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ABSTRACT
It is known that the pH level of the extracellular tumour
environment directly effects the progression of the tumour. In
this study, themathematicalmodel for the acid-mediated tumour
cell invasion consisting of a systemof nonlinear reaction diffusion
equations describing the interaction between the density of
the tumour cells, normal cells and the concentration of H+
protons produced by the tumour cells is solved numerically
using the combined application of dual reciprocity boundary
element method (DRBEM) and finite difference method. The
space derivatives in the model are discretised by DRBEM using
the fundamental solution of Laplace equation considering the
time derivative and the nonlinearities as the nonhomogenity.
The resulting systems of ordinary differential equations after
the application of DRBEM are then discretised using forward
difference. Because of the highly nonlinear character of the
model, there arises difficulties in solving the model especially
for two-dimensions and the boundary-only nature of DRBEM
discretisation gives the advantage of having solutions with a
lower computational cost. The proposed method is tested with
different kinds of carrying capacities which also depend on time.
The results of the numerical simulations are compared among
each case and seen to confirm the expected behaviour of the
model.
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1. Introduction

Cancer cells grow and divide in an uncontrolled manner and form metastasis
which is the process of developing a secondary tumour at a distant part of
the body. The initial step for metastasis is the invasion of the tissue in which
they arise and the pH level of the tumour microenvironment is one of the
important factors effecting the cancer invasion. Cancer cells produce energy
by glycolysis followed by lactic acid release which leads to an acidic tumour
microenvironment in which the cancer cells are able to survive but the normal
cells cannot. The normal cells start to die in this altered environment and
this creates a free space for tumour cells to migrate. The original model was
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introduced by Gatenby and Gawlinski (1996) and it was given with a system
consisting of two reaction-diffusion equations describing the temporal evolution
and spatial distribution of the density of tumour cells and the concentration of
H+ protons produced by the tumour cells coupled with an ordinary differential
equation (ODE) for the normal cell density. Later, Gatenby, Gawlinski, Gmitro,
Kaylor, and Gillies (2006) analysed the model from different aspects, e.g. in silico
using mathematical models and experimental observations, and later (Gatenby
& Gillies, 2007) studied therapy strategies. Following these macroscopic models,
the mathematical model was extended to include the microscopic effects, i.e.
intracellular proton dynamics by Stinner, Surulescu, and Meral (2015) and a
treatment approach was made by Meral, Stinner, and Surulescu (2015).

Märkl, Meral, and Surulescu (2013) extended the main model given by
Gatenby and Gawlinski (1996) to include the crowding effects in the growth
of normal cells and they showed that this extended model has a unique solution;
however, the analytical solution for the system is not known. Thus, it is im-
portant to have efficient numerical methods for the approximate solution. Due
to the nonlinearities seen in the equation for tumour cell density and proton
concentration, the above-mentioned mathematical models are not easy to solve
numerically, either. The nonlinearity appears as a coefficient in the diffusion
term and as an added term in the model. In the literature, the model is often
solved using finite difference methods, namely method of lines (e.g. in the
papers by Gatenby et al. (2006), Martin, Goffney, Gatenby, and Maini (2010)
or nonstandard finite difference method (as in the papers by Märkl et al. (2013),
Meral et al. (2015), Stinner et al. (2015). The mentioned methods are easy to
implement but as the dimension gets higher one needsmore discretisation points
which makes the method computationally expensive and stability problems may
occur.

