform conductivity σ > 0, uniform magnetic permeability
μm > 0 and is subject to a uniform (steady) magnetic field B = Bez normal
to the wall �. For convenience, we introduce Cartesian coordinates (O, x, y, z)
with associated unit vectors (ex , ey , ez) so that for point M having Cartesian
coordinates (x, y, z), one has x = OM = xex+yey+zez . The point force located
at x0 produces a steady three-dimensional MHD flow with velocity field u (with
respect to the motionless wall�) having typical magnitude V > 0, pressure field
p and electrostatic potential field φ to be determined. Setting h = z0 = x0.ez > 0
(see Figure 1), we assume vanishing magnetic Reynolds number Rem = μmσVh
and Reynolds number Re = ρlVh/μ. Consequently, the magnetic field is B =
Bez in the liquid while the Stokes flow (u, p) is driven by the point force located
at x0 and, in the entire liquid domain D, by the Lorentz body force fL = σ j ∧ B
with j the current density. Adopting the Ohm’s law j = σ(− ∇φ + u ∧ B) and
requiring the charge conservation ∇.j = 0 in the liquid, the MHD flow (u, p,φ)
then obeys in the z > 0 liquid domain D the coupled equations

μ∇2u = ∇p + σB∇φ ∧ ez − σB2(u ∧ ez) ∧ ez − δ(x − x0)e for x �= x0 in D,
(1)

∇.u = 0 and �φ = B∇.(u ∧ ez) for x �= x0 in D (2)

with � and δ the three-dimensional Laplacian operator and the Dirac delta
pseudo-function, respectively. Of course, (1)–(2) must be supplemented with
boundary conditions far from the source x0 and on the wall. Since the wall is
motionless and no-slipping, we required u = 0 there. Hence, on the wall with
unit normal n = ez one has j = −σ∇φ. Henceforth, attention is restricted
to a perfectly conducting wall where j ∧ n = 0 (see Moreau, 1990) or an
insulating wall where j.n = 0. In summary, the additional far-field behaviours
and boundary conditions read

(u,∇φ, p) → (0, 0, 0) far from x0 in D, (3)
u = 0 on �(z = 0), (4)
φ = 0 (conducting wall) or ∇φ.ez = 0 (insulating wall) on �(z = 0). (5)

For the considered types of walls, the problem (1)–(5) is linear in both (u, p) and
φ. However, it is not easy to solve since (u, p) and φ are coupled through (1)
and the second Equation (2). For symmetry reasons and by superposition, the
attention is restricted to the choices e = ez (Case 1) or e = ex (Case 2).

2.2. Analytical fundamental solution for the unbounded case

It is possible to analytically get the fundamental flow and electrostatic potential
in absence of wall, i.e. for an unbounded liquid. As shown in Priede (2013), at
x �= x0, the resulting fundamental MHD velocity v(x0, x), pressure q(x0, x) and
electrostatic potentialψ(x0, x) produced by the unit force with strength e located
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at x0 are expressed, for B = Bez , as

v(x0, x) = 1
μ

{∇ ∧ (∇ ∧ [He])}, q(x0, x) = �[∇.(He)] − 1
d2

∂

∂z
[H(e.ez)] (6)

ψ(x0, x) = B
μ

∇.[H(ez ∧ e)] (7)

with H(x0, x) a ‘generating’ function. This function H vanishes as R = |x − x0|
becomes large and obeys

�(�H)− 1
d2
∂2H
∂z2

= δ(x − x0) for x �= x0 (8)

where d = (
√
μ/σ)/|B| is the so-called Hartmann layer thickness (Hartmann,

1937). The function H is given in Priede (2013). Using Cartesian coordinates
(x0, y0, z0) for the source point x0 and (x, y, z) for the observation point x, we
here content ourselves with the useful relations (obtained in Sellier & Aydin,
2016b)

−4π�H = cosh
(
z − z0
2d

)
e−|x−x0|/(2d)

|x − x0| ,

−4π
∂H
∂z

= d sinh
(
z − z0
2d

)
e−|x−x0|/(2d)

|x − x0| , (9)

−8π
∂H
∂x

= d(x − x0)
{

2
(x − x0)2 + (y − y0)2

− e−|x−x0|/(2d)

|x − x0|
[

e(z−z0)/(2d)

|x − x0| − (z − z0)
+ e−(z−z0)/(2d)

|x − x0| + z − z0

]}
. (10)

Henceforth, we set v = vxex + vyey + vzez and R = |x − x0|. As the reader
may easily check, applying (6)–(7) in conjunction with (9)–(10) then yields the
following fundamental free-space solutions :

(i) Case 1: e = ez . Then, ψ(x0, x) = 0 and the flow (v, q) is axisymmetric
about the axis (M0, ez) with pointM0 such thatOM0 = x0. One gets

vx(x0, x) = sinh
(
z − z0
2d

)[
1 + 2d

R

] [
x − x0

R

]
e−R/(2d)

