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ABSTRACT. In this paper, a shell finite element is proposed for viscoelastically damped
sandwich structures, in which a thin viscoelastic layer is sandwiched between identical
elastic layers. The sandwich finite element is obtained by assembling three elements
throughout the thickness of the sandwich structure. Using specific assumptions and
displacement continuity at the interfaces, one reduces to eight the number of degrees of
freedom per node that are the longitudinal displacements of the elastic layers, the deflection
and three rotations. The finite element computations have been compared with known
analytical, numerical and experimental data concerning the vibrations of sandwich beams,
plates and shells.

RÉSUMÉ. Dans cet article, un élément fini de coque est proposé pour les structures sandwich
viscoélastiques, constituées d’une fine couche viscoélastique intercalée entre deux parements
élastiques. L’élément fini sandwich est obtenu par l’assemblage de trois éléments suivant
l’épaisseur de la structure sandwich. L’utilisation des hypothèses spécifiques et les
conditions de continuité du déplacement aux interfaces permettent de réduire à huit le
nombre de degrés de liberté par nœuds : les déplacements dans le plan des parements
élastiques, la flèche et trois rotations. Les résultats des simulations numériques pour des
vibrations de poutres, plaques et coques sandwich ont été comparés à des solutions
analytiques, numériques et à des données expérimentales.
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1. Introduction

Typical viscoelastically damped structures are sandwich structures in which a
thin viscoelastic layer is sandwiched between identical elastic layers (Fig. 1). This
kind of structures is used in many areas to reduce vibrations and noise. Here, the
damping is introduced by an important transverse shear in the viscoelastic layer. It is
due to the difference between in-plane displacements of the elastic layers and also to
the low stiffness of the central layer. The numerical simulation of these structures
requires first the use of a thin shell model to obtain a reasonable computational cost,
second a proper account of the transverse shear in the viscoelastic layer.
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Figure 1. Sandwich structure with a viscoelastic middle layer

Initially, analytical methods were developed to yield approximate loss factors
and natural frequencies of sandwich beams or plates with simple geometries and
boundary conditions [KER 59], [DIT 67], [MEA 69], [YAN 72], [ORA 74],
[RAO 74], [SAD 84], [CUP 95], [HE 96], [HU 00]. In practice, it is necessary to
design sandwich structures with a complex geometry and generic boundary
conditions by using finite element simulations. Finite elements are still being used
for analysis of damped sandwich structures [BAB 98], [LU 79], [JOH 81],
[SON 81], [ALA 84], [MA 92], [RIK 93], [RAM 94], [SAI 99] with various
numerical algorithms.

A simple idea presented in [SON 81], [JOH 81], [RIK 93] consists in assembling
three elements throughout the thickness of the sandwich structure. The most
relevant choice is to model the elastic layers by shell element and the core by a three
dimensional one. These shell/volume/shell elements have permitted to predict
reasonable approximations of the damping of the structure. With account of the
continuity of the displacement, this yields sandwich elements involving at least
twelve degrees of freedom per node. This number can be reduced to ten in the case
of flat plate, because the in-plane rotation can be neglected. Another difficulty in
such approaches is the compatibility of the approximation of the displacement field
between core and faces. Specific finite elements have been developed for shells of
revolution [ALA 84], for conical shells [RAM 94] or for beams [BAB 98],
[SAI 99].
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A plate/volume/plate finite element has been presented by Ma and He [MA 92].
They account for the assumption of common transverse displacement and rotations
in the faces as in most analytical studies. Furthermore, they limit their analysis to the
bending motions of plates. All these hypotheses permit them to reduce to five the
number of degrees of freedom per nodes : the transverse displacement, two rotations
and two additional rotations in the core.

Generally, the stiffness matrix of damped sandwich structures depends on the
vibration frequency. Then, the natural vibration study of sandwich structures
introduces a non-linear complex eigenvalues problem. This problem can be solved
by various numerical methods: the complex eigenvalues method, the modal strain
energy method (MSEM), the direct frequency response method, the asymptotic
approach, the order-reduction-iteration technique and the asymptotic numerical
method (ANM). Only the two last methods are able to solve directly and exactly the
non-linear complex eigenvalues problem. A review of these numerical methods can
be found in reference [DAY 01].

