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ABSTRAT. Locking in finite elements has been a major concern since its early developments and
has been extensively studied. However, locking in mesh-free methods is still an open topic. Un-
til now the remedies proposed in the literature are extensions of already developed methods for
finite elements. Here a new approach is explored and an improved formulation that asymptot-
ically suppresses volumetric locking for the EFG method is proposed. The diffuse divergence
converges to the exact divergence. Since the diffuse divergence-free condition can be imposed
a priori, new interpolation functions are defined that asymptotically verify the incompressibility
condition. Modal analysis and numerical results for classical benchmark tests in solids and
fluids corroborate this issue.

RESUME.Depuis la création des éléments finis, les problémes de verrouillage d’éléments sont
au centre de préoccupations de la communauté et ont été largement étudiés. En revanche, les
mémes problémes dans un contexte sans maillage restent d’actualité. Jusqu'a présent les mé-
thodes proposées dans la littérature sont des extensions des approches déja développées dans le
cadre des éléments finis. Nous proposons une voie exploratrice et une formulation améliorée qui
supprime asymptotiquement I'effet de verrouillage volumétrique dans cadre d’'EFG. La diver-
gence diffuse converge vers la divergence exacte. Etant donné, que la condition de divergence
diffuse nulle peut étre imposée a priori, nous proposons dans ce travail des nouvelles fonctions
de forme qui vérifient asymptotiquement la condition d’incompressibilité. L'analyse modale et
les résultats des cas test classiques pour des solides et fluides confirment cette thése.
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1. Introduction

Finite element methods require a mesh with a minimum quality. Reasonable
meshes may be difficult in certain contexts, for instance, problems involving large
deformations, crack propagation, discontinuities and adaptive processes. Recently
meshless methods have been developed to overcome these difficulties; among them
are the Smooth Particle Hydrodynamics (SPH) (Lucy, 1977; Monaghan, 1988; Ran-
dles and Libersky, 1996), the Diffuse Element Method (DEM) (Nayroles, Touzot
and Villon, 1992), the Element Free Galerkin Method (EFG) (Belytschko, Kron-
gauz, Organ, Fleming and Krysl, 1996; Belytschko, Lu and Gu, 1994; Belytschko
and Tabarra, 1996; Lu, Belytschko and Gu, 1994), the Reproducing Kernel Particle
Method (Liu, Chen, Uras and Chang, 1996; Liu, Jun and Zhang, 1995; Liu, Jun, Adee
and Belytschko, 1995; Liu, Li and Belytschko, 2000), the HP cloud method (Duarte
and Oden, 1995; Duarte and Oden, 1996) and the Partition of Unity Method (Melenk
and Babuska, 1996).

The objective of meshless methods is to suppress some of the overhead due to
mesh generation by constructing the approximation entirely in terms of nodes without
defininga priori connectivities between them. Due to the flexibility in constructing
the conforming shape functions to meet specific needs for different applications, it has
been reported that the meshless methods are paticulary suitable for crack propagation,
hp-adaptivity and large deformation problems.

Locking of standard finite elements has been widely studied. It appears because
poor numerical interpolation leads to an over-constrained system. It is acknowledged
that in a displacement-based finite element method, linear approximations perform
poorly for the modeling of incompressible materials. For incompressible, or nearly
incompressible, materials an additional constraint appears in the field equations which
requires the divergence of the displacement field to be zero in the domain. This con-
straint is difficult to fulfill for low order elements. Locking is attenuated and can be
suppressed for increasing polynomial degrees, in the context kb adaptive strat-
egy, Babuska and Suri (1992) and Suri (1996) present a review on this issue. More-
over, several techniques are available to alleviate or completely remove the locking
phenomena in finite element approximations (see Hughes, 2000).

However, locking in meshless methods is still an open topic. Even recently, Zhu
and Atluri (1998) claimed that meshless methods do not exhibit volumetric locking.
Now it is clear that this is not true. For instance, Dolbow and Belytschko (1999)
analyze the EFG method using the numerical inf-sup condition. Moreover, several
authors claim that increasing the dilation parameter locking phenomena in mesh-free
methods can be suppressed, or at least attenuated. Their argument is based on nu-
merical examples (Askes, de Borst and Heeres, 1999; Dolbow and Belytschko, 1999)
or on the heuristic constraint ratio (Chen, Yoon, Wang and Liu, 2000) proposed by
Hughes (2000). In a recent paper by Huerta and Fernandez-Méndez (2001) this issue
is clarified determining the influence of the dilation parameter on the locking behav-
ior of EFG near the incompressible limit. This is done performing a modal analysis:
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studying the fundamental modes (base of the solution space) and their corresponding
energy (eigenvalue). In particular EFG behavior is compared with standard finite ele-
ments, bilinear and biguadratic. It concludes that an increase of the dilation parameter
attenuates, but never suppresses, the volumetric locking and that, as in standard finite
elements, an increase in the order of reproducibility reduces the relative number of
locking modes.

