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ABSTRACT. A diffuse approximation method for the solution of time-dependent Navier-Stokes
equations is presented. Different preconditioned iterative methods for solving the pressure
correction equation are tested. Sample results are presented for the window cavity problem
and the fluid flow around a circular cylinder.
RÉSUMÉ. On présente une méthode de résolution des équations de Navier-Stokes
instationnaires par approximation diffuse. Une comparaison de différentes méthodes
itératives de résolution de l’équation de correction de pression est effectuée. Quelques
résultats obtenus dans les cas de la convection naturelle dans une cavité différentiellement
chauffée et de l’écoulement à l’aval d’un obstacle cylindrique sont donnés.
KEYWORDS: Meshless method, diffuse approximation, unsteady fluid flow.
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1. Introduction

In spite of the great success of the finite element method as an effective
numerical method for the solution of partial differential equations on complex
domains, there has been a growing interest in meshless methods over the last years
[ALU 01, BEL 94, CHA 01, LIU 01, OSH 01, ZHA 00]. For our part, we have
developed a diffuse approximation based collocation method for solving
incompressible steady fluid flows [SAD 95, SAD 96]. One of the primary issues in
these problems, whether a regular or unstructured type grid is used, is how to handle
the pressure-velocity coupling. This is an important issue since an explicit equation
for the pressure does not exist. The pressure-velocity coupling problem can be
avoided by using a streamfunction-vorticity approach. In this case, we have shown
that the diffuse approximation method is as accurate as the well known control-
volume based finite element method [PRA 98]. However streamfunction-vorticity
methods are not readily extended to three dimensions. Therefore, the method has
been extended to the primitive variables formulation of the Navier-Stokes equations
by means of a projection algorithm [COU 98]. The Poisson equation that arises from
the pressure correction process consumes however a large portion of the
computational time.

Since the memory resource in many cases is limited for large-scale problems,
direct methods are seldom used and iterative schemes are preferred. The conjugate
gradient algorithm is a very powerful method for solving symetric positive definite
sparse linear systems, especially when it is used with a preconditioner. In this
algorithm, the residual vector is mimized in each iteration step with respect to some
suitable norm. During the process, the residual vectors are constructed in such a way
that they are orthogonal to each other with regard to the Euclidian inner product.
Additionally, because of the symmetry of the matrix, the residual vectors fulfill a
three-term recursion, which is a characteristic of the algorithm. However, this
algorithm fails in general for nonsymetric or indefinite linear systems. Several
attempts have then been made to come up with a generalization of this method for
the nonsymmetric case. One can for example maintain the minimization property by
choosing the direction vector as a linear combination of the residual vector and k
previous direction vectors. This approach has been used in methods like Orthomin,
Orthodir and other generalized conjugate gradient schemes. The generalized
minimal residual type algorithms (GMRES, FGMRES, DQGMRES) are
theoretically equivalent and more robust approaches. One can also maintain the
three-term recursion property. This is done by the biconjugate gradient type
algorithms (BCG, BICGSTAB, DBCG).

The aim of the present article is to discuss the application of the diffuse
approximation based collocation method to unsteady fluid flows. In the following
sections, the general method of solution is described. Some numerical results
obtained by using different preconditioned iterative methods are then given. Two
test problems are finally presented. The first one is the laminar natural convection in
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a differentially heated square cavity. The second test case is the oscillatory flow past
a circular cylinder.

All numerical simulations have been conducted on a PC computer with 256MB
of main memory.

2. The diffuse approximation based collocation method

Description of the method

Let Φ : Rn → R be a scalar field whose values Φi are known at the points xi of a
given set of N nodes in the studied domain D∈Rn. The diffuse approximation gives
estimates of Φ and its derivatives up to the order k at any point x∈D. The Taylor
expansion of Φ at x is estimated by a weighted least squares method which uses
only the values of Φ at some points xi situated in the vicinity of x.

It can thus be written:

)().( T xxxp α−= i
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where p(xi-x) is a line vector of polynomial basis functions and )(xα a vector of
coefficients which are determined by minimizing the quantity:

( ) [ ]2T

1
)().(),( xxxpxxx αα −−−= ∑

=
ii

N

i
iI Φω (2)

in which ω is a weight-function of compact support, equal to unity at this point,
decreasing when the distance to the node increases and zero outside a given domain
of influence (a more precise description of ω will be done next).

Minimization of equation (2) then gives:
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In fact A(x) is the sum of only n’(x) matrix of rank 1, n’(x) being the number of
nodes influencing x. By inverting system (3), one obtains the components of α
which are the derivatives of Φ at x in terms of the neighboring nodal values Φi. In
this work, the Taylor expansion is truncated at order 2. The polynomial vector used
is
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Then, the following system is obtained:
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The square matrix A(x) is not singular as long as the number n’(x) of the
connected nodes at a given point is at least equal to the size of α and are not
colinear or cocircular [DEM 84, BRE 02].

In our studies, several weight-functions were tried and it was found that the
following Gaussian window (figure 1):
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behaves rather well. The distance of influence σ is updated at each point in order to
use at least 9 neighbors in the approximation.