In this study, the macro-model for the acid-mediated tumour invasion is
extended to include the time-varying carrying capacities and it is solved using the
combined application of dual reciprocity boundary element method (DRBEM)
andfinite differencemethod (FDM).DRBEMdiscretises only the boundary of the
domain and the solution then canbe approximated for the desired interior points.
The spatial derivatives in themodel systemare discretised usingDRBEMwith the
fundamental solution of Laplace equation considering the time derivative and
the nonlinearity as nonhomogenity. The nonlinearity in the cancer cell density
equation includes a term containing the derivative of the normal cell density
which is approximated using finite differences with the updated values obtained
from the solution of theODE for the normal cells which is solved using FDM.The
cases with different kinds of carrying capacities, depending on time or constant
case are compared. The expected behaviour is obtained using a small number of
discretisation points and the numerical results agree well with the experimental
facts.
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2. Model problem

It is known that an acidic pH boosts apoptosis of normal cells and this leads an
enhanced growth due to more space becoming available (Gatenby & Gawlinski,
1996;Märkl et al., 2013; Stinner et al., 2015). However, there is a certain threshold
of the acidity level and too acidic environment is not suitable also for cancer cells
(Stinner et al., 2015). Therefore, the carrying capacity should also depend on
the extracellular proton concentration to indicate this fact. Thus the resulting
extended macro-model is given by

∂n
∂t

= ωnn
(
1 − n

Kn
− η1

c
Kc(a)

)
− dnan

∂c
∂t

= ωcc
(
1 − c

Kc(a)
− η2

n
Kn

)
+ ∇ ·

(
�c

(
1 − n

Kn

)
∇c
)

∂a
∂t

= ωac − daa + �a∇2a

(1)

where n, c, a denote the normal and tumour cell densities and the concentration
of H+ extracellular protons, respectively. The model parameters ωc , ωn and ωa
denote the production rates for the cancer and normal cells and for the H+
protons, respectively; �c , �a denote the diffusion coefficients for the cancer
cells and H+ protons, respectively, whereas dn is the death rate of normal cells
and da is the uptake rate for H+ protons. Moreover, η1, η2 denote the strength
parameters for the competition between the normal and cancer cells; Kn and
Kc are the corresponding carrying capacities for the normal cell and cancer
cell populations, respectively. For the carrying capacity function Kc(a), three
different choices are considered:

Kc(a) = C0 + bC0a
1 + da2

, (2a)

Kc(a) = C0 + fC0a (2b)
Kc(a) = C0. (2c)

The first choice (2a) indicates that a too acidic environment reduces the
carrying capacity of cancer cells. The second choice (2b) describes the enhanced
growth in an environment becomingmore acidic whereas the last choice gives no
relationship between acidic environment and the growth of the tumour. Here C0
is a reference carrying capacity for cancer cells and b, d, f are positive constants.

It is assumed that there is no exchange of cancer cells and protons across the
boundary of the problem domain � which leads to the boundary conditions

∂c
∂ν

= ∂a
∂ν

= 0 in (0,T) × ∂� (3)

with ν denoting the outward unit normal to ∂� (boundary of �).
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The initial conditions are given by

n(0, x) = n0(x), c(0, x) = c0(x), a(0, x) = a0(x), in � (4)

where the functions n0, c0, a0 are strictly positive functions which are appropri-
ate with the no-flux boundary conditions.

The global existence of the system (1), (3) and (4) with the choices (2a)–(2c)
can be obtained using the proof techniques in the papers by Märkl et al. (2013)
and Stinner et al. (2015).

Before solving the system numerically, the model system is written in the
nondimensionalised form and the transformations

ñ = n
Kn

, c̃ = c
C0

, ã = a
da

ωaC0
, t̃ = ωnt, x̃ =

√
ωn

Da
x, (5)

are made use of to get the nondimensionalised system
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3. Discretisation of themodel

For the spatial discretisation of the model problem (6), DRBEM is used fol-
lowing the book of Partridge, Brebbia, and Wrobel (1992). Before the spatial
discretisation of Equations (6b) and (6c), the ODE (6a) for normal cell density is
solved at the space discretisation points using an explicit–implicit scheme. This
scheme is a combination of the forward and the backward Euler methods and
the method handles the degradation term δnan implicitly for n (the values for a
are still evaluated at the same time level) while it calculates the proliferation term(
n
(
1 − n − η1

c
Kc(a)

