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ABSTRACT. A meshfree particle method is used to simulate free surface flows. This is a
Lagrangian method. Flows are modeled by the incompressible Navier-Stokes equations. The
particle projection method is used to solve the Navier-Stokes equations. The spatial
derivatives are approximated by the weighted least squares method (WLS). The pressure
Poisson equation is solved by a local iterative procedure with the help of WLS. Numerical
experiments are presented for two dimensional cases. In the case of breaking dam problem
the numerical result is compared with the experimental result. The surface tension effects are
studied in different shapes of drops and Laplace's law is verified. Finally, the collisions of two
drops are simulated.
RÉSUMÉ. Une méthode sans maillage est utilisée pour simuler les écoulements à surface libre.
Il s’agit d’une méthode Lagrangienne. Les écoulements sont modélisés par les équations
incompressibles de Navier-Stokes. La méthode de projection des particules est utilisée pour
résoudre les équations de Navier-Stokes. Les dérivées spatiales sont approchées par la
méthode des moindres carrés pondérés (WLS). L’équation de pression de Poisson est résolue
par une procédure itérative locale à l’aide de WLS. Les expériences numériques sont
présentées pour deux cas 2D. Dans le cas du problème de rupture de barrage, les résultats
numériques sont comparés avec l’expérience. Les effets de tension surfacique sont étudiés
pour différentes formes de gouttes et la loi de Laplace est vérifiée. Finalement, les collisions
entre deux gouttes sont simulées.
KEYWORDS: Meshfree method, incompressible Navier-Stokes equations, projection method,
free surface flow, least squares (LSQ) approximation.
MOTS-CLÉS : Méthode sans maillage, équations incompressibles de Navier-Stokes, méthode de
projection, écoulement à surface libre, approximation par moindres carrés.
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1. Introduction

In this paper we present a meshfree particle method for simulations of free
surface flows. This is a Lagrangian method. A fluid domain is first replaced by a
discrete number of points, which are referred to as particles. Each particle carries all
fluid information, like density, velocity, temperature etc. and moves with fluid
velocity. Therefore, particles themselves can be considered as geometrical grids of
the fluid domain. This method has some advantages over grid based techniques, for
example, it can handle fluid domains, which change naturally, whereas grid based
techniques require additional computational effort.

Numerical simulations of free surface flows have many industrial applications
like casting, tank filling and others. Many methods have been developed to simulate
free surface flows (Hansbo 1992, Harlow et al. 1965, Hirt et al. 1981, Kelecy et al.
1997, Kothe et al. 1992, Maronnier et al. 1999, Tiwari et al. 2000). A classical grid
free Lagrangian method is Smoothed Particle Hydrodynamics (SPH), which was
originally introduced to solve problems in astrophysics (Lucy 1977, Gingold et al.
1977). It has since been extended to simulate the compressible Euler equations in
fluid dynamics and applied to a wide range of problems, see (Monaghan 92,
Monaghan et al. 1983, Morris et al. 1997). The method has also been extended to
simulate inviscid incompressible free surface flows (Monaghan 94). The
implementation of the boundary conditions is the main problem of the SPH method.

Another approach for solving fluid dynamic equations in a grid free framework
is the moving least squares or least squares method (Belytschko et al. 1996,
Dilts 1996, Kuhnert 99, Kuhnert 2000, Tiwari et al. 2001 and 2000). With this
approach boundary conditions can be implemented in a natural way just by placing
the particles on boundaries and prescribing boundary conditions on them
(Kuhnert 99). The robustness of this method is shown by the simulation results in
the field of airbag deployment in car industry. Here, the membrane (or boundary) of
the airbag changes very rapidly in time and takes a quite complicated shape
(Kuhnert et al. 2000).

In (Tiwari et al. 2000) we have performed simulations of incompressible flows
as the limit of the compressible Navier-Stokes equations with some stiff equation of
state. This approach was first used in (Monaghan 92) to simulate incompressible
free surface flows by SPH. The incompressible limit is obtained by choosing a very
large speed of sound in the equation of state such that the Mach number becomes
small. However the large value of the speed of sound restricts the time step to be
very small due to the CFL-condition.