The previous approximation is then used in a point collocation method to solve
partial derivatives equations. At each point of the discretization, the derivatives
appearing in the equation to be solved are replaced by their diffuse approximation
thus leading to an algebraic system that is solved after the introduction of the
Dirichlet boundary conditions. The Neumann boundary conditions on the other
hand are replaced by their diffuse approximation and then introduced in the
algebraic system as described in [SAD 95, SAD 00, SOP 02].

3. The pressure correction equation

In the primitive variable formulation, the incompressible Navier-Stokes
equations (for natural convection problems) can be written as follows [SAD 00]:

θPr
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gvvvv

+∇−∇=∇⋅+
∂
∂ (10)

0=⋅∇ v (11)

θθθ 2

Ra
1

∇=∇+
∂
∂ v

t
. (12)

where Pr and Ra are the Prandtl and the Rayleigh numbers respectively, and g is
the gravitational acceleration.

Although the pressure gradient term appears in the momentum equation, there is
no apparent equation to solve for the pressure. Therefore, special techniques are
required. The SIMPLE algorithm [PAT 80] and its various versions and the
projection algorithm [COM 82] have been generally used.

These methods are essentially iterative guess-and-correct procedures. They
consist of solving the momentum equation by using a guessed pressure field to
obtain an intermediate velocity field. The pressure correction equation, which is
obtained by using the continuity equation, is then solved using the intermediate
velocity. The process is continued until the convergence test is satisfied.

In this work, we used an equal order projection algorithm, which is described
below.
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3.1. Projection algorithm

The basic methodology of our projection algorithm in the case of bidimensional
natural convection can be summarized as follows:

1. Initialization of the fields (u,v,p,θ)i.

2. Resolution of momentum equations for estimated velocities u* and v*.
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3. Resolution of pressure correction equation
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where the boundary condition is:

0=
∂
′∂

n
p

on a wall.

4. Calculation of the correcting component of the velocities.
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6. Resolution of energy equation.
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7. Check for convergence. If the convergence criterion is not respected, we
jump to the second step.

3.2. Discretization of the pressure correction equation

During the projection algorithm process, the pressure correction equation (15) is
written in its matrix form as follows:

Mp’=b (19)

where p’  and b are not to be confused with the previous definitions. The matrix
M is built line by line using equation (8). If la  is the lth line of the matrix A(x)-1,
and k is the number of the line corresponding to the node xk then we have :
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where u* and v* are the estimated values of the velocity.

The gaussian weight function used in this work is shown on figure 1. Let us
consider now, the situation depicted on figure 2 where the node Mi is localized on a
boundary, and where Mk is a neighboring node of Mi. During the discretization
process at Mk the node Mi is not involved whereas the implementation of the
Neumann type boundary condition at the node Mi involves the node Mk. This leads
to an asymmetrical matrix, even if the non-symmetric element number is very low
compared to the total number of elements. This leads to a slow convergence of the
iterative algorithm.
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4. Performance evaluation of iterative methods

One of the important properties of CG-like methods is the so-called super linear
convergence behaviour. The convergence rate improves as the iteration proceeds. In
many cases, the initial convergence can be very irregular and slow. Therefore, the
high asymptotic convergence rate may not be so desirable if the early stage
convergence is slow or unstable. This motivates this study to investigate the early
stage convergence behaviour of various CG-like methods when applied to find the
numerical solution of the pressure correction system that arises in our projection
algorithm.

The following methods were tested with the pressure correction equation matrix
obtained in the differentially heated square cavity problem:

– Bi-Conjugate Gradient (BCG)
– Bi-Conjugate Gradient with partial Pivoting (DBCG)
– Conjugate Gradient for Normal Residual Equation (CGNR)
– Bi-Conjugate Gradient Stabilized (BCGSTAB)
– Transpose-Free Quasi-Minimum Residual method (TFQMR)
– Generalized Minimum Residual (GMRES)
– Flexible version of GMRES (FGMRES)
– Direct Quasi-GMRES (DQGMRES)
– Full Orthogonal Method (FOM)

and the results are given in the following section.

A description of these methods can be found elsewhere [SAA 96]. It is well
known that the use of a preconditioner improves considerably the convergence
process. One of the most used technique is the incomplete LU factorization with
different fill levels ILU(k). We can also mention the modified incomplete LU
factorization, MILU(k). In this work, we have chosen the ILUT(k) preconditioner
which was implemented as suggested by Saad [SAA 96]. Two parameters
corresponding to the number of elements kept on each line of the matrix (excepting
the diagonal values), and the value under which elements are ignored, are
respectively set to (lfil=15) and (droptol=10-4).

4.1. Problem description

The test problem originates from the simulation of laminar natural convection in
a differentially heated square cavity (figure 3a). In this problem, the fluid reaches a
steady state flow for a wide range of Rayleigh number (up to 108). At a critical
value around Ra=1.8.108, the system undergoes a first bifurcation to a pseudo
periodic solution. We have thus chosen to test the different algorithms at a Rayleigh
number of 108 whose solution is depicted on figure 3b.
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(a) (b)

Figure 3. (a) Differentially heated square cavity   (b) Streamlines for Ra=108

The domain is dicretized with different irregular grids (from 41×41 up to
201×201). In the x,y plane, the non uniform grids obeyed the law:
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where the variables xr, yr change within [0,1] and are uniformly distributed. The
choice of a finer grid near the walls is motivated by the need to improve the solution
in the boundary layers. The time step is fixed to 2.10-2 for all the simulations.