Thus, large domains of influence alleviate locking but for small domains of influ-
ence, however, the direct application of the EFG approximation can result in volu-
metric locking. In dynamic problems and many non-linear problems, small domains
of influence are preferred because they improve the local resolution and enhance the
sparsity of the system of equations. Therefore, procedures which avoid locking, even
for small domains of influence, are needed. Until now the remedies proposed in the
literature are extensions of the methods developed for finite elements.

As noticed before, there are several techniques available to alleviate or remove
the locking phenomena in finite element approximations. For example, Suri (1996)
shows that locking can be alleviated through the use of higher-prdeEaments. Al-
ternatively, locking can be removed by mixed methods in which different approxi-
mations are implemented for the displacement and pressure fields (see, for instance,
Hermann, 1965; Hughes, 2000). However, mixed methods are more expensive due
to the need for additional unknowns. Alternatives which do not require additional
degrees of freedom are selective reduced integration or strain projection methods. Ex-
tensions of these techniques to meshless methods can be found. For example, Dolbow
and Belytschko (1999) propose a new formulation of the EFG method using a selective
reduced integration and Chen et al. (2000) suggest an improved Reproducing Kernel
Particle Method (RKPM) using a pressure projection method.

Here a novel approach is explored. It consists in using interpolation functions that
verify approximately the divergence-free constraint. These interpolating functions can
be definedh priori and are independent of the particle distribution. Moreover, as the
density of particles is increased the divergence-free condition is better approximated.
This method is based on diffuse derivatives (see Nayroles et al., 1992), which, as
proven by Villon (1991), converge to the derivatives of the exact solution when the
radius of the support goes to zero (for a fixed dilation parameter).

2. Diffuse derivatives
2.1. Preliminaries of the EFG method

This section will not be devoted to develop or discuss mesh-free methods in de-
tail or their relation with moving least squares (MLS) interpolants. There are well
known references with excellent presentations of mesh-free methods (see, for instance,
Belytschko, Krongauz, Organ, Fleming and Krysl, 1996; Liu, Belytschko and Oden,
editors, 1996; Liu, Chen, Jun, Chen, Belytschko, Pan, Uras and Chang, 1996; Liu
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et al., 2000; Nayroles et al., 1992). Here some basic notions will be recalled in order
to introduce the notation and the approach employed in following sections.

The moving least squares approach is based on the local (i.e., at any froithie
neighborhood of) approximation of the unknown scalar functiofz) by «” as

u(z) ~ uf(x, z) = P(2) a(x) for z nearx (1)

where the coefficienta(z) = {ag(x),a:(x),...,a;(x)}" are not constant, they de-
pend on pointe, andP(z) = {po(z),p1(2),...,pi(2)}includes a complete basis
of the subspace of polynomials of degree In one dimension, it is usual that(x)
coincides with the monomials’, and, in this particular caseé= m. The coefficients
a are obtained by minimization of the functionl(a) centered inc and defined as

Jo(a) = 3" @, z:) [ulx;) — P(z;) a(z))’

€1,

)

where ¢(x, x;) is a weighting function (positive, even and with compact support)
which characterizes the mesh-free method. For instanegaifx;) is continuous
together with its firs& derivatives, the interpolation is also continuous together with
its first & derivatives. The particles cover the computational donfgif) C R,

and, in particular, a number of particlés;};c;, belong to the support af(x, x;).

The minimization of/, (a) induces the standard normal equations in a weighted least-
squares problem

M(z) a(z) = Y ¢(@, ;) u(z;) P(;) ®3)

€1,

where, as usual, the Gram matiM(x) is the scalar product of the interpolation
polynomials:

Thatis,
<u,v >= Z o(x, x;) u(x;) v(x;) (4)

must define a discrete scalar product. Thus, several conditions on the particle distribu-
tion are implicitly assumed (see, for instance, Huerta and Fernandez-Méndez, 2000).