8πμR
, (11)

vy(x0, x) = sinh
(
z − z0
2d

)[
1 + 2d

R

] [
y − y0
R

]
e−R/(2d)

8πμR
, (12)

vz(x0, x) =
{
cosh

(
z − z0
2d

)
+ sinh

(
z − z0
2d

)[
1 + 2d

R

] [
z − z0
R

]}
e−R/(2d)

8πμR
, (13)

q(x0, x) = 1
d

{
sinh

(
z − z0
2d

)
+ cosh

(
z − z0
2d

)[
1 + 2d

R

] [
z − z0
R

]}
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× e−R/(2d)

8πR
. (14)

(ii) Case 2 e = ex . In that case, the flow (v, q) is given by

vx(x0, x) = 2 cosh
(
z − z0
2d

)
e−R/(2d)

8πμR

+ d[T1(x0, x)− (x − x0)2T2(x0, x)]
8πμ

, (15)

vy(x0, x) = −
[
d(x − x0)(y − y0)

8πμ

]
T2(x0, x), (16)

vz(x0, x) = sinh
(
z − z0
2d

)[
1 + 2d

R

] [
x − x0

R

]
e−R/(2d)

8πμR
, (17)

q(x0, x) = 1
d
cosh

(
z − z0
2d

)[
1 + 2d

R

] [
x − x0

R

]
e−R/(2d)

8πR
, (18)

with occurring functions T1(x0, x) and T2(x0, x) obtained in Sellier and Aydin
(2016b) and recalled in Appendix 1. The electrostatic potential ψ is non-zero
and satisfies

ψ(x0, x) = − Bd
8πμ

(y − y0)
{

2
(x − x0)2 + (y − y0)2

− e−|x−x0|/(2d)

|x − x0|
[

e(z−z0)/(2d)

|x − x0| − (z − z0)
+ e−(z−z0)/(2d)

|x − x0| + z − z0

]}
, (19)

∂ψ

∂z
(x0, x) = B sinh

(
z − z0
2d

)[
1 + 2d

R

] [
y − y0
R

]
e−R/(2d)

8πμR
. (20)

In absence of magnetic field, one retrieves by letting d vanish for each previous
case the free-space fundamental Stokeslet (Happel & Brenner, 1983; Kim &
Karrila, 1983) (vS, qS) given by

vS(x0, x) = 1
8πμR

{
e+[e.(x − x0)](x − x0)

R2

}
, qS(x0, x) = 1

4π

[
e.(x − x0)

R3

]
.

(21)

2.3. Advocated decomposition and resulting auxiliaryMHD problem for the
bounded domain

The fundamental Stokes flow (takeB = 0) produced by a Stokeslet in presence of
a no-slip wall has been obtained (Blake, 1971; Pozrikidis, 1992) by superposing
the flows due to the Stokeslet with strength e, the image Stokeslet with strength
−e located at the symmetric x′

0 of the source point x0 with respect to � (see
Figure 1) and another regular Stokes flow. In a similar fashion, we seek the
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fundamental MHD flow (u, p) and electric potential φ governed by (1)–(5) as

u(x) = v(x0, x)− v(x′
0, x)+ U(x), p(x) = q(x0, x)− q(x′

0, x)+ P(x), (22)
φ(x) = ψ(x0, x)− ψ(x′

0, x)+�(x) (23)

where the dependence in x0 for (u, p,φ) and (U, P,�) is dropped. Clearly, the
MHD quantities (U, P,�) are regular in the entire z > 0 domain and satisfy

μ∇2U = ∇P + σB∇� ∧ ez − σB2(U ∧ ez) ∧ ez for x in D, (24)
∇.U = 0 and �� = B∇.(U ∧ ez) for x in D. (25)

The far-field behaviour and conditions on the wall for (U, P,�) are immediately
deduced from (3)–(5). Recalling that R = |x − x0| and setting R′ = |x − x′

0|,
it appears that on the wall R = R′ and also, for previous Case 2 (e = ex),
that L(x0, x) = L(x′

0, x) for L = ψ ,T1,T2 (use the definitions of T1 and T2 in
Appendix 1). From (11)–(13), (15)–(17) and (19)–(20), the required far-field and
boundary conditions then read

(U,∇�, P) → (0, 0, 0) as |x − x0| → ∞, (26)
Ux(x) = −2vx(x0, x),Uy(x) = −2vy(x0, x),Uz(x) = 0 on � in Case 1, (27)

�(x) = 0 (conducting) or
∂�

∂z
(x) = 0 (insulating) on � in Case 1, (28)

Ux(x) = Uy(x) = 0,Uz(x) = −2vz(x0, x) on � in Case 2, (29)

�(x) = 0 (conducting) or
∂�

∂z
(x)

= −2
∂ψ

∂z
(x0, x) (insulating) on � in Case 2. (30)

In summary, the problem has been reduced to the determination of the auxiliary
MHD Stokes flow (U, P) and electric potential� governed by (24)–(30).