))
explicitly in time:
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ij = 1
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(
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Kc(amij )
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(7)

wherem is the time level,	t is the length of the time interval, i, j = 1, 2, . . .N+L
withN and L denoting the number of boundary and interior nodes, respectively.
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For the discretisation of the space derivatives in (6b) and (6c) with DRBEM,
the equations are weighted by the fundamental solution u∗ = 1

2π
ln

1
r
of Laplace

equation:
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where the nonhomogenities b1 and b2 can be approximated using radial basis
functions fj(x, y) as
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resulting with a linear system of equations

[
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F
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with N and L being the number of boundary and selected interior nodes, F is
the (N + L) × (N + L) matrix of distance functions fj related to other distance
functions ûj(x, y) through ∇2ûj = fj .

Application of Green’s second identity to both sides of Equations (8) and (9)
yields to
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with the (N + L) × (N + L) matrices [G] and [H] containing the integrals of the
fundamental solution and its normal derivative, respectively, over the boundary.
Because of the non-flux boundary conditions, the second terms on the left-hand
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side of Equations (14) and (15) vanish and back substitution of {α} and {β} gives
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Rearranging Equation (16) and applying the same explicit–implicit scheme as in
the time discretisation in Equation (7) with the updated n values at the time level
m+ 1, the time-discretised equation for the density of cancer cells is obtained as{
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After using Backward Euler method for the time discretisation of Equation (17)
with the updated values of c at the time levelm+ 1 from Equation (19) , the final
discretised equation for the concentration of H+ protons is:{
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Hence in order to solve the model for the time levelm+ 1 with the numerical
method described here, one should first solve Equation (7) starting with the
initial condition and then should use these updated values for the normal cell
density together with the initial condition for solving the equation for cancer
cells, then should use the updated values for cancer cells in order to obtain the
H+ proton concentration at the discretisation points.
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(a) (b)

(c)

Figure 1. Initial conditions.

4. Numerical results

The numerical simulations are performed in the square [0, 0.1] × [0, 0.1] with
N = 20 boundary nodes and L = 25 interior nodes. The time step is taken to
be 	t = 0.1 . The boundary conditions for c and a are given by (3). The initial
profiles are given by Figure 1. For the initial conditions, cancer cells are assumed
to penetrate a short distance while the space is occupied mainly by the normal
cells and theH+ proton concentration is proportional to the cancer cell density.

In the simulations, the following parameter values are fixed (Gatenby &
Gawlinski, 1996):

δa = 110, Dc4 × 10−5, ρc = 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Evolution of the cancer cell density with different carrying capacities.
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(a) (b)

(c) (d)

(e) (f)

(a) (b)

(c) (d)

(e) (f)

Figure 3. Evolution of the normal cell density with different carrying capacities.



EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 439

(a) (b)

(c) (d)

(e) (f)

Figure 4. Evolution of the acid concentration with different carrying capacities.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Effect of aggresivity parameter on the invasivity of the cancer cells.
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Throughout the simulations, different carrying capacities and their effects
on the invasion are compared. Moreover, the effect of the parameter δn (in
Equation (6a) is analysed in the second part. The parameter δn is called the
aggressivity parameter and the linear stability analysis in Gatenby and Gawlinski
(1996) shows that it has a direct effect on the invasiveness of the cancer cells.

4.1. Simulations with different carrying capacities for cancer cells

In this part, three different carrying capacity functions (in the nondimension-
alised form) are considered:

Kc(a) = 1 + a
1 + 3a2

, Kc(a) = 1 + a, Kc(a) = 1 (21)

In the figure sets (2–4), we see the change in the densities of cancer and normal
cells and the change in the concentration ofH+ protons with a fixed aggressivity
parameter δn = 1.5 for two different times, t = 1 and t = 10. For each case
in Figure 2, the cancer cells have the same invasive behaviour and their density
is tending the corresponding carrying capacity ,while one can easily observe
the decays in the normal cell density in Figure 3. Figure 4 shows also that the
concentration of the H+ protons is proportional to the cancer cell density.

