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ABSTRACT This paper discusses alternative Lagrangian formulations for smooth particle 
hydrodynamics method. These Lagrangian formulations are here employed in solving large 
strain problems that involve e/asto-plastic and hyperelastic materials. It has previously been 
shown in the literature that the Lagrangian formulation for continuum eliminates the problem 
of tension instability which is generally coupled with Eulerian continuum formulation of 
smooth particle hydrodynamics and other meshless methods. This paper presents the details 
of the methodologies used in formulating Lagrangian smooth particle hydrodynamics method 
and their characteristics. 

REsUME. Dans cet article, nous discutons /es formulations lagrangiennes alternatives pour la 
methode SPH. Ces formulations lagrangiennes sont utilisees ici pour la resolution des 
problemes des grandes deformations qui incluent [es materiaux elasto-p/astiques et hyper
elastiques. II a ete demontre dans la litterature, que la formulation lagrangienne du 
continuum elimine le probleme d'instabilite en traction, qui est genera/ement associe avec la 
formulation eulerienne de la methode SPH et d'autres methodes sans mail/age. Get article 
presente /es details des methodologies utilisees dans la f ormulation de la methode 
lagrangienne SPH et les caracteristiques associees. 
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1. Introduction 

The smooth particle hydrodynamics (SPH) is truly meshfree, simple and robust 
computational technique that can be used in numerical simulations of various 
engineering problems. The method was pioneered in 1977 for modelling 
astrophysical and cosmological problems, and since the early 90's the application 
has been extended to numerous areas of computational mechanics [1-10]. However, 
in spite of its attraction for computational mechanics, the method suffers from lack 
of accuracy and more importantly instability from lack of nodal completeness and/or 
integrability of the approximations for functions and their derivatives. Recently, a 
number of techniques have been developed to circumvent such difficulties 
encountered in SPH and other meshless methods [10-15]. 

One of the major obstacles generally faced in meshless methods such as SPH is 
the presence of tensile instability in the formulation of solid applications [ 11-15]. It 
has been reported that the tensile instability is to a large extent associated with using 
Eulerian kernels [12], .where the derivatives of the kernel functions are constantly 
changing as the particles move. The changes in the internal forces brought about by 
these changes in the derivatives of the Eulerian kernels give rise to spurious terms in 
the tangent stiffuess of the system which are the main cause of the so called tension 
instability [12]. A number of techniques have been developed to address this issue in 
the case of SPH and related meshfree methods [ 11, 12, 15]. One of such techniques is 
based on formulating Lagrangian continuum equations whereby the internal forces 
are evaluated with respect to a fixed reference configuration. In this case the kernel 
function and its derivatives are based at the reference configuration and hence do not 
depend on the current position of the particles [ 11, 12]. Thus the tensile instability 
will be completely eliminated or transfonned into spurious mechanisms, which can 
be easily controlled by the use of artificial viscosity. The detailed analysis of tensile 
instability and alternative approaches to eliminate these instabilities can be found in 
the literature [ 11-15]. This paper mainly dwells on two different ways of formulating 
SPH in a Lagrangian setting and compares their salient features. Several numerical 
examples are presented to demonstrate the ability of the formulations to simulate 
complex problems. 

2. Numerical methodology 

2.1. SPH Approximations 

In meshfree methods such as SPH, any problem variable and its gradient are 
generally interpolated from values at a discrete number of particles by using the 
following approximations: 
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N 
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(1) 

(2) 

where Vii denotes the volume of material associated to a given particle and Ml;, 
represents the 'kernel' or interpolation function, which usually has a bell shape with 
a compact support as shown in Figure I . 

• 

• 

Fie;ure 1. Particle interpolation and kernelfunction 

Most commonly used kernel function in SPH is a cubic spline kernel function 
given by, 

1 - ~ e + ~ e if ~ :::; 1 
2 4 

w ( x) = :d ~ ( 2 - 0 3 
if 1 < ~ < 2 (3) 

0 if~> 2 

where d is the number of dimensions of the problem and c is a scaling factor to 
normalise the kernel function. Here, the length parameter h has a similar 
interpretation to the element size in finite element method. For instance, applying 
equation ( 1) to density of a continuum leads to the classical SPH equation : 
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N 

p<X) = L:mb~ (X) 

b=l 

In this way, the SPH representation of the governing equations can be built from 
fundamental equations of motion. 