3. Solution for a point force oriented normal to the wall

This section treats the previous Case 1 of a point force oriented normal to the
bounding plane wall, i.e. the choice e = ez .

3.1. Governing problem for a relevant ‘generating’ function

In view of (26)–(28), the quantities (U, P,�) are axisymmetric about the axis
(M0, ez) and U is without swirl. The last equation (25) then yields �� = 0 in
D. Invoking the far-field behaviour and boundary conditions for � then gives
� = 0 whatever the wall nature. As in (6), the axisymmetric flow (U, P) is then
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sought under the following form

μwx(x) =
[
∂2F
∂x∂z

]
(x0, x),μwy(x) =

[
∂2F
∂y∂z

]
(x0, x), (31)

μwz(x) = −
[
∂2F
∂x2

+ ∂2F
∂y2

]
(x0, x), P(x) =

[
∂

∂z

{
�F − F

d2

}]
(x0, x) (32)

with unknown auxiliary ‘generating’ function F(x0, x) obeying

�(�F)− 1
d2
∂2F
∂z2

= 0 for z = x.ez > 0. (33)

As seen in Section 2.2, the Cartesian components of the free-space velocity
v(x0, x) are related to the free-space functionH(x0, x) by similar relations. From
(26)–(28), the differential Equation (33) is thus supplemented with(

∂2F
∂x∂z

,
∂2F
∂y∂z

,
∂2F
∂x2

+ ∂2F
∂y2

)
(x0, x) → (0, 0, 0) as |x − x0| → ∞, (34)[

∂2F
∂x∂z

+ 2
∂2H
∂x∂z

]
(x0, x) =

[
∂2F
∂y∂z

+ 2
∂2H
∂y∂z

]
(x0, x) = 0 on �(z = 0), (35)[

∂2F
∂x2

+ ∂2F
∂y2

]
(x0, x) = 0 on �(z = 0). (36)

In summary, the task reduces to the determination of F governed by (33)–(36).

3.2. Solution in two-dimensional Fourier space

Here, z0 = x0.ez > 0 and F(x0, x) = F(t1, t2, z; z0) where t1 = x − x0 and
t2 = y − y0. Similarly, H(x0, x) = H(t1, t2, z; z0). For convenience, we resort to
the two-dimensional Fourier transform f̂ of a function f (t1, t2) such that

f̂ (q) = 1
2π

∫ ∞

−∞

∫ ∞

−∞
f (t1, t2)eiq.tdt1dt2,

∂̂f
∂x

= −iq1 f̂ ,
∂̂f
∂y

= −iq2 f̂ (37)

where i denotes the complex number such that i2 = −1, t = t1ex + t2ey and
q = q1ex + q2ey is the vector in the Fourier space with q = |q| = {q21 + q22}1/2.
Omitting henceforth the dependence upon z0 gives Ĥ = Ĥ(q, z) and F̂ =
F̂(q, z). In the two-dimensional Fourier space, the problem (33)–(36) becomes

q4F̂ −
(
2q2 + 1

d2

)
∂2F̂
∂2z

+ ∂4F̂
∂z4

= 0, F̂(q, z) → 0 as z → +∞, (38)

∂ F̂
∂z
(q, 0) = −2

∂Ĥ
∂z
(q, 0), F̂(q, 0) = 0. (39)

As shown in Tsinober (1973a), the general solution to (38) reads

F̂(q, z) = A1(q)eα1z + A2(q)eα2z (40)
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with arbitrary functions A1,A2 and the useful definitions and properties

α1 = − 1
2d

−
(
q2 + 1

4d2

)1/2
< α2 = 1

2d
−
(
q2 + 1

4d2

)1/2
< 0,

(41)

α21 + α1

d
− q2 = 0,α22 − α2

d
− q2 = 0,α1α2 = q2. (42)

Enforcing the conditions (39) then easily provides the solution

F̂(q, z) = −4d sinh
( z
2d

)
e−
√
q2 + 1

4d2
z
[
∂Ĥ
∂z

]
(q, 0). (43)

Appealing to the Appendix 2 (see (B7)), it immediately follows that

F̂(q, z) = −d2

π
sinh

( z0
2d

)
sinh

( z
2d

) [(
q2 + 1

4d2

)−1/2]
e−
√
q2 + 1

4d2
(z+z0)

.