The projection method of Chorin (Chorin 68) is a widely used approach to solve
problems goverbed by the incompressible Navier-Stokes equation in a grid based
structure. In (Tiwari et al. 2001), this method has been applied to a grid free
framework with the help of the weighted least squares method. The scheme gives
accurate results for the incompressible Navier-Stokes equations. The occurring
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Poisson equation for the pressure field is solved by a grid free method. In (Tiwari
et al. 2001), it has been shown that the Poisson equation can be solved accurately by
this approach for any boundary conditions. The Poisson solver can be adopted to the
weighted least squares approximation procedure with the condition that the Poisson
equation and the boundary condition must be satisfied on each particle. This is a
local iteration procedure.

In this paper, we further extend the scheme, presented in (Tiwari et al. 2001), to
free surface flows. Numerical experiments are obtained with and without surface
tension forces. The broken dam problem is solved without surface tension forces.
The Laplace's law (Landau et al. 1959) has been tested for different shapes of
bubbles. The numerical scheme, presented here, reproduces the Laplace's law
exactly. Finally, the binary drop collision of liquid drops shows that the scheme is
suitable for simulations of free surface flows.

The paper is organized as follows. In section 0 we present the mathematical
model and boundary conditions. In section 0 the numerical scheme is described. In
section 0, the weighted least squares method and its application to the Finite Pointset
Method (FPM) is presented. The algorithm of determination of the free surface
particles is presented in section 0. Finally, some numerical tests are presented in
section 0.

2. Mathematical model and boundary conditions

We consider the incompressible Navier-Stokes equations in the Lagrangian
form.

,1 gvp
Dt

vD rr
r

+∆+∇−= νρ
(1)

. 0=⋅∇ vr (2)

Here, ρ  is the mass density, vr  is the velocity vector, gr  is the body force
acceleration vector, ν  is the kinematic viscosity and p  the dynamic pressure.

In addition to equations (1) and (2), appropriate initial and boundary conditions
have to be provided.

For the discussion within this paper, we will consider various types of boundary
conditions: solid wall, inflow, outflow, and free surface boundaries. However, we
will emphasize on free surface boundaries, since these are indeed a delicate problem
and have many applications in industry and sciences.

For a solid wall, one can use either free slip or no slip boundary conditions. If the
viscosity is too low, a free slip condition seems to be appropriate, coupled with some
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model for the boundary layer. For inflow boundaries, all velocity components need
to be prescribed. The surface stress boundary condition on the interface between two
fluids or free surfaces is given by (Landau et al. 1959) as

[ ] ,nnpn rrr σκτ =−⋅ (3)

where
– σ  is the surface tension of the fluid, which is assumed to be constant,
– κ  is the curvature on the interface,
– nr is the unit normal vector on the interface, and

– τ  is the viscous stress tensor is given by .
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The symbol [ ]⋅  denotes the jump across the free surface boundary between two
fluids. Suppose that the viscosity of one fluid adjacent to the free surface is
negligible and has the pressure 0p , then the normal and tangential components of
the other fluid from equation (3)

σκτ +=⋅⋅− 0pnnp rr (4)

.0=⋅⋅ nt rr
τ (5)

Here, t
r

 denotes the unit tangent vector on the interface.

The implementation of boundary conditions (4) and (5) requires a sufficiently
good approximation of the first and second spatial derivatives of the velocity as well
as of the curvature of the free surface. Please find a detailed discussion about the
numerical scheme in section 0. The approximation techniques employed are
described in section 0.

3. Numerical scheme

The numerical idea we present here is a generalized Finite Difference Method
for the Navier-Stokes-equations for incompressible problems with free surfaces. In
fact, we call this method Finite Pointset Method (FPM) for the reasons we will find
below.

The idea is to fill the flow domain with (numerical) points. These points are
carriers of all relevant physical information (i.e. velocity, density, pressure etc.). In
this context, we might call these points also particles, meaning they are not
representing physical particles, rather they are representing a certain, finite piece of
the fluid considered. The important point is, that, as time evolves, the particles are
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moved with fluid velocity such that the numerical points (particles) move in the
same fashion as a point of the fluid would move.