The first choice Kc(a) = 1 + a
1 + 3a2

considers the effect of higher acidic levels
on the tumour cells. It is known that cancer cells are far more resistant to the
higher acidic levels; however, there is a certain threshold that also the cancer cells
are affected. The second choice in Equation (21) considers the positive effect of
acidity of the extracellular environment. Thus, the expectation with this choice
of carrying capacity is that as the concentration of the protons gets higher, the
normal cells die and cancer cells show enhanced growth comparing to the other
cases (Figure 2).

The last choice in Equation (21) is nothing but the constant choice which does
not consider effect of increased acidity of the environment on carrying capacity
of the cancer cells.

4.2. Effect of the parameter δn on the invasiveness of the tumour

In this part, the effect of the aggressivity parameter δn is considered. In Figure
5, the behaviour of the cancer and normal cells and the concentration of H+
protons are analysed for a later time t = 20 with δn = 1.5 and 5.0. The figures
show that a more aggressive tumour is more invasive and they occupy almost all
the space at t = 20 and the concentration of the protons is proportional to the
density of cancer cells as expected.

5. Conclusion

In this study, a numerical method is proposed for an acid-mediated tumour
cell invasion model which includes the effect of the acidity of environment
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on the carrying capacity of cancer cells. The model consists of a system of
nonlinear reaction–diffusion equations for the density of cancer and normal
cells and for the concentration of H+ protons. For the discretisation of the
system, DRBEM and FDM are used in space and in time, respectively. DRBEM
has the advantage of discretising only the boundary and therefore uses small
number of discretisation points comparing to other discretisation methods. The
comparison of the different carrying capacities and the effect of the aggressivity
parameter are tested by the proposed method. The results are consistent with
the expected behaviour of the model that if one considers the positive effect of
the acidity on the cancer cells, the enhanced growth is observed and when the
aggressivity parameter is larger, then the tumour is more aggressive.

Disclosure statement

No potential conflict of interest was reported by the author.

ORCID

Gülnihal Meral http://orcid.org/0000-0003-0072-0609

References

Gatenby, R. A., & Gawlinski, E. T. (1996). A reaction-diffusion model of cancer invasion.
Cancer Research, 56, 5745–5753.

Gatenby, R.A.,Gawlinski, E. T.,Gmitro,A. F., Kaylor, B.,&Gillies, R. J. (2006).Acid-mediated
tumor invasion: A multidisciplinary study. Cancer Research, 66, 5216–5223.

Gatenby, R. A., & Gillies, R. J. (2007). Glycolysis in cancer: A potential target in therapy. The
International Journal of Biochemistry and Cell Biology, 39, 1358–1366.

Martin, N. K., Goffney, E. A., Gatenby, R. A., & Maini, P. K. (2010). Tumour-stromal
interactions in acid-mediated invasion: A mathematical model. Journal of Theoretical
Biology, 267, 461–470.

Märkl, C.,Meral, G., & Surulescu, C. (2013).Mathematical analysis andnumerical simulations
for a systemmodeling acid-mediated tumor cell invasion. International Journal of Analysis,
2013, 1–15.

Meral, G., Stinner, C., & Surulescu, C. (2015). A multiscale model for acid-mediated tumor
invasion: Therapy approaches. Journal of Coupled Systems and Multiscale Dynamics, 3,
135–142.

Partridge, P.W., Brebbia, C. A., &Wrobel, L. C. (1992).The dual reciprocity boundary element
method. Southampton, Boston: Computational Mechanics Publications.

Stinner, C., Surulescu, C., &Meral, G. (2015). A multiscale model for pH-tactic invasion with
time varying carrying capacities. IMA Journal of Applied Mathematics, 80, 1300–1321.

http://orcid.org
http://orcid.org/0000-0003-0072-0609

	1. Introduction
	2. Model problem
	3. Discretisation of the model
	4. Numerical results
	4.1. Simulations with different carrying capacities for cancer cells
	4.2. Effect of the parameter δn on the invasiveness of the tumour

	5. Conclusion
	Disclosure statement
	ORCID
	References