(44)

3.3. Resulting generating function and auxiliaryMHD Stokes flow

The functionF(t1, t2, z) is determinedby applying to F̂ the inverse two-dimensional
Fourier transform defined as

f (t1, t2) = 1
2π

∫ ∞

−∞

∫ ∞

−∞
f̂ (q)e−iq.tdq1dq2. (45)

From (44) note that F̂(q, z) = F̂(q, z) with q = |q|. Setting ρ = |t| = {(x −
x0)2 + (y − y0)2}1/2 gives q.t = ρqθ with θ the angle made by vectors q and t.
We shall also use the relations∫ 2π

0
e−iρq cos θdθ = 2π J0(ρq),

∫ 2π

0
cos θe−iρq cos θdθ = −2π iJ1(ρq) (46)

where Jn designates the usual Bessel function (of the first kind) of integer order
n. Consequently, one gets

F(x0, x) = F(ρ, z; z0) =
∫ ∞

0
F̂(q, z)J0(ρq)qdq. (47)

Moreover, as shown in Appendix 2, note that

∫ ∞

0

⎡⎣e−
√
q2 + 1

4d2
(z+z0)√

q2 + 1
4d2

⎤⎦ J0(ρq)qdq = g(R′), g(u) = e−u/(2d)

u
,R′ = |x − x′

0|.

(48)
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Combining (44) with (47)–(48) finally provides the desired ‘generating’ function

F(x0, x) = −d2

π
sinh

( z0
2d

)
sinh

( z
2d

) [e−R′/(2d)

R′

]
,R′ = |x − x′

0|. (49)

The auxiliary flow (U, P) is then analytically obtained from (31)–(32) and (49).
This task appeals to many elementary manipulations not detailed here and uses
the identities (with primes denoting derivatives)

g ′′(u) = g(u)
4d2

[
1 + 4d

u
+ 8d2

u2

]
,
(
g ′(u)
u

)′
= g(u)

4d2u

[
1 + 6d

u
+ 12d2

u2

]
. (50)

The auxiliary velocity components and pressure, obtained in closed-form, read

Ux(x0, x) = sinh
( z0
2d

) [x − x0
R′

]
A
μ
,Uy(x0, x) = sinh

( z0
2d

) [y − y0
R′

]
A
μ
,

(51)

A =
{
cosh

( z
2d

) [
1 + 2d

R′

]
− sinh

( z
2d

) [z + z0
R′

](
1 + 6d

R′ + 12d2

R′2

)}
×
[
e−R′/(2d)

4πR′

]
, (52)

Uz(x0, x) = sinh
( z0
2d

)
sinh

( z
2d

) B
μ
, P(x0, x) = sinh

( z0
2d

)
cosh

( z
2d

) B
d
,

(53)

B =
{
1 + 2d

R′ + 4d2

R′2 −
[
z + z0
R′

]2 (
1 + 6d

R′ + 12d2

R′2

)}[
e−R′/(2d)

4πR′

]
.

(54)

Because R = R′ for z = 0, the above results (use (11)–(12) for z = 0) satisfy the
boundary conditions (27). In addition, as d → ∞, one gets

Ux ∼ z0(x − x0)
4πμR′3

[
1 − 3z(z + z0)

R′2

]
,Uy ∼ z0(y − y0)

4πμR′3

[
1 − 3z(z + z0)

R′2

]
,

(55)

Uz ∼ z0z
4πμR′3

[
1 − 3(z + z0)2

R′2

]
, P ∼ z0

2πR′3

[
1 − 3(z + z0)2

R′2

]
(56)

therefore retrieving the results for the usual Stokes flow (see, for instance,
Pozrikidis, 1992).
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4. Solution for a point force oriented parallel to the wall

This section considers a point force oriented parallel to the bounding plane wall,
i.e. the Case 2 with e = ex . As will be seen below, the treatment is more involved
than for the axisymmetric problem solved in Section 3.

4.1. Solution in two-dimensional Fourier space

This time the coupled MHD flow (U, P) and electric potential� obey (24)–(26)
and (29)–(30). Exploiting first (24)–(26) easily shows (see details in Priede, 2013)
that

L(Ux) = L(Uy) = L(Uz) = L(P) = L(�) = 0,L(F) := �(�F)− 1
d2
∂2F
∂z2

.

(57)
Since P,� and each velocity component vanish as z becomes large, so do the
associated (again omitting the dependance upon x0) two-dimensional Fourier
transforms P̂(q, z), �̂(q, z), Ûx(q, z), Ûy(q, z) and Ûz(q, z). By virtue of (57) and
recalling (40), it turns out that

Ût(q, z) = Û (1)
t (q)eα1z + Û (2)

t (q)eα2z for t = x, y, z; (58)

P̂(q, z) = P̂(1)(q)eα1z + P̂(2)(q)eα2z , �̂(q, z) = �̂(1)(q)eα1z + �̂(2)(q)eα2z .
(59)

One thus ends up with 10 unknown functions: Û (k)
t , P̂(k) and �̂(k) for k = 1, 2

and t = x, y, z. Omitting henceforth for those functions the dependence vs. q,
the velocity boundary conditions (29) yield