In this paper, we present a class of shell/volume/shell finite element assemblies.
The number of degrees of freedom is reduced by assuming that the transverse
displacement and the rotations are the same in the elastic layers. Unlike in [MA 92],
this element can be applied to shell structures with any geometry. The approach is
validated by comparison with analytical, numerical and experimental results.

2. Finite element formulation

In this section a finite element for sandwich shells is presented. This element is
the assembly of one volume and two plate elements throughout the thickness of the
sandwich structure. The shell curvature is accounted for by the usual plane facets
technique [BAT 90].

2.1. Basic hypotheses for the displacements

In order to evaluate accurately damping in the sandwich structures, one has to
take into account the shear deformation in the viscoelastic layer. This shear results
from the difference between the in-plane displacements of the elastic layers. So, we
consider the following assumptions, which were also used in many studies
[CUP 95], [MA 92], [RAO 78]:

– All points on a normal to the plate have the same transverse displacement
w(x,y,t)

– No slip occurs at the interfaces between central and elastic layers.

– All points of the elastic layers on a normal have the same rotations.
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– The core material is homogeneous, isotropic and viscoelastic. So, the Young’s
modulus is complex and depends on the vibration frequency. As in most analyses,
the Poisson’s ratio is assumed constant.

– The elastic layers have the same thickness, which is denoted by hl.

Using the classical plate theory, one can write the displacement in the elastic
layers as follows:
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where z0 = (hl+hc) / 2 , hc is the thickness of the core. us (x, y, t), vs(x, y, t), ui(x,
y, t), vi(x, y, t) are the components of the mid-plane displacements of the faces. Rx

and Ry are the rotations of the normal to the mid-planes of the face layers.

Like in reference [HE 96], we suppose that the displacement of the central layer
can be written in the following form:
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Considering the continuity conditions of displacements at the interfaces between
the central and the face layers, the displacement in the viscoelastic layer can be
rewritten in the following form:
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This reduces the number of independent generalized displacements to seven,
namely us, vs, ui,. vi, w, Rx and Ry.

Many plate elements can be applied to interpolate the displacement in the elastic
layers [BAT 90]. Generally, one can write the displacement of the sandwich volume
element in the following form:



Sandwich finite element     43

^ ` ^ ` ^ ` ^ ` ^ ` ^ `

^ ` ^ `

^ `
°
°
°

¯

°°
°

®

­

 
¿
¾
½

¯
®
­

 

 

   

NE1,j 
zj

R,
yj

R,
jx

R,
j

w,i
j

v,s
j

v,i
j

u,s
j

uq

WV,U,U
~

q]N[U
~

  ,  q]N[U
~

  ,  q]N[U
~

te

t

ecceiiess

[5]

where NE is the number of nodes in the considered shell element. [Ns], [Nc] and [Ni]
are matrices that only depend on the shape functions of the plate finite element in
the elastic layer. When dealing with shells, a fictive rotation Rz must be introduced,
as explained in [BAT 90], to connect the rotation vector between neighbor elements.

An important point in this approach is the exact continuity between the faces and
the core. In what follows, we only discretize displacements and rotations of the
faces. The displacement field in the core will be deduced from the formula [4],
which avoids any incompatibility between the discretization in the core and faces.

2.2. Expressions of the strains

With the above formulae for the displacements and assuming that the
deformation of the elastic layers obeys classical thin plate theory, the strains in these
layers are in the following form:
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where l=s or i denotes the superior and inferior layers respectively. The strains in
the viscoelastic core can be expressed in the following form:
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As in many works, the plane stress hypothesis is assumed for the elastic layers.

Especially, the shear strains (i.e. 0l
yz

l
xz  H H ) are neglected, because this not

necessary for the considered applications. But such shear strains could be included
without any difficulty. A discussion of this point can be found in [CUP 95]. Unlike
in [CUP 95],[He 96],[MA 92], the present model takes into account all the strain
components in the viscoelastic layer, except the transverse one.

2.3. Finite element formulation for the vibrations of sandwich shells

In this section, we recall the modeling of natural vibrations of damped sandwich
structures [SON 81]. The formulation is obtained from the virtual work equation:
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where VV� HH and U are respectively the stress and strain tensors, and the generalized
displacement at a point within the body V. The mass density of the material is
denoted by U. The stress and strain tensors and the displacement U can be expressed
as harmonic time functions:

U(x,y,z,t) = u(x,y,z) eiZt
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VV(x,y,z,t) = V(x,y,z) eiZt  [9]
HH(x,y,z,t ) = H (x,y,z) eiZt

where 1i �  and Z is the vibration frequency. In the presence of damping, the
frequency Z is a complex number.