4.2. Results

In this section, we present some results obtained by using the pressure matrix
equation at the first iteration of the first time step. The maximum number of
iterations has been fixed to 1000 for all the grids used except for the 201×201 grid
for which a number of 3000 has been used. If the maximum number of iterations is
reached, the iterative solver stops and returns the appropriate warning. The vector b
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used in equation (19) is set in order to obtain a unity vector solution (so the error
can be easily estimated).

The convergence criterion is defined as follow:

atolrtoli +−⋅≤− bAxbAx 1 (23)

where rtol, atol are two parameters that are fixed for each case, and x1, xi are
approached solutions at the first and at the ith iteration. Five different cases are
considered during this study (table1).

The iteration number necessary to reach the convergence criterion and the
residual norm ( )bAx −  are given in table 2 for each case.

Table 1. Description of test cases

Ra Grid rtol atol
Case 1 108 81×81 10-10 0
Case 2 108 41×41 10-10 0
Case 3 108 41×41 0 10-6

Case 4 108 201×201 10-10 0
Case 5 108 201×201 0 10-6

Table 2. Convergence results

Case 1 Case 2
Method Iteration

number
Residual
norm

Iteration
number

Residual
norm

Bcg 68 1.61.10-7 34 1.32.10-7

Dbcg 69 1.61.10-7 35 1.32.10-7

- - 810 4.6.10-7

47 1.29.10-6 22 3.4.10-7

Tfqmr 57 4.42.10-7 26 1.18.10-7

Gmres 107 1.81.10-6 18 5.62.10-8

Fgmres 107 1.81.10-6 18 5.62.10-8

Dqgmres 74 1.7.10-6 18 5.62.10-8

Fom 92 1.35.10-6 18 5.62.10-8

Case 3 Case 4 Case 5
Méthod Iteration

number
Residual

norm
Iteration
number

Residual
norm

Iteration
number

Residual
norm

Bcg 32 1.29.10-7 178 1.16.10-5 186 4.85.10-7

Dbcg 33 1.19.10-7 201 1.19.10-5 231 2.76.10-7

Cgnr 799 8.15.10-7 - - - -
Bcgstab 21 3.4.10-7 139 5.1.10-6 143 6.37.10-7

Tfqmr 25 1.25.10-7 205 1.11.10-6 207 5.32.10-7
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Gmres 16 7.01.10-7 1056 1.46.10-5 1245 9.13.10-7

Fgmres "  " "  " 1000 1.46.10-5 1207 9.2.10-7

Dqgmres "  " "  " 876 1.42.10-5 929 8.93.10-7

Fom "  " 7.04.10-7 1018 1.31.10-5 1255 9.28.10-7

It can be seen that the CGNR algorithm is very slow whenever it converges,
while BCG and DBCG algorithms have similar comportment for all the treated
cases. Concerning GMRES type methods and FOM, one can see that they are faster
for low order systems (41×41 grid). For the 81×81 and the 201×201 grids,
BCGSTAB and TFQMR appear to be more efficient (BCGSTAB being the fastest).

Although it is not among the aims of the present article to study the problem of
transition to non steady flow for the cavity problem, it is useful to point out that an
unsteady solution has been found at Ra=2.108 using a 201×201 mesh. We found a
fundamental frequency of 0.0518, which is in close agreement with the findings
(f=0.0522) of Janssen et al. [JAN 93]. The time evolution of the velocity at
(x=0.5;y=0.5) is finally depicted on figure 4.
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Figure 4. Time evolution of the horizontal velocity at point (x=0.5, y=0.5)

5. Flow around a circular cylinder

The fluid flow past a circular cylinder is the second case considered. The
problem description and boundary conditions are shown on figure 5.
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The flow has a steady state solution composed of two contrarotative vortexes for
Reynolds numbers up to Re≈35. Above this critical Reynolds number, the two cells
start to oscillate and lengthen successively, making a fluid detachment at a

frequency f related the Strouhal number 




 =

∞U
DfSt . .

The flow has been simulated for a Reynolds number Re=65 with a 30 000 nodes
irregular grid and an adimensional time step ∆τ=0.02. The calculated Strouhal
number St=0.155 compares very well with the results of Saiki et al. [SAI 96] who
found St=0.152 with a 64 000 nodes grid and a virtual boundary method. The
streamlines over a period are shown on figure 6.

Figure 5. Description of the cylinder problem

6. Conclusion

A diffuse approximation method for solving unsteady incompressible fluid flow
problems has been presented. It was demonstrated that preconditioned BICGSTAB
is a suitable method for the solution of the pressure correction equation. As shown
by the comparison with existing numerical solutions, results are very accurate in
both space and time. We have not discussed here the problem of essential boundary
conditions which remains still an open question. Further work is still needed in that
direction.
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