2.2. Continuum Equations 

Figure 2. Continuum deformation 

(4) 

Consider a 3~dimensional continuum shown in Figure 2 undergoing a given 

motion defined by a mapping ¢ between initial and clirrent position as: 

(5) 

which gives the position x of each material point X as a function of time. The 
deformation gradient F is defined as: 

8x 
F =\loci> = ax 

and the Jacobian or volume ratio J of the continuum is given by: 

dV 
J = detF=

dV0 

(6) 

(7) 
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where d V0 and d V represent the initial and the current element volumes. 

Conservation of mass or continuity equation is then obviously expressed as; 

Po = pJ (8) 

where p0 and p are initial and current densities of volume elements. 

The momentum balance equation for the deformable body is given by, 

(9) 

where a is acceleration, / 0 is body force per unit mass, typically due to gravity 

g and P is first Piola-Kirchhoff tensor. The first Piola-Kirchoff tensor can be 

expressed in terms of Cauchy stress tensor as, 

(10) 

And finally, in the absence of heat transfer, the conservation of energy of the 
continuum can be written by, 

PoE = p: F (I 1) 

where E is the internal energy per unit mass. As the analyses in this paper will 
be confined to isothennal, adiabatic processes the tenns corresponding to heat 
energy have been ignored in the above energy conservation equation. The following 
section deals with discretization of the governing equations based on Lagrangian 
SPH formulations. 

2.3. Discrete equilibrium equations 

In order to discretise the equilibrium equation (9), a standard Galerkin approach 
is employed, which leads to the principle of virtual work expressed as, 

(l2) 

where using standard mass lumping the inertia and external (gravity due) virtual 
work rates are expressed in tenns of particle masses, accelerations and virtual 
velocities as: 
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(13) 

and the internal virtual work will be expressed in following section in tenns of 
the internal equivalent forces as, 

owint = fi P : 8F dV0 = l:T1 · 6v1 
Vo I 

(14) 

The standard dynamic equilibrium equation for a given particle is then obtained 
as, 

(15) 

3. Lagrangian SPH 

Previous research has revealed that the discretisation of the continuum equations 
based on the framework of a fully Lagrangian formulation eliminates undesirable 
effects due to tensile instabilities [12]. In Lagrangian SPH all derivatives are taken 
with respect to a constant reference configuration where both the kernel and its 
derivatives remain constant. In this section two different Lagrangian fonnulations, 
one based on Corrected SPH formulation and another based on traditional SPH 
formulation are described. 

3.1. Corrected SPH Formulation 

Consider a general deformation of a body discretised using number of SPH 
particles as shown in Figure 3. The deformation gradient defined by equation (6) can 
now be evaluated at a given particle I in terms of the current particle positions as: 

N 

F1 =\70cj> = l:zJ ® GJ (X1 ) (16) 
J::I 

where the gradient functions G contain the corrected kernel gradients 

V W ( X) at the initial reference configuration, that is: 

(17) 
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Possible ways of correcting the above kernel or its gradient that will ensure 
linear completeness are discussed in references [9-11]. Note that the necessary 
correction will be performed at the initial reference configuration of the body. 

Figure 3. General deformation from reference to current 

In order to derive general equations for the internal forces using a Lagrangian 
corrected SPH technique, consider the internal virtual work equation expressed in 
the reference configuration in terms of the first Piola-Kirchofftensor Pas, 

(IS) 

The virtual deformation gradient rate emerges from equation (16) as: 

N 

8FJ = l:ovK ®GK(XJ) (19) 
K= l 

which, upon substitution into equation (18) yields the virtual internal work 
expression as: 
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N 

" 0 . 8wint = 6 VJ PJ : 8FJ 
J=l 

= t,vJP, . [i; 6vK ®GK ( x,) l (20) 

-f; 6vx · [t,vJPPx (x,) J 
thus enabling the internal force vector corresponding to a given node I to be 

easily identified from this expression as: 

N 

T1 = l:VJPJGI (XJ) (21) 
J = l 

The obvious advantage of using this equation for the evaluation of internal forces 
in a discretized continuum is the fact that the kernel derivative functions G are fixed 
at the initial (or reference) configuration and hence will not be dependent upon 
current nodal positions. In addition it can be noted that the corrections also evaluated 
at the initial configuration thus enable to reduce the computational cost. 