 The viscoelastic damping behavior is accounted for through the stress-strain law
of the viscoelastic layer, which can be written in the form :

{Vc }= [C c �Z�@^Hc} [10]

where the real and imaginary part of Cc(Z) characterizes respectively energy storage
and dissipative behavior of the viscoelastic material. In the elastic layers, the
classical plane stress elastic law is written in similar way. It depends on the Young’s
modulus E l and Poisson ratio Ql.

From equations [8],[9],[10] and finite element discretization, the discrete
equations for viscoelastic sandwich structures can be written in the following form:

^ ` ^0̀U ]M)(K[ 2
 Z�Z  [11]

where [K(Z)] is the complex stiffness matrix, which depends on the frequency. The
mass matrix [M] is assumed to be constant in this analysis. The complex nodal
vibration eigenmode is denoted by ^ `U .

The element stiffness and mass matrices are respectively of the form:
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where D   i or s or c. The matrices [BD] depend only on the shape functions of the
considered finite element and [CD] are the matrices obtained from the strain stress
laws. In this way, we finally obtain a class of sandwich finite element with only
eight degrees of freedom per node, that are for instance us, vs, ui,. vi, w, Rx, Ry and
Rz.
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One can note that the matrices ]K[ s
e  and ]K[ i

e  are the element stiffness matrices

of the elastic layers, while ]M[ s
e  and ]M[ i

e  are the corresponding mass matrices.

The strain-displacement matrix in the core [Bc] is easily formed from the shape
functions of the latter plate element and from equations [5] and [7]. Some terms of
this matrix depend linearly on z, so that two integration points are considered
through the core thickness. In this way, one can form a finite element for sandwich
structures from any plate element in the elastic layers. The so obtained sandwich
element is a shell/volume/shell element. But the two shells are required to be
parallel and the volume element is quite different from classical ones, because the
core matrix [Bc] is build up from shell shape functions and not from classical
volume shape functions as in [SON 81].

In this paper, the basic shell element is a three node flat triangle according to the
discrete Kirchhoff theory (DKT) [BAT 82], [BAT 90]. Curved shells are discretized
by connecting flat DKT elements what is quite usual. Often, this element is referred
as DKT18, because it includes 18 degrees of freedom [BAT 90]. When extended to
sandwich shells, this number passes to 24, to describe correctly the shear in the core.
A similar element had been introduced in [MA 92], that had 15 degrees of freedom,
but that was limited to bending motions of plates.

As said previously, there are numerical difficulties in solving equation [11],
because K(Z) is a complex matrix and depends on frequency. Several different ways
have been proposed to solve more or less exactly the nonlinear eigenvalues problem
[11]: the complex eigenvalues method [WIL 65], the modal strain energy method
(MSEM) [JOH 79],[SON 81], the direct frequency response method [SON 81], the
asymptotic approach [MA 92], [HE 96], the order-reduction-iteration technique
[CHE 99] and the asymptotic-numerical method (ANM) [DAY 01]. In this paper,
we limit ourselves to an approximated and cheap method (MSEM) and to ANM,
that solves exactly the nonlinear eigenvalues problem.

After solving equation [11], the loss factor and natural frequency are calculated
from the complex eigenvalue Z as follows:

Z2  Zn

2(1+iK)  [14]

when Zn is the natural frequency and K is the loss factor.

3. Numerical examples

In the following section, we present five numerical examples in which the
viscoelastic material is linear, homogeneous and isotropic. The stress-strain law of
the central layer is written in the following form:
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where 3I  is the identity matrix. As in most analyses, the Poisson’s ratio Xc is

assumed constant.

3.1. Sandwich beams

The present finite element procedure has been applied to the vibration analysis
of a 3-layer cantilever sandwich beam (elastic/viscoelastic/elastic). In order to assess
the accuracy of the assumptions for the displacement (Section 2.1), we have also
used a two-dimensional eight nodes quadrilateral elements (Q16) to discretize the
sandwich beam as in [DAY 01]. Because the latter element does not imply any plate
kinematic assumptions, the so obtained results can be considered as reference
solutions of the cantilever beam problem. The latter computations have been
performed with a sufficiently fine mesh (six elements through the thickness).
Several tests are presented, that mainly differ from one another by the beam
dimensions and the material properties. For these simulations, the nonlinear
eigenvalue problem is solved “exactly” by ANM [DAY 01].