Û (2)
x = −Û (1)

x , Û (2)
y = −Û (1)

y , Û (1)
z + Û (2)

z = T̂ , T̂ = 2iq1
μ

[
∂Ĥ
∂z

]
(q, 0). (60)

Moreover, the second Equation (25) coupling the electric potential � with the
velocity U becomes, when combined with (60),[

∂2

∂z2
− q2

]
�̂ = iB[q2Ûx − q1Ûy] = iB[q2Û (1)

x − q1Û (1)
y ][eα1z − eα2z]. (61)

The solution to (61), of the form (59), is readily (recall the relations (42))

�̂ = −idBĜ
[
eα1z

α1
+ eα2z

α2

]
, Ĝ = q2Û (1)

x − q1Û (1)
y . (62)

Accordingly, the boundary condition (30) for� on the z = 0 plane wall gives

Ĝ = 0 for conducting wall, Ĝ = − q2
μd

[
∂Ĥ
∂z

]
(q, 0) for insulating wall. (63)
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The two-dimensional Fourier transform of product of (24) with ez reads

μ

[
∂2

∂z2
− q2

]
Ûz = ∂P̂

∂z
= α1P̂(1)eα1z + α2P̂(2)eα2z . (64)

Consequently, the pressure function P̂ is (use again (42))

P̂ = μ

[
α21 − q2

α1

]
Û (1)
z eα1z +μ

[
α22 − q2

α2

]
Û (2)
z eα2z = −μ

d
[
Û (1)
z eα1z − Û (2)

z eα2z
]
.

(65)
The unknown functions Û (1)

x , Û (1)
y , Û (1)

z and Û (2)
z are obtained from (60), (62)

and the Fourier transform of the first Equation (25). The resulting linear system
is

Û (1)
z + Û (2)

z = T̂ , q2Û (1)
x − q1Û (1)

y = Ĝ, (66)

α1Û (1)
z = i

[
q1Û (1)

x + q2Û (1)
y
]
,α2Û (2)

z = −i
[
q1Û (1)

x + q2Û (1)
y
]
. (67)

Using the property α1α2 = q2 and recalling (62) and (65), one finally gets the
following solution in the two-dimensional Fourier space

Û (1)
x = q2

q2
Ĝ − idq1T̂ , Û (2)

x = −Û (1)
x , Û (1)

z = dα2T̂ , (68)

Û (1)
y = −q1

q2
Ĝ − idq2T̂ , Û (2)

y = −Û (1)
y , Û (2)

z = −dα1T̂ , (69)

P̂(1) = −μα2T̂ , P̂(2) = −μα1T̂ , �̂(1) = −i
dB
α1

Ĝ, �̂(2) = −i
dB
α2

Ĝ. (70)

Now, onemust check that Fourier transforms of the products of (24) with ex and
ey are satisfied by the above solution. Since functions eα1z and eα2z are linearly
independent, the Fourier transform of (24). ex yields the following relations
(recall the definition d2 = μ/(σB2))

(α21 − q2)Û (1)
x = −i

q1
μ
P̂(1) − i

q2σB
μ

�̂(1) + 1
d2

Û (1)
x , (71)

(α22 − q2)Û (2)
x = −i

q1
μ
P̂(2) − i

q2σB
μ

�̂(2) + 1
d2

Û (2)
x . (72)

As the reader may easily check using the relations (42) and the solution (68)–
(70), the two above relations are satisfied whatever T̂ and Ĝ. In a similar fashion,
the Fourier transform of (24). ey is also satisfied by the solution (68)–(70).

4.2. AuxiliaryMHDflow and electric potential for a conductingwall

From (63) it appears that Ĝ = 0 for a plane conducting wall. In such circum-
stances, � = 0 since (62) gives �̂ = 0. In addition, from the definition (60) of
T̂
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Ûx = 2dq1q1
μ

[eα1z − eα2z]
[
∂Ĥ
∂z

]
(q, 0),

P̂ = −2iq1[α2eα1z + α1eα2z]
[
∂Ĥ
∂z

]
(q, 0), (73)

Ûy = 2dq1q2
μ

[eα1z − eα2z]
[
∂Ĥ
∂z

]
(q, 0),

Ûz = 2idq1
μ

[α2eα1z − α1eα2z]
[
∂Ĥ
∂z

]
(q, 0). (74)

Now, inspecting (47)–(48) shows that

[̂g(R′)](q) = [̂g(R′)](q) = e−
√
q2+ 1

4d2
(z+z0)√

q2 + 1
4d2

for g(R′) = e−R′/(2d)

R′ (75)

while some manipulations, using the value of [ ∂Ĥ
∂z ](q, 0) obtained in Appendix 2

and the definitions of α1 and α2 permit one to recast (73)–(74) as follows

Ûx = −q21d
2

πμ
sinh

( z0
2d

)
sinh

( z
2d

)
ĝ(q),

Ûy = −q1q2d2

πμ
sinh

( z0
2d

)
sinh

( z
2d

)
ĝ(q), (76)