On the path of some numerical particle, the relevant quantities need to be
updated, i.e. the velocity, pressure etc. will change. In order to describe these
changes, we use the Navier-Stokes-equations as stated above and discretize them
directly on each particle. Hence, no weak formulation is used. Since in the Navier-
Stokes equations, spatial derivatives of the velocity and the pressure appear, we will
have to find a way of giving good approximations for these terms based on the
knowledge of the discrete pressure and velocity values. The method employed here
is the so-called weighted least squares method. Please turn to section 0 for a detailed
introduction.

Summarizing, the whole idea is to fill the flow domain with numerical points
(particles), each of which being carrier of relevant physical information. We let the
particles move with fluid velocity. The mean interaction radius between the particles
for approximating derivatives is given by the symbol h . h  is also referred to as
smoothing length. As particles move on their path, physical quantities will have to
be updated, governed by the Navier-Stokes-equations.

Now let us turn to the numerical method in detail. We consider the projection
method described in (Chorin 68). This is an explicit method being of first order
accuracy in time. It consists of two fractional steps. At the first step we explicitly
compute the new particle positions and the intermediate velocity ∗vr  by

nnn vtxx rrr δ+=+1 (6)

nnn gtvtvv rrrr δνδ +∆+=∗ (7)

Then, at the second step, we correct ∗vr  by solving the equation

11 +∗+ ∇−= nn ptvv δrr (8)

with the incompressibility constraint

.01 =⋅∇ +nvr (9)

Here, for simplicity, we have considered ρ  to be 1. By taking the divergence of

equation (8) and by making use of (9), which is the constraint that 1+nvr  must be a
divergence free vector field, we come up with the Poisson equation for the pressure

t
vp n

δ

∗
+ ⋅∇
=∆

r
1 (10)
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The boundary condition for solid walls as well as for inflow boundaries is
obtained by projecting equation (8) on the outward unit normal vector nr  to the
boundary Γ . Thus, we obtain the Neumann boundary condition

( ) ,1 1
1

nvv
tn

p n
n

rrr
r ⋅−−=
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
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

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where 
Γvr  is the value of vr  on Γ . Assuming 0=⋅ nv rr  on Γ , we obtain

0
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on Γ . Moreover, the Dirichlet boundary condition

nnpp rr
⋅⋅++= τσκ0

applies for free surface as well as for outflow particles in the context of the
pressure Poisson equation (10).

We note that particle positions change only in the first step. The intermediate
velocity ∗vr  is obtained for each particle on its new location. Finally, the pressure
and the divergence free velocity fields are computed also on exactly the same new
particle positions.

We approximate the spatial derivatives appearing in (7) and (8) by the weighted
least squares method. Furthermore, the pressure Poisson equation (10) is also solved
in the least squares sense. In the following section, we describe the method of
approximation of spatial derivatives. The Poisson solver, and the approximation of
the curvature of free surfaces by the weighted least squares method are presented as
well.

4. Weighted least squares method (WLS) and its application for FPM

In general, we would like to approximate spatial derivatives of some function.
The problem is that we only know the discrete function values exactly at the particle
positions. To approximate a derivative of some function at some given point, the
discrete function values of the neighbor particles being in a ball about the point
considered are taken into account. The WLS, which is employed for that purpose,
does not require a regular grid structure. This is of big advantage for FPM.

Let ( )xtf r,  be a scalar function and ( )tf i  its discrete values at the particle
positions 

ixr  for Ni ,,2,1 L=  and time t . Consider the problem to approximate
spatial derivatives of that particular function ( )xtf r,  at some particular particle
position xr  based on the discrete function values of its neighbor points.
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In order to restrict the number of points we introduce a weight function
( )hxxww i ,rr

−=  with small compact support, where h  determines the size of the
support and represents the smoothing length. The weight function can be arbitrary,
however it makes sense to choose a Gaussian weight function of the form
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where α  is a positive constant and is considered to be in the range of 6. The size
of h  defines a set of neighbor particles around xr . So far, in our implementation, we
allow user given h  as a function in space and time. However, no adaptive choice of
h  is realized yet. Working with user given h  implies that new particles will have to
be brought into play as the particle distribution becomes too sparse or, logically,
particles will have to be removed from the computation domain as they become too
dense.