3.2. Alternative SPH Formulation 

The previous fonnulation relies on linearly corrected kernel gradient vectors 
obtained in the initial configuration. An alternative simpler fonnulation, which leads 
to equations similar to the traditional SPH is presented in this section. 

Consider first the approximation of the deformation gradient tensor F . Given 
that this is a two point tensor relating initial vectors dX to their final counterparts 
dx = FdX, a simple approximation at a given particle I is given by the weighted 
average of dyadic (tensor) products of incremental vectors as: 

where WIJ denotes the uncorrected derivative of the kernel with respect to 

particle distance as, 
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and the correction matrix M is chosen so that for the case with uniform 

deformation gradient, where XJ - XI = F {XJ - X 1 ), the exact deformation 

gradient is found. A simple substitution shows that this matrix must consequently be 
given by; 

N 

M 1 = I:WumJ (XJ - X 1 ) ® (XJ - XI) (24) 
J=l 

In order to derive the corresponding equations for internal forces based on the 
above alternative formulation, consider again the internal virtual work equation as; 

(25) 

where the virtual deformation gradient rate is now derived from equation (22) to 
give: 

Substituting the above equation into the virtual work expression gives, 

After simple algebra the above expression can be re-written as: 

thus enabling the internal force vector corresponding to a given node I to be 
easily identified from this expression as: 
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(29) 

For the particular case where kernel functions are symmetric that is, 

the internal force TI can be written as, 

(31 ) 

As the matrices M are fixed at the initial (or reference) configuration, the 
above internal force equation shares the same advantages of equation (21 ). In 
addition, the final equation for the internal forces closely resembles the equations 
used in standard SPH. 

3.3. Preservation of momentum 

It is essential to examine whether the Lagrangian fonnulations proposed in the 
above discussions satisfy the momentum preservation conditions usually required of 
a continuum equations. For this purpose internal force equations linear and angular 
momentum of the Lagrangian formulations are analysed. It can be recalled that 
linear momentum is preserved whenever the sum of the internal forces of each 
particle vanishes for any state of stresses, that is: 

(32) 

In the case of corrected SPH formulation substituting for TI from equation (21) 

into the above condition gives, after simple algebra, 

(33) 
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From the above equation it can be stated that the conservation of linear 
momentum enforces the following requirement on the initial gradient vectors G: 

(34) 

This is simply the order zero completeness condition which ensures that the 
gradient of a constant function vanishes. A number of different techniques to ensure 
that this condition is satisfied are reported in the literature [10-12]. 

It is trivial to prove that the alternative SPH formulation defined in section 3.2 
satisfies equation (32) and hence preserves linear momentum. In general internal 
force at particle I can be expressed as the sum of interaction forces between pairs of 
particles as (see Figure 4) 

(35) 

For instance if the internal forces are given by equation (31) then the interaction 
force is 

(36) 

Given that \7 W1 ( X J ) = - \7 WJ ( X 1 ) , it is clear that T1 J = -TJ 1 • 

and consequently the total sum of all interaction pairs will vanish (see figure 4). 

X1 

]

1'. x, -x:-1 x, 
'/ rn 

Figure 4. Interaction forces between two particles 

Although most of the formulations will preserve linear momentum, the same is 
not true for angular momentum. It can be recalled that the angular momentum is 
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preserved when the total moment of the internal forces with respect to an arbitrary 
reference point vanishes, that is: 

(37) 

In case of corrected SPH formulation, again introducing the internal force 
equation (21) gives after simple algebra: 

N N 

2.':x1 x T1 = -£ : l:T1 0 x1 
l = l /=l 

= -£: t.VJP, [t.G1 (X, ) ® z1 l (38) 

where £ denotes the third order alternating tensor. The term in brackets in the 
above equation coincides with the transpose of the defonnation gradient tensor given 
by equation (16). Taking this into account together with the equation (10) relating 
Cauchy and Piola-Kirchhof stresses and the symmetry of a gives: 

N N 

2::x1 x T1 = -£: l:VJPJFI 
l=l J=l 

N 

= -£: l:=VJO' J 
J=l 

=0 

(39) 

Consequently, internal force equation (21) preserves angular momentum for any 
choice for initial gradient vectors G. 