Once the normal equations, Eas (3), are solved the coefficieate substituted
in (1). Since the weighting function usually favors the central point, it seems
reasonable to assume that such an approximation is more accurate preciselyeat
and thus the approximationl (1) is particularized:athat is,

u(@) ~ v’ () = P(z) a(z) = Pla) M} (z) ) ¢(@, z:) u(z:) P(z:). (5)

i€l
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This expression can also be written in a standard interpolation form

w(@) = 30 N (@) ulw) = 3 [0, @) PTa) M (@) Pla:)| u(e:)  (6)

€1, 1€l

N? ()

2.2. Thediffuse derivative

The approximation of the derivative afis the derivative of.”. This requires to
derive (5), that is

ou _ ou oPT Oa

Note that the derivative of the polynomials I is trivial but the derivative of the
coefficientsa requires the resolution of a linear system of equations with the same
matrix M (see Belytschko, Krongauz, Fleming, Organ and Liu, 1996). Moreover,
the derivatives of the polynomials can be evaluaqatiori but the derivatives of the
coefficients require the knowledge of the cloud of particles surrounding eachapoint

a(z)+PT fori=1,...,ng4-. @)

Thus the concept of diffuse derivative proposed by Villon (1991) and Nayroles
et al. (1992) and defined as
_ o’
N 82’1‘

ouf  ou”

ou’ _ ou” _ opPT
(SJ),‘ B 821

a(x) = D a(x) fori=1,... 0.4

z=T Z=T

is, from a computational cost point of view, an interesting alternativelto (7). More-
over, Villon (1991) shows that the diffuse derivative converges at optimal rate to the
derivative ofu.

Proposition. If u” is an approximation ta; with an order of consistency. (i.e. P
includes a complete basis of the subspace of polynomials of degread p/h is
constant, then

Hawu slklyp mt1- [kl

p

(@) (m+1)!

Ykl =0,...,m. (8)

ork  Sxk

wherek is a multi-indexk = (k1, ka2, ..., kq,,) and|k| = k1 + ko + - - + kn,,.

Proof. Lets assume € C™*1(Q) whereC™*+! isthe space ofm + 1) times continu-
ously differentiable functions. Recall that Taylor’'s formula of ordecan be written
as:

mo1 glel
w(@+h)= Y —hS2(@) + R (@ + 6h), ©)
la|=0

wheref €]0, 1], R,,+1(x + 6h) is the error term anek is a multi-index such that,

o (%
h* :=h{'hy? - hale; ali=aqlag!- o,y Jal=01 +ag+ - + oy,
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Equation|(9) can be rewritten taking= « + h

o\ plaly
w2 =Y 2 (55F) @) 4 Runa(e2)

la|=0

Thus, Taylor’s formula can also be written as:

zZ—X
p

u(z) = PT( )U(w) + R (, 2), (10)

where

ro-{5 ) v -{rGr)  lal=om

al ox™
Observe thatJ(x) depends on the exact derivativesuof

The MLS approach is based on the local approximation of the unknown scalar
function v by u”, see equation (1). Since in equation!(10) polynomR(g) are
centered and scaled, the MLS interpolant is also centered and scaled,
zZ—X

P

Thenthe MLS approach requires the resolution of the normal equations given by (3),
hereu(x;) is substituted by (10)

u(z) =~ u’(x, z) = PT( ) a(x) for z nearz.

z—x
p

M(z)a(x) =< P(z ; m),PT( )U(:c) + Rpy1(x, 2) >,

which can be rearranged as

M(z)[a(z) — Uz)] = Y ¢>(mj p_ w)P(wjp_ w)RmH(w, x;)=b. (12)

Jj€lz

Now, lets rewrite the r.h.s. of (12) in a more convenient way. The error term of the
Taylor's formula has the form

. g Pl
m W;(w,wj), (13)

Rini(z, ;) = Z

|a|=m—+1
substituting(13) in the definition of vectob, seel(12), produces
T —x T —x (x; — )™ 9y
b= J P2l J .
]; ¢< P ) ( p ) |a|—zn:1+1 (m+1)! Oz (@)

Eachcomponent of the previously defined vectois associated to the corresponding
component o, namely the polynomial of degrék| = 0, ..., m defined as