Let ( ) { }nixhxP i L
rr ,2,1:, ==  be the set of n  neighbor points of xr  in a ball of

radius h . For consistency reasons, some obvious restrictions are required, for
example, in 2D there should be at least 5 neighbor particles and they should neither
be on the same line nor on the same circle.

The determination of derivatives of a function can be computed easily and
accurately by using the Taylor series expansion and the least squares approximation.
We write Taylor's expansion about the point xr  with unknown coefficients and then
compute these coefficients by minimizing a weighted error over the neighbor points.

Hence, consider Taylor's expansion of ( )ixtf r,  about xr

( ) ( ) ( ) ( ) ( )( )
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=
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where ie  is the error in Taylor's expansion at the point 
ixr . The symbol ( )k

ixr ,
represents the k -th component of the particle position 

ixr . The unknowns kf  and

( )lkkl ff =  for 3 ,2 ,1, =lk  represent the approximations of the first and second
derivatives of f  and are computed by minimizing the error ie  for ni L,2 ,1= ,
where ( ) fxtf =

r,  is the known discrete function value at the particle position xr .
The system of equations can be written as
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For 10≥n , this system is over-determined for the nine unknowns 
kf  and

)( lkkl ff =  for 3,2,1, =lk .

The unknowns in the vector ar  are obtained from a weighted least squares
method by minimizing the quadratic form

2

1
i

n

i
iewJ ∑

=

= .

The above equations can be expressed as

( ) ( ) 1−
−−= baMWbaMJ

t rrrr ,

with



























=

nw

w
w

W

...00
......
......
......
0...0
0...0

2

1

,



Incompressible Flows with Surface Tension     973

where ( )hxxww ii ,rr
−= . The minimization of J  formally yields

( ) ( )bWMWMMa tt
rr 1−

= (11)

The Taylor expansion may include high order expansion. The employment of
particular weight functions can force the least square approximations to recover the
finite difference discretization in the special case that all particles are placed in a
regular grid structure.

4.1. Weighted least squares approach for the Poisson equation

As we have seen in the description of the numerical scheme in section 0, we
need to solve the pressure Poisson equation

t
vp

δ

∗⋅∇
=∆

r
(12)

with the boundary conditions

0=
∂
∂
n
p
r

for solid walls as well as for inflow boundaries and

nnpp rr
⋅⋅++= τσκ0

for free surface as well as for outflow boundaries. Here, the symbol p  denotes
1+np  for the sake of simplicity.

Since we are in a grid free structure, it is not obvious to apply the classical
methods like finite difference or finite element methods for a numerical scheme
solving the above Poisson equation. Of course, one could construct a regular grid
and solve the Poisson equation by some classical finite difference method and then
interpolate the results of pressure back to the original particle distribution. However,
this will give smearing effects and is possibly of high computational effort
especially if geometries become complex.

Therefore, we use a local iteration approach on the basis of the least squares
approximation, where the Poisson equation is forced to strictly satisfy. The main
advantage is that this procedure can be applied directly to the given particle
distribution. This method is stable and gives accurate results for all boundary value
problems of the Poisson equation, see (Tiwari et al. 2001) for details.