3.1.1. Beam 1

The first test has been designed to analyze viscoelastic structures, in which the
modulus depends strongly on the frequency. The beam dimensions and material
properties are presented in Table 1. The chosen viscoelastic model is rather intricate
and it has been proposed in [FER 80] for fitting the stress relaxation master curve to
any experimental results. The viscoelastic material is represented by a generalized
Maxwell model that can be written in the following form:
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where the coefficients jj  and E K  of the model are obtained as described in [LAN 93]

from experimental tests on a pure polymer. Nmax is the number of Maxwell
elements. The steel company USINOR has provided these data. Note that the
relaxation experiments are performed at a given temperature and the modeling
extended to any temperature using the WLF law [FER 80]. We consider the law of
this polymer at 60°C. For this, the variation of the shear modulus with frequency is
strongly nonlinear. The corresponding curves have been presented in [DAY 01]. So,
the ANM is used to calculate the loss factor and natural frequency. In table 2, the
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numerical results are presented and compared with experimental results from an
actual sandwich beam.

Elastic layers
 Young’s modulus : El = 2.1 1011 N/m2

 Poisson’s ratio : Xl = 0.3
 Mass density : Ul = 7800 kg/m3

 Thickness : hl = 0.6 mm
Viscoelastic layer

 Elastic modulus : Ec = 27216 102 N/m2

 Poisson’s ratio : Xc = 0.44
 Mass density : Uc = 1200 kg/m3

 Thickness : hc = 0.045 mm
Whole beam

 Length L = 178 mm
 Width l = 10 mm

Table 1. Material properties and dimensions for the beam 1

Present sandwich shell
element

2D-discretisation (reference)
[DAY 01]

Experimental results

Frequency Loss factor Frequency Loss factor frequency Loss factor
30.70 3.58 10-2 30.60 3.58 10-2 34 2.75 10-2

156.57 7.54 10-1 156.27 7.56 10-1 147 5.03 10-1

382.98 7.54 10-1 382.77 7.52 10-1 357 6.68 10-1

Table 2. Natural frequencies and loss factors of the beam 1 at 60°C. The solver is
ANM

One observes that the presented shell/volume/shell element gives almost the
same results as the reference two-dimensional analysis. This validates all the
assumptions of our sandwich shell element, especially the basic formulae [4] for the
displacement in the core. Some differences exist between the two numerical
simulations and experimental results. They are mainly due to the identification of
the viscoelastic properties of the central layer. Indeed, it is not obvious that the
behavior of the pure polymer is the same as in the sandwich. The identification by
the WLF [FER 80] law is also questionable.

3.1.2. Beam 2

The second test has been studied quite extensively in [SON 81] and [JOH 81]
from theoretical and experimental points of view. The viscoelastic properties of the
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central layer are introduced by a complex modulus that is assumed to be constant.
This modulus is written in the form:

 E(Z) = Ec(1+iKc)

where Ec is the real elastic modulus and Kc is the core loss factor. The beam
dimensions and material properties are presented in Table 3.

Elastic layers
 Young’s modulus : El = 6.9 1010 N/m2

 Poisson’s ratio : Xl = 0.3
 Mass density : Ul = 2766 kg/m3

 Thickness : hl = 1.524 mm
Viscoelastic layer

 Elastic modulus : Ec = 1794 103 N/m2

 Poisson’s ratio : Xc = 0.3
 Mass density : Uc = 968.1 kg/m3

 Thickness : hc = 0.127 mm
Whole beam

 Length L = 178 mm
 Width l = 12.7 mm

Table 3. Material properties and dimensions for the beam 2

We have computed the “exact” values of the six first complex eigenfrequencies,
i.e. of the natural frequency and of the loss factor, the solver being the Asymptotic
Numerical Method [DAY 01]. As for the previous example, we have compared the
results given by our plate/volume/plate element with those obtained with a 2D-
analysis and a very fine mesh : 6 quadratic elements through the thickness and 30
along the length of the beam. The plate/volume/plate computations have been
performed with a mesh involving 40 elements along the length. As compared with
the reference 2D-analysis, our new element gives very good results for the loss
factor and a very good approximation for the natural frequencies (the difference is
less than 1% for the two first ones, less than 2% for the four other ones, see
Table 4). Thus, one sees the advantage of the present element, because one recovers
about the same results with much fewer degrees of freedom through the thickness (8
in our approach as compared with 13x3=39 degrees of freedom for six quadratic
volume elements or with 7x3=21 degrees of freedom for three volume elements).
Nevertheless, the DKT elements are not so as accurate as the quadratic volume
element because the membrane problem is poorly discretized by constant strain
triangles and the interpolation in the mass matrix is linear. To improve the
performance of the sandwich shell element, it would be interesting to replace the
DKT by a quadratic shell element : this approach will be presented elsewhere. Note
that the numerical results are also consistent with those of the literature [SON 81].
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Present sandwich shell
element