€kl = (elehs o gl [ (kylko! - ko)),
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Under these circumstances, each componebtezn be written as

x; —x\ (x; —x)* x; —x)* dloly
= Y o(B ) C g S e e
+

k 7[ | o
= plkl k]! oo (m+1)! Oz
pm+1 1 wj —x 113;‘ — x\ kta a|a|u
— _ 1) T, T;
(m+1)! [K]! & ( P) ) a_ZmH( P ) S (& Ti) (14)
ri(x)
B pm+1
= mrk(m).
Thus, the r.h.s. of (12) becomes
m+1
P
Substituting|(15) into equation (12) and assuming Mais regular,
p -1
a(x) —U(x) = CE M™(x) r(x).

On one handry is bounded for allk| = 0,...,m. This can be seen from the
definition of ry, see((14). Note that for a fixed, if p/h is constanty is the sum
of products of continuous functions . Thus, it is a continuous function if2.
Moreover, in every product, there is the weighting functianwhich has compact
support. Since, is a continuous function in a compact support it is bounded by a
constant that only depends an

On the other hand, matriXI is also bounded (see Huerta and Fernandez-Méndez,
2000). Then, if bothM andry, are bounded, a constafi{x) can be defined as the
bound ofM~!(z)r(x) and consequently

perl

la(z) — U(z)| < m

C(x)

The previous expression can be dividedd§f. Then, for each component,

ar(xz)  Ug(x)
ol P
wherea, and Uy are the components ef and U, respectively. Recall that each
component ofU(x) depends on the corresponding exact derivatives, cfee [(11).

Now, observe that each componena¢t) shall depend on the corresponding pseudo-
derivatives; that is, fofk| =0, ..., m

pm+17\k\

~— (m+1)!

Cz) V|k|=0,...,m, (16)

olFlup olklup DIkl k() (17)
dzk (5$lfl . -(5%11::::‘1 o az{cl .. .azf;sd — o pkl oo o phinea :
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Finally, replacing the definition dJ(«) anda(x) given by (11) and (17), one gets
the final expression, which completes the proof,

m+1—|k|

Olkly,  §lklye
H (m+1)!

ork  oxk

< C(x) v|k|=0,...,m. O

3. Pseudo-divergence free condition
3.1. Diffuse divergence

In the previous section the diffuse derivative was introduced and its convergence
to the actual derivative gs — 0 was proved. Incompressible computations require
that the approximating field must be divergence free. That is, the solutioh now
a vectoru : R™¢ — R, verifiesV-u = 0, and the approximation”(x) should
also be divergence-free. This condition however depends on the interpolation space.
Here, instead of requiring a divergence-free interpolation, the diffuse divergence of
the approximation

uf PTal
uf = = .
p PTa,
co(x)
ci(x)
= (po(a:) Insd Y41 (33) Insd pl(w) Insd)
c(x)
= QTC

is imposed equal to zero, that is

s dul N OPT
5(Ei o i—1 812

i=1 =

a;(z) = (V-Q'(z)) c(z) = 0. (18)

Note thatl, , is the identity matrix of orden 4 and the coefficients have been rear-
ranged as

T_
c = (a(),1 tttA0mn, Q1,1 " Alng A1 al,nsd)'

ci(@) ci(z) cj(x)

Equation(18) must hold at each poiat and for any approximation. Thus appropriate
interpolation functionsQ, must be defined in order to verify (18) and thus ensure
asymptotically a divergence-free interpolation (ithe divergence-free condition is
fulfilled asp — 0).
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3.2. A 2D pseudo-divergence free interpolation

The previous concepts are particularized for a two-dimensional case and in order
to define pseudo-divergence-free interpolation functions. Suppose for instance that
consistency of order two is desired, thBh= {1, 2, xo, 2%, 212, 23}, thus

Q= 10z 0 290 0 22/2 0 mae 0 23/2 0 (19)
“\01 0z 0 22 O 22/2 0 xmy 0 23/2

and

T
Cc Z(ao,l ap,2 a1,1 a1,2 421 422 az1 az2 a41 aA42 a5 a5,2)- (20)

The pseudo-divergence-free condition!(18) is, in this case, written as

oPT oPT
v[s.upzaixlal—i—aimagzo,

which implies

(a1,1 +ag.2) + z1(as1 + as2) + z2(ag,1 +as2) =0,
and consequently,

aj1+as2=0, azi+as2=0, ag1+asz=0.