In the case of the alternative Lagrangian SPH formulation discussed in section 
3.2, a similar derivation, again relying on the symmetry of the Cauchy stresses and 
equation (22), enables the preservation of angular momentum to be proved as, 



CSPH Methods in Large Strain Dynamic Problems 

N N 
l::z1 x T1 = -E: LT1 ®x1 
/ = l l=l 

N ( p M-l PM-1) 
=-E: L m1 mJ WJI .1 0 J +Wu 1 

/ (X1 - XJ) ® z 1 
~~ ~ ~ 

= -E: t m1mJ (wn P;~/)(x1 - XJ) ® (x1 -xJ) 
l .J=I PJ 
N 

= -E : EmJPJFJ 
J=l 
N 

= - E: EmJaJ 
J=l 

= 0 

4. Numerical examples 

905 

(40) 

In order to illustrate the ability of Lagrangian SPH formulations various 
numerical examples are presented in this section. The examples are targeted to 
demonstrate the simulations of large strain three dimensional problems involving 
elasto-plastic and hyperelastic materials. 

4.1. Taylor Bar Impact 

This section presents numerical results from the simulation of a small cylindrical 
copper bar against a rigid planar wall. The bar has an initial length of 0.0324m and 
initial radius 0.0032m. The Initial velocity of the bar is 227 mis and the termination 
time of the problem is 80µs . Von Mises plasticity with linear isotropic hardening is 
employed for the numerical computation. Material properties used for copper are 
given in Table 1 [ 17]. This is a classical dynamic test example and the results 
obtained match closely with those achieved using a standard FE fonnulation [ 17]. 

Elastic Modulus E 117 GN/m2 

Poisson's Ratio v 0.35 
Yield Stress C1 y 0.4 GN/ m 2 

Hardening Modulus H 0.1 GN/m2 

Density p 8930 k!!lm3 

Table 1. Copper Bar Material Properties 
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Figure 5 below shows the defonned shape and the distribution of equivalent 
plastic strain at various stages of the numerical simulation. The results show that the 
meshless method yield larger maximal equivalent plastic strain than finite elements, 
but the discrepancy is small. 

(a) 

I (b) 

(c) (d) 

" 

Figure 5. Deformed shape and equivalent plastic strain of a Taylor bar at various 
stages 

4.2. Bending of Hyperelastic Cylinder 

This example involves a nearly incompressible neo-Hoookean cylinder travelling 
with initial velocity of 1.88 mis to the right which is suddenly fixed at its base. The 

initial radius is .32 m and the length 3.24 m. The shear modulus is .3571 MN/ m2 

and the bulk modulus is 1.67 MN/ m2
. The shapes obtained at different times are 

shown in Figure 6. The same example has been run using a standard dynamic FE 
code with identical initial nodal positions and tri-linear 8 noded cube elements. The 
SPH and FE solution for the centreline of the cylinder at three different times are 
compared in Figure 7, where the agreement can be seen to be excellent. 
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Figure 6. Deformed shapes of the hyperelastic material at various stages 



908 REEF - 11/2002. Meshfree Computational Mechanics 

3.5 

25 

~ 2 
• hs 

I I 
I I 

- - - - - - - - ,- - - - - - - - - -1- - - - - - - - -

I 

-- FE solution 

0.5 • • • • CSPH solution 

0 
0 05 •·poa(m) 1.5 

Figure 7. FE vs. CSPH comparison for the oscillating cylinder 

4.3. Hig/1 Speed Impact of Brittle Materials 

In this section the high speed impact and fracture of Tungsten cube is simulated 
using Lagrangian SPH fonnulations. A Silica-Phenolic target panel is impacted at 
right angle with Tungsten cube as described in Figure 8 . The numerical 
computation is perfonned for a 42.2 g Tungsten cube travelling at 1930 mis before 
striking a long stationary bar made of Silica-Phenolic material. 