2D-discretisation results
(reference) [DAY 01]

Results from [SON 81]

Frequency Loss factor Frequency Loss factor Frequency Loss factor
65.0 8.160 10-2 64.5 8.160 10-2 64.7 8.250 10-2

300.0 7.170 10-2 297.5 7.170 10-2 298.0 7.150 10-2

753.3 4.560 10-2 745.2 4.590 10-2 748.2 4.599 10-2

1416.0 2.634 10-2 1398.7 2.640 10-2 1409.5 2.646 10-2

2306.0 1.680 10-2 2271.2 1.680 10-2 2305.0 1.680 10-2

3428.3 1.140 10-2 3363.5 1.140 10-2 3447.0 1.140 10-2

Table 4. Natural frequencies and loss factors of the beam 2 when Kc =0.3

3.1.3. About the validity of the sandwich element

The two previous examples establish that the present finite element yields good
results for a class of sandwich structures. This class is characterized by thin and soft
cores, i.e. hl/hc about 10 and El/Ec greater than 103. These orders of magnitude
correspond to metal/polymer sandwiches, that are especially designed to reduce
noise for widely distributed products.

In other areas as aerospace industry, sandwich structures are build up in view of
large bending stiffness. In these sandwiches, the core thickness is at least of the
same order as the face one. One can wonder whether the present element still works
in such cases. In this respect, we did new comparisons between our sandwich
element and the 2D element, that is considered as the reference, for two thickness
ratios hc/hl= 1 and 7 three values of the core modulus Ec = 27.216 104, 27.216 106

and 27.216 108. The Young modulus of the core is assumed to be complex and
constant with Kc=0.2. The other data are the same as for beam 1. From the results
presented in Table 5, the sandwich element remains more and less valid for hc=hl,
the error being about 2.6% for frequency. As expected, it yields more significant
errors for the thick core case. Nevertheless, the loss factor is correctly evaluated in
all tested cases. In such case, a finer description of the core stress is necessary see
for instance [GAN 96].

El/ Ec =77.16 104 El/ Ec =77.16 104 El/ Ec =77.16

f K�Kc f K�Kc f K�Kc

hc/hl=1
17.73 *
18.20 +

2.40 10-1

2.40 10-1
45.95
47.15

2.72 10-1

2.72 10-1
55.06
56.50

5.53 10-3

5.78 10-3

hc/hl=7
17.04
19.52

4.12 10-1

4.12 10-1
81.85
93.58

7.21 10-1

7.20 10-1
175.47
200.45

4.89 10-2

4.91 10-2

Table 5. First frequency and loss factor ratio of beam 1 predicted by the ANM

*  2D-discretisation results, + Present sandwich element results.
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3.2. Sandwich plate

 In this section, the present finite element analysis is applied to the vibrations of
rectangular plates . Two tests are presented, that differ from one another by the plate
dimensions, the material properties and the boundary conditions.

3.2.1. Plate 1

This example has been studied experimentally by the steel company USINOR.
The material properties are the same as for the beam 1 and the plate dimensions are
given in Table 6. In the experiment, the plate was suspended and excited by a
harmonic force at its center. The polymer was considered at 50°C. The experimental
values of the natural frequency and of the loss factor are presented in Table 7 and
compared to those obtained by the proposed finite element analysis coupling to the
ANM. Free edge boundary conditions were assumed. One can note a good
agreement between the numerical and experimental results.