The influence of these three restrictions in the interpolation functions (19) can be
viewed as follows

1 0 21 0 @ 0 2%/2 0 Tz 0 23/2 0
2 2 ) (21)
01 -z ¢4 0 0 —zme 27/2 —x3/2 0 0 O

where one should note that the coefficients inithandz . directions are now coupled
and that the total number of degrees of freedom has decreased.

3.3. The pseudo-divergence-free EFG method

Using (21), letQ;s be the new interpolation matrix (where obviously the unneces-
sary columns have been removed). The interpolation is then defined as

u) = w(e.2) = (145 2) - Qlle) eto) (22)

ub(x, z)

The vector version of the discrete scalar product defined in (4),

<u,v>= > g(x, @) ul(xi) v(w;)

1€ 1,



878 REEF - 11/2002. Meshfree Computational Mechanics

allows now to reproduce the MLS approximation. Thus at each peoifie normal
equations should be solved, see (3),

M(z) c(z) =< u, Qs > with M(z) :=< Qs,Qs > .

Thus, as previously, the coefficiertare substituted in (22) and the approximation
is particularized at = x. Then, equatiori (5) becomes

u(x) ~ u’(x) = Qg(:c) c(x) = Qg(w) M Hx) <u, Qs >,

and a final expression similar tol (6) can be found as

w(@) = > N(@) u(w) = Y [o(@,z) QYz) M~ (@) Qs(w:) | u(=.).

1€y 1€y

It is important to note that the matrix of interpolation functidN$ is now a full
matrix not a diagonal one as standard EFG would induce in this non scalar problem.
This is due to the fact that the two components of the solution are linked by the in-
compressibility restriction.

4. Modal analysis
4.1. Preliminaries

The modal analysis presented here follows the same rationale originally presented
by Huerta and Fernandez-Méndez (2001). Itis restricted to small deformations, namely
V*u, whereu is the displacement ar®i® the symmetric gradienie. V° = %(VT +
V). Moreover, linear elastic isotropic materials under plane strain conditions are con-
sidered. Dirichlet boundary conditions are imposed’en a tractionh is prescribed
along the Neumann boundalyy; and there is a body forcg. Thus, the problem that
needs to be solved may be stated as:

solve foru e [H} ]* such that

E
14+v

Sv: Vu B ) ‘u
/Qvu.v dQ+(1+V)(172V)/Q(V ) (V- w)d9

:/f.vdﬂ+/ h-vdl  Ywve[Hip ]2 (23)
JQ FN

In this equation, the standard vector subspace#'ofire employed for the solutiom
[H%D}Q = {u c[H'? |u=up OnI‘D}
(Dirichlet conditionsup, are automatically satisfied) and for the test functions

[Hor, > :={ve[H']?|lv=00nTp}
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(zero values are imposed alohg).

This equation shows the inherent difficulties of the incompressible limit. The stan-
darda priori error estimate emanating from (23) and based on the energy norm, which
is induced by the LHS of (23), is

|[u =l < wlélg Ju — w|| < Cypp hf® (24)

whereS;, is the finite dimensional subspace [d§1'1¥D]2 in which the approximation
uy, is soughtC,, .., is a constant independent bf(characteristic size of the mesh),
and f(p) is a positive monotone function ¢@f (degree of the polynomials used for
the interpolation). The subindices of the consténhindicate that it depends on the
Poisson ratio, the order of the interpolation and the exact solution itself.

From (23) one can observe the difficulties of the energy norm to produce a small
infimum in (24) for values of close ta0.5. In fact, in order to have finite values of the
energy norm the divergence-free condition must be enforced in the continuum case,
i.e. V-u=0foru e [Hf ]? and also in the finite dimensional space, V-u;, = 0
forup € S C [HllDP. In fact, locking will occur when the approximation spase
is not rich enough for the approximation to verify the divergence-free condition.

Under these conditions, it is evident that locking may be studied from the LHS
of (23). This is the basis for the modal analysis of locking. The discrete eigenfunc-
tions (the eigenvectors) corresponding to the LHS of (23) are computed because they
completely describe, in the corresponding space, the behavior of the bilinear operator
induced by this LHS.