Ûz = iq1d2

πμ
sinh

( z0
2d

){ 1
2d

cosh
( z
2d

)
ĝ(q)− sinh

( z
2d

) [∂ ĝ
∂z

]
(q)
}
, (77)

P̂ = iq1d
π

sinh
( z0
2d

){ 1
2d

sinh
( z
2d

)
ĝ(q)− cosh

( z
2d

) [∂ ĝ
∂z

]
(q)
}
. (78)

From (75)–(78) it is then clear that the auxiliaryMHD flow velocity components
and pressure for the conducting wall are given by

Ucw
x = d2

πμ
sinh

( z0
2d

)
sinh

( z
2d

) ∂2

∂x2

[
e−R′/(2d)

R′

]
, (79)

Ucw
y = d2

πμ
sinh

( z0
2d

)
sinh

( z
2d

) ∂2

∂y∂x

[
e−R′/(2d)

R′

]
, (80)

Ucw
z = d2

πμ
sinh

( z0
2d

){
sinh

( z
2d

) ∂2

∂z∂x

[
e−R′/(2d)

R′

]
− 1

2d
cosh

( z
2d

) ∂

∂x

[
e−R′/(2d)

R′

]}
, (81)

Pcw = d
π
sinh

( z0
2d

){
cosh

( z
2d

) ∂2

∂z∂x

[
e−R′/(2d)

R′

]
− 1

2d
sinh

( z
2d

) ∂

∂x

[
e−R′/(2d)

R′

]}
. (82)
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where the upper script cw refers to the conducting wall case. Additional simple
calculations using (50) finally yield the following analytical results

Ucw
x (x0, x) = sinh

( z0
2d

)
sinh

( z
2d

) C
μ
, (83)

Ucw
y (x0, x) = sinh

( z0
2d

)
sinh

( z
2d

) [(x − x0)(y − y0)
R′2

]
D
μ
, (84)

Ucw
z (x0, x) = sinh

( z0
2d

) [x − x0
R′

]
E1
μ
, Pcw(x0, x) = sinh

( z0
2d

) [x − x0
R′

]
E2
d
,

(85)

C =
{[

x − x0
R′

]2 (
1 + 6d

R′ + 12d2

R′2

)
− 2d

R′

[
1 + 2d

R′

]}[
e−R′/(2d)

4πR′

]
,

(86)

D =
[
1 + 6d

R′ + 12d2

R′2

][
e−R′/(2d)

4πR′

]
, (87)

E1 =
{
cosh

( z
2d

) [
1 + 2d

R′

]
+ sinh

( z
2d

) [z + z0
R′

]
(
1 + 6d

R′ + 12d2

R′2

)}[
e−R′/(2d)

4πR′

]
, (88)

E2 =
{
sinh

( z
2d

) [
1 + 2d

R′

]
+ cosh

( z
2d

) [z + z0
R′

]
(
1 + 6d

R′ + 12d2

R′2

)}[
e−R′/(2d)

4πR′

]
. (89)

Taking z = 0 and thusR = R′ in the above results immediately shows, using (17),
that (29) indeed holds for the obtained velocity fieldUcw . In addition, inspecting
(83)–(89) gives in the Stokes limit d → ∞ the asymptotic behaviours

Ucw
x ∼ z0z

4πμR′3

[
3(x − x0)2

R′2 − 1
]
,Ucw

y ∼ 3z0z(x − x0)(y − y0)
4πμR′5 , (90)

Ucw
z ∼ z0(x − x0)

4πμR′3

[
1 + 3z(z + z0)

R′2

]
, Pcw ∼ 3z0z(z + z0)(x − x0)

2πμR′5 (91)

which perfectly agree with the pure Stokes flow results given in Pozrikidis (1992).

4.3. AuxiliaryMHDflow and electric potential for an insulatingwall

This time Ĝ is non-zero and given by (63). Using now the upper script iw for this
conducting wall case, one gets

Uiw
x = Ucw

x + Vx ,Uiw
y = Ucw

y + Vy ,Uiw
z = Ucw

z , Pcw = Piw (92)

with velocity components V̂x and V̂y gained by setting T̂ = 0 in (68)–(69). Thus,
only the electric potential � and the velocity components parallel with the wall
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are sensitive to thewall nature. FromSection 4.1, one gets V̂x = q2V̂ , V̂y = −q1V̂
and

�̂iw = iBq2
μ

[
eα1z

α1
+ eα2z

α2

][
∂Ĥ
∂z

]
(q, 0), V̂ = − q2

μdq2

[
eα1z − eα2z

][
∂Ĥ
∂z

]
(q, 0).