In the beginning of this section, we have presented the least squares method to
approximate derivatives of a function at an arbitrary point from its neighbor values.
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Now we have a slightly different situation. Based on the function values of the
neighbor particles, we would like to compute an approximate function value under
the condition that some determined value of the approximate Laplacien is fulfilled.
The pressure values at the new particle positions are not yet known. Therefore, the
least squares approach cannot be applied directly as described in the previous
subsection. Hence, we prescribe an initial guess ( )0p  for the pressure p . Now, we
consider the problem of determining p  at an arbitrary particle position xr  from its
neighbor points nixi ,,1, L

r
= . As in the previous section, we again consider a Taylor

expansion of p  about some point xr
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for L,2 ,1 ,0=j , where ( ) ( )ixp r0  are the given initial discrete particle values. We
require that the Poisson equation (12) be satisfied at xr . Hence, we have to add the
following equation to the set of n  equations in (13)

( ) ( ) ( ) ( ) ( ) ( )xpxpxp
t
v jjj rrr
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If xr  is a particle of some solid wall or inflow boundary, we also have to enforce
the Neumann boundary condition to strictly satisfy by adding the equation

( ) ( ) ( ) ( ) ( ) ( ) z
j

y
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x
j nxpnxpnxp rrr 1

3
1

2
1

10 +++ ++=

to the given system of 1+n  equations. Here, 
zyx nnn ,,  are the respective

components of the unit normal vector nr .

If the particle belongs to a free surface or outflow boundary, we have the
Dirichlet condition satisfy strictly by adding the equation

( ) ( ) ( )xpxp j rr 1+
Γ = .

Here, ( )xp r
Γ

 is a user given boundary value for the pressure. Summing up, for
boundary particles, we have a total of 2+n  equations for 10 unknowns. In general,
the number of neighbors is greater than 10.

The coefficients we obtain by minimizing the residuals ie  are
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for L,2 ,1 ,0=j  at a particular location xr . For example, the functional to be
minimized for a boundary particle with Neumann boundary condition reads as
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Similarly to (11), the minimization of J  is given by
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where the matrices and the vectors differ slightly from (11) and are given by
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The scheme (13) is clearly an iterative process. The iteration is stopped if the
local error satisfies
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Finally, the solution is defined by ( ) ( ) ( )i
j

i xpxp rr 1: +=  as j  tends to infinity. The
parameter ε  is a very small positive constant and can differ according to the size of
h . The convergence rate is faster if h  is taken larger. Therefore, multigrid
approaches can indeed be useful in order to reduce the computational effort.

Of course, it is necessary to prescribe the initial value of the pressure at time
0=t . For the pressure iteration, the initial guess of the pressure for time level 1+n

is taken as the pressure from time level n .

4.2. Approximation of derivatives of velocities on the free surface

For free surface particles we are required to include the boundary conditions (4)
and (5) into the approximation of spatial derivatives in (7). For the sake of simplicity
we consider the case of two spatial dimensions. The boundary conditions (4) and (5)
can be explicitly written as
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Here, vu,  denote the respective components of the velocity vector vr  and 
yx nn ,

denote the components of the unit normal vector and the tangent vector is defined by
( )xy nnt ,−=

r .

The incorporation of (14) and (15) into the approximation of derivatives of
velocities on the free surface is not straightforward. (14) and (15) both contain the
first derivatives of both u  and v . On the other hand, for example, the derivatives of
u  are obtained by Taylor's expansion, which contains only the derivatives of u  but
not of v . Therefore, we have to compute derivatives of u  and v  together. The
method is again an extension of the occurring least squares matrix. Suppose that we
want to approximate the derivatives of u  and v  on the free surface particle located
at ( )yx,  from its neighbor values. Let ( ) ( )( )yxvuvu ,,, = , ( ) ( )( )iii yxvuvu ,,, = ,

xxdx ii −= , yydy ii −=  for ni ,,1L= . Consider Taylor's expansion of u  and v
around ( )yx,
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udx
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udydx
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∂
∂

+
∂∂

∂
+

∂
∂ 2

2

22
2

2

2

2
1

2
1       (16)

and

+
∂
∂

+
∂
∂

+= iii dy
y
vdx

x
vvv

  
2
1

2
1       2

2

22
2

2

2

viiiii edy
y
vdydx

yx
vdx

x
v

+
∂
∂

+
∂∂

∂
+

∂
∂ (17)

As in the previous cases, we can rewrite equations (16) and (17) in matrix form
as

baMe
rrr

−= ,

where













































=

22

2
111

2
111

22

2
111

2
111

2
1

2
100000

..........