In computational mechanics it is standard to write the strajrand the stress,
o, tensors in vector form (Belytschko, Liu and Moran, 2000). Moreover, under the
assumptions already discussed, they are related as

E 1—v v 0
e = Bd, ~C, C=- 1-v 0
c T+nd-20) | , o

2

Whered is the vector of nodal displacements (the coefficients corresponding to the
approximationuy, in the base o), andB is the standard matrix relating displace-
ments and strains. Then, the stiffness matrix can be computed as usual,

K= / B'CBdQ.
Q

The modal analysis presented in the following is base&onvhich is naturally
related to the energy norm in the finite dimensional interpolation sggejefined
by the finite elements employed (and characterizeBhy
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4.2. Comparing EFG and pseudo-divergence-free EFG

The incompressible limit is studied by evaluating the eigenvalues associated to
each mode as the Poisson ratiptends td).5. Following the procedure proposed by
Huerta and Fernandez-Méndez (2001) the logarithm of the eigenvalue is plotted as a
function of the logarithm 00.5 — v. Then each mode is classified in three groups:

1) modes that do not present any locking behavior,

2) modes that do have physical locking, that is the eigenvalue goes to infinity be-
cause it is a volumetric mode, and

3) modes associated to non-physical locking, that is the eigenvalue goes to infinity
but there is no volume variation.

In the last case, the displacement field conserves the total area but suffers from non-
physical locking. The interpolation space is not rich enough to ensure the divergence-
free condition.

In fact, these last modes do verify that

/V~uhdm:0,
]

but do not comply with the divergence-free condition locally (at each interior point).
This is clearly a non-physical locking behavior.

The modal analysis is performed on a distributio ef3 particles and for bilinear
consistency, that i® = {1, 2,2, x; 22 }". Figures 1 and'2 show the modes already
classified for two different dilation parametergj = 1.2 and2.2.

Figure!3 compares the eigenvalues obtained by standard EFG and the pseudo-
divergence-free interpolation for two particular non-physical locking modes. More-
over, three values of ratig/h are also compared, namely2, 2.2 and3.2.

Note that the pseudo-divergence-free interpolation has not suppressed the non-
physical locking modes. Thus, for a fixed dilation parameteariations on the ratio
p/h do not suppress locking. Indeed, the influence of locking is reduced because
the eigenvalue is decreased. That is, the energy associated to the locking mode is de-
creased and this attenuates the volumetric locking. Nevertheless, in the incompressible
limit, locking will still be present and it may induce useless numerical results.

This results should be expected. The convergence of the diffuse derivative, see
(8), is ensured ap approaches zero for a ratig/h kept constant. In other words,
convergence is ensured as the interpolation is refined.

This is analyzed in Figure 4 for the non-physical locking mode that presents the
largest eigenvalue (the first mode to spoil the approximation). These results are ob-
tained for the “worst” dilation parametep/h = 1.2; that is, the one that induces
results more similar to bilinear finite elements.
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Non-locking Physical locking Non-physical locking

Figure 1.Modes for a3 x 3 distribution of particles with bilinear consistency and
p/h =12

Non-locking Physical locking Non-physical locking

Figure 2.Modes for a3 x 3 distribution of particles with bilinear consistency and
p/h =22,

Four different values of are testedp = 0.60, 0.24, 0.15 and0.05. It is important
to note that ap decreases the eigenvalue also decreases (and drastically, the scale is
logarithmic). Thus, ag decreases the influence of locking attenuates.

Moreover, and more importantly, the slope of the curve also decreagegaEs
to zero (note that for standard EFG the slope remains constant). Thus, in the limit,
as expected, the interpolation is divergence-free. Note that fer 0.05 andv =
0.5 — 10~!! the eigenvalue has been reduced in more than three orders of magnitude.
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log, (eig)

— EFG plh=12
- — Div. Freeph=12
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Figure 3.Comparison between EFG and pseudo-divergence-free interpolations:
variation of the eigenvalue asgoes ta).5 for two non-physical locking modes with

p/h =12,2.2and3.2.
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Figure 4.Comparison between EFG and pseudo-divergence-free interpolations:

variation of the maximum eigenvalue agoes ta0.5.
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Figure 5. Cantilever beam problem.