(93)

Looking at ∂�̂iw/∂z from (93) easily provides the result

[
∂�iw

∂z

]
(x0, x) = B sinh

( z0
2d

)
cosh

( z
2d

) [y − y0
R′

](
1 + 2d

R′

)[
e−R′/(2d)

4πμR′

]
(94)

which, as expected, agrees with the second boundary condition (30) since (20)
holds and R′ = R for z = 0. The determination of �̂iw itself and of Vx and Vy
requires more efforts. Introducing the functionW such that (see Appendix 2)

W(x0, x) = 2d(y − y0)
ρ2

[
e−R′/(2d) − e−(z+z0)/(2d)

]
,

Ŵ = − iq2
q2

[
e−
√
q2+ 1

4d2
(z+z0)√

q2 + 1
4d2

]
(95)

yields from (93) the basic identities

V̂x = iq2
2πμ

sinh
( z0
2d

)
sinh

( z
2d

)
Ŵ , V̂y = −iq1

2πμ
sinh

( z0
2d

)
sinh

( z
2d

)
Ŵ ,

(96)

�̂iw = Bd
4πμ

sinh
( z0
2d

){ 1
d
sinh

( z
2d

)
Ŵ − 2 cosh

( z
2d

) ∂Ŵ
∂z

}
. (97)

Accordingly, the velocity components Vx ,Vy and the electric potential�iw are

Vx = − 1
2πμ

sinh
( z0
2d

)
sinh

( z
2d

) ∂W
∂y

,Vy = 1
2πμ

sinh
( z0
2d

)
sinh

( z
2d

) ∂W
∂x

,

(98)

�iw = Bd
4πμ

sinh
( z0
2d

){ 1
d
sinh

( z
2d

)
W − 2 cosh

( z
2d

) ∂W
∂z

}
. (99)
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Injecting the first equality (95) in (98)–(99) then finally gives the formulae

Vx(x0, x) = sinh
( z0
2d

)
sinh

( z
2d

) Ex
μ
,Vy(x0, x) = sinh

( z0
2d

)
sinh

( z
2d

) Ey
μ
,

(100)

�iw(x0, x) = sinh
( z0
2d

) E
μ
, (101)

E = Bd(y − y0)
2πρ2

{[
sinh

( z
2d

)
+
(
z + z0
R′

)
cosh

( z
2d

)]
e−R′/(2d)

− e−z0/(2d)
}
, (102)

Ex = d
πρ2

{
4(y − y0)2

dR′ e−R′/(2d) −
[
1 − 2(y − y0)2

ρ2

]
[
e−R′/(2d) − e−(z+z0)/(2d)

]}
, (103)

Ey = −2d(x − x0)(y − y0)
πρ2

{[
e−R′/(2d) − e−(z+z0)/(2d)

ρ2

]
+ 2e−R′/(2d)

dR′

}
.

(104)

When B vanishes and d → ∞, all quantities Vx ,Vy and�iw vanish.

5. Concluding remarks

The coupled fundamental MHD flow (u, p) and electric potential φ produced by
a point force with arbitrary unit strength e located in a conducting Newtonian
liquid at x0 have been obtained when the liquid is subject to a uniform magnetic
field B and bounded by a plane wall normal to B and either insulating or
perfectly conducting. Following the procedure employed by previous authors
Blake (1971), Pozrikidis (1992) in absence ofmagnetic field (case of a pure Stokes
flow), the treatment uses a decomposition (see (22)–(23)) of u, p and φ in several
terms: the free-space solution produced by a source with strength e located at
x0, the free-space solution produced by a source with strength −e placed at
the symmetric x′

0 of x0, with respect to the wall and a third auxiliary term.
The associated auxiliary quantities (U, P,�) have been analytically obtained,
whatever the wall nature (insulating or conducting), for e = ex or e = ez using a
two-dimensional Fourier transform. Since easily deduced from the e = ex case,
the case e = ey is let to the reader.

As a result, it is possible to introduce the so-called second-rank velocity Green
tensor G = Gαβeα ⊗ eβ , with α and β in {x, y, z}, such that

uα(x0, x) = u(x0, x).eα = Gαβ(x0, x)/(8πμ) for e = eβand α = x, y, z. (105)

As the reader can check after elementary manipulations and using the results
of the present work, it turns out here that Gαβ(x0, x) = Gβα(x, x0) for both the
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insulating and the conducting wall. Such a nice symmetry property, well known
Kim and Karrila (1983), Pozrikidis (1992) for a pure Stokes flow (B = 0), is
not trivial for the present problem. One should also note that it is in general
not necessarily true depending upon the handled problem (for instance, this
property does not hold for a Stokes flow above a motionless porous slab where
the velocity is not required to vanish (Khabthani, Sellier, Elasmi, & Feuillebois,
2012).

For most applications, the magnetic field B is, as considered in the present
study, normal to the plane boundary. The case of B parallel with the wall is
very likely to be tackled by a similar procedure. It should however require many
additional efforts.