..........

..........
2
1

2
100000

00000
2
1

2
1

..........

..........

..........

00000
2
1

2
1

nnnnnn

nnnnnn

dydydxdxdydx

dydydxdxdydx

dydydxdxdydx

dydydxdxdydx

M

 (18)

[ ]tyyxyxxyxyyxyxxyx vvvvvuuuuua ,,,,,,,,,=
r and

[ ]tnn vvvvuuuub −−−−= ,,,,, 11 LL
r

.

The above system has n2  equations with 10 unknowns. The minimization of the
error gives the derivatives of both velocity components together. However, one has
to invert a 10-by-10 matrix instead of a 5-by-5 matrix. Therefore, we use this larger
system only for the few free surface particles. For the incorporation of the boundary
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conditions (14) and (15), we have to add these equations to the system (16), (17),
where the matrix  (18) is enhanced by two lines in the sense

( ) ( ) 00020002
0002200022

2222

22

yxxyxyyx

yyxyxx

nnnnnnnn
nnnnnn

−−
µµµµ

and the right hand side vector b
r

 is given by

[ ]tnn ppvvvvuuuub 0,,,,,, 011 σκ+−−−−−= LL
r

.

The minimization process is the same as above.

4.3. Approximation of the local curvature on free surfaces

Boundary condition (4) requires the knowledge of the curvature of the free
surface. In this section, we describe the approximation of the curvature in the two
dimensional case. We approximate a circle of radius R  with the center ( )cc yx ,
running trough the free surface particle located at ( )yx,  such that it fits, locally, all
the neighbor-surface-points in a least squares sense. The curvature κ  and the unit
normal vector on free surface at ( )yx,  are given by

R
1

=κ ,

( ) ( )κκ cycx yynxnn −=−=   , .

If the center of the circle lies outside of the fluid considered, the sign of
curvature is taken negative.

A circle is represented by a general second order equation

022 =++++ FEyDxyx ,

where FED ,,  are to be determined. The radius and the center of the circle
running through ( )yx,  is given by

FEDREyDx cc 4
2
1,

2
,

2
22 −+=−=

−
= , ( )FED 422 f+

Now, we have to determine the coefficients FED ,,  at every free surface particle
( )yx,  from its free surface neighbor particles ( ) niyx ii ,,1 ,, L= . Here ( )yx,  is one of
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the ( )ii yx , . In general, there are more than three neighbor points, therefore these
coefficients are approximated by the weighted least squares method, as described
above. In order to avoid the least squares approximation, one can choose two nearest
neighbors (one left and one right) of ( )yx,  such that the circle can be fitted more
accurately. Singularities may occur, if all free surface particles lie on the same
straight line. In this case the curvature is considered to be zero.

5. Determination of the free surface particles

In this section we would like to give a brief description of the strategy how to
indicate particles belonging to a free surface. We would like to remind the reader,
that these particles are not known a priori, however it is important to have a very
accurate selection of them, otherwise the whole numerical procedure and application
of boundary conditions is likely to fail. For the determination of the free surface
particles, we come up with a definition. We say that a particle at the position 

ixr

belongs to some free surface, if we can place a sphere in the neighborhood of the
particle such that

(i) 
ixr  belongs to the surface of the sphere (i.e. it is not the center)

(ii) the radius of the sphere is hrS α=  where h  is the smoothing length and α  is a
constant, preferably in the range [ ]0.1,7.0∈α
(iii) no other particle lies inside of the sphere

This definition is rather theoretical, however it makes sense. If a particle is really
at the free surface, then there will be indeed such a sphere, because one half-space is
more or less empty for surface particles. An interior particle, however, should not
find such a sphere, or, in other words, if it would find a sphere meeting the above
conditions, then this would mean there is a big hole in the interior of the flow
domain, and this is not acceptable from the point of view of computational accuracy.
Consequently, this means that interior holes have to be stuffed with particles before
their radius tends to reach the magnitude of 

Sr .