5. Numerical examples
5.1. The cantilever beam

As shown in Figure 5, a beam with linear isotropic material under plane strain
conditions and with a parabolic traction applied to the free end is considered. This
is a well-known example studied, for instance, by Hughes (2000) and Dolbow and
Belytschko (1999). Displacements in both directions are prescribEg afThe pre-
scribed displacements and the applied traction are such that the solution is known:

1—v? v 9
U1:—2 Yy (48—3.T1)71+(2+1_7y)(332—025) ,
1—1? v, vo\T 2
ug = 2 % 317V:E2(8—:C1)+(4+517V)I+(24—a:1)x1,

o11 = —1205(8 — x1), 022=0, o012 =06(0.25— x3).

The problem is solved with uniform distributions of particles. Figure 6 shows the
relative L, error in displacements far = 0.3, 0.5 — 10~* and0.5 — 10~%. Results

are shown for bilinear consistency apdh = 2.2. The EFG results are compared

with the pseudo-divergence-free interpolation. For EFG the typical convergence rates
are obtained whel = 0.3, but, as expected, results degrade-agpproaches the
incompressible limit).5. However, the pseudo-divergence free interpolation is able

to reproduce the theoretical rate of convergence even for a nearly incompressible case
v = 0.5 — 10~% and a moderately fine discretizatial € 0.25, i.e.p < 0.55).

5.2. The plate with a hole

The stress field in an infinite plate with a hole subject to a far-field unit traction in
thex direction is (Dolbow and Belytschko, 1999):

a’ (3 3a*
=1-—|(= 2 4 — 4
O 2 (2 cos(26) + cos( 9)) + o cos(46)
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Beam problem: Q1,p/h=2.2
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Figure 6. Cantilever beam with bilinear consistency anth = 2.2.

4

a’® (1 3a
Tyy = 3 (2 cos(20) — COS(49)> 9 cos(49)

4

a® (1 . . 3a* |
oy = =3 (2 sin(20) + sm(40)> + o sin(46)

wherea = 1 is the hole radiusy = /22 + y? andf = arctan(y/z). The bounded
upper quadrant shown in Figure 7 is used to solve the problem. Symmetry conditions
are imposed irr = 0 andy = 0 and the tractions of the exact solution are considered
inT.

Figure (8) shows the relative, error norm withy = 0.3, 0.5 — 10~* and0.5 —
1075, Whenv = 0.3 typical convergence is obtained for EFG but it suffers from
locking when the incompressible limit is approached. The improved method maintains
the convergence rate even with= 0.5 — 105, Similar results are obtained using
biguadratic consistency. See Figure (9).

6. Stokes problem

It is well known that the study of viscous incompressible flows presents similar
difficulties as those found in incompressible solid mechanics. Thus, here, the pseudo-
divergence-free method is also used to solve the Stokes problem. Continuous and
discrete spaces for Stokes equations are subject to an inf-sup condition (Girault and
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Figure 7.Problem statement for the plate with hole and discretizations.

Hole problem: Q1,p/h=3.2
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Figure 8.Hole problem with bilinear consistency apgdh = 3.2
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Hole problem: Q2,p/h=3.2
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Figure 9.Hole problem with bigquadratic consistency apth = 3.2
Raviart, 1986). This stability requirement is evidenced in practical computations by

the existence of spurious pressure modes. The pseudo-divergence-free velocity field
and the pressure field employed here comply the LBB condition asymptotically.

6.1. Statement of the problem

Let 2 denote an open bounded regionR®f with boundaryd$). The 2D Stokes
problem inQ2 seeks a velocity fields = (u, us) and a pressure fieldsuch that:

—vAu+Vp=Ff inQ,
V-u=0 1inQ, (25)
u=g 0nom,

wherev is the viscosity of the fluid ang is the body force (see Donea and Huerta,
2003).
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6.2. Weak form

Given the problem defined in (25) with € V andp € Q, whereV := [Hl(Q)]2
andQ := £5(Q), the weak form of the Stokes problem, takigg-= 0, is: findu € V,
p € Q such that

a(u,v) +b(v,p) + b(u,q) = (f,v) V(v,q) €V x Q,

where we define forma(-,-) andb(-, -) as
a(u,v) ::/V'v:VVudQ:y(Vu,Vv), and
Q
b(v,p) ::—/pV-de = —(p,V-'U).
Q

Note that(-, -) denotes the standarth(Q2)-scalar product.