• 
1 

.,,1,' 
... ~ ~ f • • •• 

111111111 tun2sten 

D Silica Phenolic 

Figure 8. Schematic diagram of the numerical experiment 

In addition to the governing equations discussed in section 2.2, the pressure 
equation incorporating specific internal energy are used in the computation. For this 
purpose, the pressure is evaluated by using Mie-Gruneisen equation of state given as 
[6,18], 
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µ = L - 1 
Po 

(41) 

where Tis Gruneisen material parameter and PH is Hugnoit pressure given by, 

P _ C2µ(1 + µ) 
H ( p) - ( 1 - µ ( 8 - 1 ) )2 (42) 

where C and S are the parameters in the linear shock velocity - particle velocity 

relationship Us = C + SUP . The plastic flow of the material is determined by 

the Von Mises criterion when the stress invariant exceeds the yield strength. 

The damage model used in this simulation has been developed by Randles et al 
[ 18, 19) and is generally considered suitable for treating impact fracture of Tungsten 
which may be combination of ductile and brittle mechanisms. This model uses a 
scalar damage variable without attempting to COIUlect directly with microscopic 
mechanisms. The evolution of the scalar damage variable D with time is postulated 
as [18), 

(43) 

where a max is the maximum principal stress, CT th is the threshold stress for the 

onset of tensile damage, u tho is the threshold for undamaged material and t is the 

time constant controlling the rate of damage growth. The accumulation of damage is 
zero when a max < athO . The damage variable ranges from 0 to I with 0 denoting 

no damage and, l complete damage with possible separation, and values in between 
denoting various states of damage between undamaged material and complete 
separation. The effects of damage evolution on material properties are given by [18], 

where k is tensile bulk modulus, Y is the yield stress for plastic deformation, and 

G is shear modulus. The k0 , Y0 and G0 are initial values of the corresponding 

material properties. The detail analysis of this damage model and its implementation 
can be found in the reference [18,19]. 
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Material p0 (g/cc) C(mm/µs) s G0 (Mb) Y0 {Kb) I' u thO (Kb) r(µ.s) 

Tun£Sten 19.23 4.00 1.23 1.540 60.0 1.54 35.00 0.05 
Silica 

1.71 3.24 1.39 O.Q38 10.0 1.00 2.00 0.50 
Phenolic 

Table 2. Material Properties of Tungsten and Silica Phenolic 

The properties of materials used in the numerical simulations are listed in Table2 
[18}. Figures (9.la) and (9.lb) show the initial configurations of side and top views 
of the materials. And the Figures (9.la) and (9.Ib) show the views of the materials 
after the complete penetration of the Tungsten cube. The above initial set up is 
chosen in order to reduce the computational effort required. In the present example a 
penalty based contact-impact algorithm has been adopted (20,21]. 

(I.a) • (11.a) 

(th) (ll.b) 

Figure 9. Damage and Fracture of Tungsten cube and Silica-Phenolic bar 
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5. Concluding remarks 

It has been quoted in the literature that the tensile instability generally 
experienced in Eulerian based meshless techniques can be eliminated by using a 
Lagrangian kernel, i.e. by letting the kernel be a function of reference or initial 
configuration. This paper has discussed alternative Lagrangian SPH formulations to 
overcome the problem of such tensile instabilities. Two different fonnulations 
namely have been discussed at length. Remarkably, both Lagrangian expressions for 
the internal forces preserve linear and angular momentum given that in the case of 
corrected SPH the derivatives of the kernel at the reference configuration satisfy 
zero order completeness. As the derivative of kernel functions are fixed at the 
reference configuration the amount of computational effort here would be much less 
than that of Eulerian based meshless technique. Further, for the alternative 
Lagrangian SPH formulation presented, as the corrections are already included in 
the definition of the gradient functions, the computational cost can be further 
reduced. However, it is important to note that for problems involving large 
distortions, a Lagrangian formulation may require frequent updates of the reference 
configurations. Robust procedures for carrying out such updates are currently under 
investigation. 

Finally the ability of the Lagrangian formulations to simulate complex problems 
is demonstrated by several numerical examples. All the numerical simulations are 
carried out in three spatial dimensions using total Lagrangian approach. The results 
obtained in the Taylor bar impact problem show close agreement with finite element 
simulations. The other simulations illustrate the possible potential applications of the 
Lagrangian SPH formulations. 
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