Finally, the material derived in this paper is of utmost importance when
building two key axisymmetric fundamental MHD flows produced by radial and
axial distributions of forces spread on a circular ring located in a z = cste > 0
plane in a liquid domain bounded by an insulating or conducting z = 0 plane
wall. Such a task has been recently done in Sellier and Aydin (2016b) for the
unbounded liquid and it would be nice to investigate to which extent the wall
affects the flows obtained and discussed in Sellier and Aydin (2016b). This
challenging issue is postponed to another work.
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Appendix 1. Functions T1 and T2
Recalling that R = |x − x0| the functions T1(x0, x) and T2(x0, x) read

T1(x0, x) = e−R/(2d)

R

{
e(z−z0)/(2d)

R − (z − z0)
+ e−(z−z0)/(2d)

R + z − z0

}
− 2

R2 − (z − z0)2
, (A1)

T2(x0, x) = e−R/(2d)

R2

{[
R + 2d
2dR

][
e(z−z0)/(2d)

R − (z − z0)
+ e−(z−z0)/(2d)

R + z − z0

]
+ e(z−z0)/(2d)

[R − (z − z0)]2 + e−(z−z0)/(2d)

[R + z − z0]2
}

− 4
[R2 − (z − z0)2]2 . (A2)

From (A1)–(A2), it is clear that Ti(x0, x) = (x′
0, x) for i = 1, 2 when x is located on the z = 0

plane wall�.

Appendix 2. Two auxiliary identities
This Appendix derives the relations (48) and (95). One can think about two ways to calculate
the required quantity

[
∂Ĥ
∂z
]
(q, 0). The first one is it to apply the two-dimensional Fourier

transform (37)–(9) taking also z = 0. Using the first relation (46), it immediately follows that,
since ρ = |t|,

[
∂Ĥ
∂z

]
(q, 0) =

[
∂Ĥ
∂z

]
(q, 0) = d

4π
sinh

( z0
2d

) ∫ ∞

0

⎡⎣e−
√
ρ2+z20/(2d)√
ρ2 + z20

⎤⎦ J0(qρ)ρdρ. (B1)
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A second way is to set t3 = z − z0 and apply to (8) the Fourier transform (37) to get first
Ĥ(q, t3). This latter function thus obeys(

∂2

∂t23
− q2

)2

Ĥ − 1
d2
∂2Ĥ
∂t23

= δ(t3)
2π

. (B2)

One has then to determine the function ĥ such that (since t3 = −z0 for z = 0)

ĥ(s) =
∫ ∞

−∞
Ĥ(q, t3)eist3√

2π
dt3,

[
∂Ĥ
∂z

]
(q, 0) = −i

∫ ∞

−∞
sĥ(s)eisz0√

2π
ds. (B3)

From (B2) and after some algebra, it is found that

ĥ(s) = 1
(2π)3/2[s2/d2 + (s2 + q2)2] = 1

(2π)3/2(s2 + s21)(s2 + s22)
, (B4)

s1 =
√
q2 + 1

4d2
+ 1

2d
, s2 =

√
q2 + 1

4d2
− 1

2d
, s21 − s22 = 2

d

√
q2 + 1

4d2
. (B5)

Since z0 > 0, note that (use for instance Gradshteyn & Ryzhik, 1965, p. 410)∫ ∞

0

s sin (z0s)ds
(s2 + s21)(s2 + s22)

= −π
2

[
e−s1z0 − e−s2z0

s21 − s22

]
. (B6)

Therefore, the second relation (B2) gives

[
∂Ĥ
∂z

]
(q, 0) = d

4π
sinh

( z0
2d

)⎡⎣e−
√
q2+ 1

4d2
z0√

q2 + 1
4d2

⎤⎦ . (B7)

Comparing (B1) with (B7) then provides the announced result (48).
The function W is obtained by applying to Ŵ the inverse two-dimensional Fourier

transform (45). Noting that |t| = ρ and setting in polar coordinates t = (ρ,α) and
q = (q,α + θ) easily yield (recall the second relation (46))

W = − sin αI ,I =
∫ ∞

0

⎡⎣e−
√
q2 + 1

4d2
(z+z0)√

q2 + 1
4d2

⎤⎦ J1(ρq)dq. (B8)

Fortunately, it is possible to analytically calculate the integral I . Indeed, I = I 1
2
(u1)K 1

2
(u2)

(seeGradshteyn&Ryzhik, 1965, p. 719)with I 1
2
andK 1

2
the usual Bessel functions of fractional

order 1/2 and

u1 = 1
4d

[√
ρ2 + (z + z0)2 − (z + z0)

]
, u2 = 1

4d

[√
ρ2 + (z + z0)2 + z + z0

]
. (B9)

Because ρ sin α = y − y0 and

I 1
2
(u1) = 1√

2πu1
[eu1 − e−u1 ],K 1

2
(u2) =

√
π

2u2
e−u2 (B10)

one therefore ends up with (95).
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