We now turn to the consideration of an approximate discrete solution of the prob-
lem. LetV, andQ, denote finite dimensional subspace3dndQ respectively. The
index p refers to a characteristic measure of the support of the interpolation functions
it is related to the characteristic measure between partitleShe discrete version
of the problem, which in this case uses Nitsche’s method (see Arnold, Brezzi, Cock-
burn and Marini, 2001/02; Babuska, Banerjee and Osborn, 2002; Becker, 2002; Sten-
berg, 1995) to impose boundary conditions, reads: fifc V,, p” € Q, such that,
V(vP,q?) €V, x Q,,

a(up7 v”) T b(’v”,p”) + b(u”, qr))

— (V@nup —p’n, v”)aQ — (up7 vOpvf — q”n)852

Y 0
+ V;('“vaI)aﬂ

= (f,v°) — (9, v0nv” — qpn)an + V%(gﬂ’p)aﬂ'

Now, (-, ) o0, denotes thet,(0€2)-scalar product. Finally, the scalaris an arbitrary
positive parameter that has to be chosen big enough in order to guarantee stability.
Here an eigenvalue problem is solved as proposed by Griebel and Schweitzer (2002).

6.3. Analytical test

We consider a test problem with an analytical polynomial solution on the unit
square, see Oden and Jacquotte (1984). Homogeneous Dirichlet boundary conditions
are imposed on the whole boundary, and the theoretical rates of convergence, recall
equation((3), shall be recovered numerically.
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We consider the Stokes problem presented in (25) @ith|0, 1[x]0, 1[andg = 0
on 012, a polynomial forcef is imposed in order to ensure the following solution of
the problem:

u(z,y) = 2* (1 —2)* 2y — 69° +43°)
us(z,y) = (=22 + 62" —42°)y* (1 - y)°

p(x,y) =z (1 - =)

We solve this problem with the pseudo-divergence-free MLS method and using
p/h = 1.2 with a bilinear base to approximate both velocity and pressure.

The convergence results are shown in Figure 10. The velocity convergence rates
for standard EFG and for the pseudo-divergence-free method are, as expected, similar.
However, convergence in pressure is far from optimal in EFG, whereas it presents the
theoretical slope in the proposed method. Recall that [=q (8) indicates that diffuse
derivatives converge to the actual derivativesas> 0 (p/h = cst). Since we use
a bilinear base (i.en = 1) the convergence behaves s This means that if we
double the number of particles (i.&. we divide p by 2) then the divergence must be
at least divided by two. Figure 110 shows exactly this behavior.

6.4. Driven cavity flow problem (leaky)

Now we consider Stokes problem, equatians (25), With=]0,1[x]0,1], f =
(0,00, g = (0,0)Ton N\ {y = 1} andg = (1,0)Ton 92 N {y = 1}. We solve
this well-known benchmark problem with the pseudo-divergence-free method using
p/h = 2.1 and a biquadratic base to approximate velocity and pressure. Streamlines,
pressure distribution and divergenceaudire depicted in Figure 11. Reasonable results
are obtained in spite of the equal order interpolation for velocity and pressure. No
spurious pressure modes are observed.
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Figure 11.Pseudo-divergence-free solution for a uniform distribution of 11x11(top),
21x21(middle) and 41x41(bottom) particles.

7. Conclusions

A novel improved formulation of the Element Free Galerkin method is proposed
in order to alleviate volumetric locking. It is based on a pseudo-divergence-free inter-
polation.Using the concept of diffuse derivatives an a convergence theorem of these
derivatives to the ones of the exact solution, the new interpolation proposed is obtained
imposing a zero diffuse divergence. In this way is guaranteed that the method verifies
asymptotically the incompressibility condition and in addition the imposition can be
donea priori. This means that the main difference between standard EFG and the im-
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proved method is how is chosen the interpolation basis. Modal analysis and numerical
results for two classical benchmark tests in solids corroborate that, as expected, diffuse
derivatives converge to the derivatives of the exact solution when the discretization is
refined (for a fixed dilation parameter) and, of course, that diffuse divergence con-
verges to the exact divergence with the expected theoretical rate. For standard EFG
the typical convergence rate is degrade as the incompressible limit is approached but
with the improved method good results are obtained even for a nearly incompressible
case and a moderately fine discretization. The improved method has also been used to
solve the Stokes equations. In this case the LBB condition is not explicitly satisfied
because the pseudo-divergence-free interpolation is employed. Reasonable results are
obtained in spite of the equal order interpolation for velocity and pressure.
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