Obeying these rules, we have a unique description of particles at the free surface.
More problematic is the implementation of the whole idea. To search for appropriate
holes for one particle (for instance for the particle at position 

ixr ), it takes about
225M  floating point operations, where M  is the number of relevant neighbor

particles related to the position 
ixr . However, M  is usually in the range of

[ ]50,20∈M  for 2D-applications and [ ]90,40∈M  for 3D-applications, depending on
the particle configuration. Hence, the effort of searching surface particles is huge
and can take 10 percent of the over-all-computation-time. The idea to reduce that
effort is to
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(i) consider only those particles as candidates for being at the free surface at time
level nt , if they were in the neighborhood of a free surface particle at time level 1−nt
(this reduces the number of particles to be checked)

(ii) do the search for the free surface particles not for each time step.

Both methods mentioned above have shown excellent applicability.

6. Numerical Tests

6.1. Breaking dam problem

The breaking dam problem is a very popular and simple test case, which helps to
validate numerical schemes for the simulation of free surface flows. It consists of a
simple initial configurations and simple initial and boundary conditions. In (Martin
et al. 1952) the experimental results are reported and several authors have reported
their numerical results (Hansbo 92, Hirt et al. 1981, Kelecy et al. 1997, Maronnier
et al. 1999, Monaghan 94).

Consider a rectangular column of water with a width of ma 1.0=  and a height of
m2.0 . The lines 0,0 == yx , and 6.0=x  consist of the solid wall. In the simulation,

the upper and the right boundary of the water columns are considered as the free
surface boundary. Initially, 1136 particles are distributed randomly. The size of the
smoothing length is 01.0=h . The gravity is 2/81.9 smg =  and acts downwards. The
initial velocity is set to zero. The initial pressure 0p  is also considered to be zero.
The air pressure is assumed to be zero and surface tension forces are neglected.
When the right wall (dam) is removed, the water column collapses under the
influence of the gravity. The density and the viscosity of the fluid are

)/(0004.0,/1 3 mskgmkg == µρ . No slip boundary condition is used on the solid
walls. The particles, plotted successively in time, are shown in Figure 1

 

Figure 1. Particle positions at successive times
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In Figure 2 the position of the leading fluid front versus time is compared with
experimental results (Martin et al. 1952). The figure shows a good agreement
between the numerical and experimental results.

Figure 2. Dimensionless front position 
a

x  versus dimensionless time

a
g
t

2

6.2. Laplace Law

It is well known that a drop of arbitrary shape becomes spherical due to the
surface tension forces on the free surface boundary. In the equilibrium state a bubble
should satisfy the Laplace's law

.σκ=− gl pp

Here, 
lp  is the pressure inside of the liquid drop and 

gp  is the background
pressure, which is considered to be zero. In the following, we have considered three
types of drops, the exact circular drop, the octagonal drop and the square shaped
drop. In all cases we consider the fluid parameters 3/1 mkg=ρ , )(1.0 mskg=µ ,

mdynes /1=σ . The initial pressure, velocity and the body force are set to zero in all
cases. The drop pressure is considered as the average pressure of all particles.
Hence, in the equilibrium, the following relation must hold

.σκ=lp

(a) Exact circular drop: We consider the exact circle of radius 1 on the free
surface and we generate particles inside as shown in Figure 3. The particles are
placed in the distance of 1/10. In this case we obtain a curvature of 1 along the free
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surface boundary. The initial pressure of the drop is considered to be zero. After
time st 002.0=  the pressure reaches 1. The maximum velocity is 2.9952e-7.

Figure 3. Exact circular drop

(b) Octagonal drop: Here, we approximate a circle by an octagon. In this case
there are 8 corner points, where the curvatures naturally are higher. As many authors
(Lafaurie et al. 1994,Ginzburg et al. 2001) reported the ``spurious'' or ``anomalous''
currents around the free surface. In practice we always obtain a n -gon for finer
grids. Hence, the large curvatures on the corners of the free surface boundary
produce such currents as shown in Figure 4. The drop reaches equilibrium and
becomes circular in the steady state, see Figure 5. In the steady state, the maximum
velocity is equal to 3.88069e-4 and the drop pressure is equal to 1.06943992. Figure
6 shows that the relation between surface curvature and drop pressure justifies the
Laplace law.

(c) Square shaped drop: As a final test of the Laplace Law, we consider a square
shaped drop. In this case there are four corners representing naturally large
curvature. The value of the curvatures on the other free surface particles is zero. In
Figure 7, we have plotted the time evolution of the drop. After short time, it shows
some oscillating behavior but finally it reaches the state of equilibrium. For larger
viscosity, the drop reaches equilibrium without oscillation. In the equilibrium state
the maximum velocity is equal to 1.47952134e-3 and the pressure is equal to
1.77552119. Hence, the value of the pressure and the curvature of the drop in
equilibrium justify the Laplace law (see Figure 8).

Figure 4. Velocity profile of octagonal drop at time st 001.0=  (left), st 301.0=
(middle) and st 001.5=  (right)}
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Figure 5. Positions of particles octagonal drop at time st 0.0=  (left), st 301.0=
(middle) and st 001.5=  (right)

Figure 6. The curvature on free surface of the octagonal drop at st 001.5=

Figure 7. Square drop at time st 001.0= (left), st 301.0=  (middle) and st 001.5=
(right)
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Figure 8. The curvature on free surface of the square drop at t = 5.001s

6.3. Drop Collisions

                              

Figure 9. Head on collision at time st 001.0= , st 101.0= , st 201.0= , st 301.0= ,
st 001.3=  and st 001.5=  (from left to right)

We consider two drops of the same size moving with the same magnitude of
velocities in opposite directions. The magnitude of the initial velocity is sm /4 . The
body force of the drops is considered to be zero. The radii of the drops equal to m1
and the initial spacing of the particles is 1/10. The density and viscosity are

3/1 mkg=ρ  and )(1 mskg=µ . Hence the Reynolds number is 16/Re == µρUD ,
where smU /8=  is the relative velocity, 2=D  is the diameter of drop. The surface
tension coefficient is set to mdynes /1=σ , such that the Weber number becomes

128/2 == σρDUWe . The numerical results are very close to the experimental and
other numerical results, presented in (Ash et al. 1990, Kothe et al. 1992,Lafaurie
et al. 1994).

Two types of collisions are considered. The first one is the head on collision. In
the parameters mentioned above both drops are merging into a single drop after
collision. As we see in Figure 9, the drop becomes elliptical at time st 301.0= . Due
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to the higher surface tension on the top and bottom of the drop, it starts to shrink the
top and bottom and stretching the left and right side. The results are comparable
with those presented in (Ash et al. 1990). Finally, it reaches the equilibrium state
and the shape remains unchanged. We simply wanted to test whether the presented
method works for simulations of free surface flows and therefore have not tested the
collisions for higher surface tension force and larger Reynolds number.

                     

                     

Figure 10. Non-central collision with impact parameter 0.25 collision at time
st 001.0= , st 101.0= , st 201.0= , st 301.0= , st 701.0= , st 251.1= , st 001.3=  and
st 001.5=  (from left to right and top to bottom)

As a second example of drop collision we consider the non-central collision with
impact parameter 25.0=B . Other input parameters are same as in the case of head
on collision. In contrast to the first case, the drop is rotating after collision.
Shrinking and stretching of drop due to the effect of surface tension is similar to the
head on collision. The time evolution of the drop is presented in Figure 10.

7. Conclusion

A meshfree method is used to simulate free surface flows. The incompressible
Navier-Stokes equations are used as a mathematical model. The numerical
experiments are performed with and without surface tension force on free surface.
The spatial derivatives of the Navier-Stokes equations are approximated by the
weighted least squares method. The pressure Poisson equation is solved by the least
squares method. Free surface boundary conditions can be directly included in the
least squares approximation. Locations of free surface particles are determined by a
very simple approach. Close agreements between numerical and experimental
results show the robustness of the scheme. Future work will be the extension of the
method in 3D.
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