Plate 1
 Length L= 300mm
 Width l = 30 mm
 Thickness of the face layer h1 = 0.4 mm
 Thickness of the core hc= 0.05 mm

Table 6. Dimensions for the plate 1

Present sandwich shell element Experimental results
Frequency(Hz) Loss factor Frequency(Hz) Loss factor

48 2.42 10-2 48 2.25 10-2

213 8.80 10-2 211 8.45 10-2

450 1.25 10-2 459 1.37 10-2

760 1.27 10-2 797 1.91 10-2

Table 7. Natural frequencies and loss factors of the plate 1 at 50°C

3.2.2. Plate 2

The following example is a sandwich plate which is simply supported along the
edges. The same plate has been studied in [CUP 95] and [JOH 81]. The Young
modulus of the viscoelastic layer is assumed to be complex and constant as for beam
2. In reference [JOH 81], the loss factor and natural frequency of the plate were
predicted by NASTRAN program using the MSEM. The elastic layers were
modeled with quadrilateral or triangular plate elements having two rotations and
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three translations per node. The viscoelastic layer was modeled with solid elements.
Another analytical-numerical predictions of the loss factor and natural frequency are
given in reference [CUP 95]. Of course, the latter is only applied when the plate is
simply supported. Here, we limit ourselves to an approximate computation of
eigenvalues by MSEM. In Table 9, the results with the proposed finite element are
presented and compared with those in references [CUP 95], [JOH 81], that have also
used MSEM. The three solutions differ only by the discretization method.

Elastic layers
Young’s modulus : E1 = 6.89 1010 N/m2

Poisson’s ratio : Xc = 0.3
Mass density : U

�
= 2740 kg/m3

Thickness : h1 = 0.762 mm
Viscoelastic layer

Elastic modulus : Ec = 2670.08 103 N/m2

Poisson’s ratio : Xc = 0.49
Mass density : Uc = 999 kg/m3

Thickness : hc = 0.254 mm
Material damping Kc= 0.5

Whole plate
Length L = 348 mm
Width l = 304.8 mm

Table 8. Material properties and dimensions for the plate 2

Present sandwich shell
element

NASTRAN results [JON 81] Analytical results [CUP 95]

frequency Loss factor frequency Loss factor frequency Loss factor
60.3 0.205 57.4 0.176 60.3 0.190
116.4 0.210 113.2 0.188 115.4 0.203
131.9 0.204 129.3 0.188 130.6 0.199
181.3 0.183 179.3 0.153 178.7 0.181
198.9 0.176 196.0 0.153 195.7 0.174

Table 9. Natural frequencies and loss factors of the plate 2. Solutions by MSEM

The agreement between the results obtained using the proposed finite method
and the analytical results is good, because the two techniques are based on the same
assumptions (Section 2). Some differences are observed with the NASTRAN
computation that requires more degrees of freedom through the thickness. This can
be due to an inconsistent account of the continuity of the displacement field. The
relevance of linear 3D elements for bending analysis is also questionable.
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3.3. Sandwich cylindrical shell

In this section, the presented finite element method is applied to discretize a
sandwich cylindrical shell with diametrically opposed rectangular cutouts, which are
placed in the middle between the two ends (Fig. 2). The geometrical data are
presented in Table 10. Only one eighth of the shell has been discretized. The edge of
the cylinder is clamped, the cutouts are stress free. Symmetry boundary conditions
are prescribed elsewhere. The mesh involves 6920 degrees of freedom. The Young
modulus of the viscoelastic layer is assumed to be complex and constant as in plate
1. The material data are the same as in table 1 and two cases have been considered
for the core damping : a small damping (Kc=0.2) and a large one (Kc=1.0). In Tables
11, 12, we present the values of the loss factor and natural frequency predicted by
the ANM (exact) and by the MSEM (approximated).

s

L

R

s

t

Figure 2. Sandwich cylindrical shell

Whole cylindrical shell
 Length L = 200 mm
 Radius R = 100 mm
 Thickness of elastic layers hl = 0.6 mm
 Thickness of the core hc = 0.045 mm

Rectangular cutout
 Length s = 80 mm
 Width t = 79.5 mm

Table 10. Dimensions of the sandwich cylindrical shell
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ANM results MSEM results
Frequency(Hz)

(X104)
Loss factor Frequency(Hz)

(X104)
Loss factor

7.7 1.29 10-2 7.7 1.45 10-2

43.4 1.97 10-2 43.1 2.21 10-2

126.3 2.66 10-2 125.1 2.96 10-2

260.1 3.82 10-2 257.2 4.14 10-1

279.1 6.32 10-1 273.3 6.92 10-1

Table 11. Natural frequencies and loss factors of the cylindrical shell when Kc=0.2

ANM results MSEM results
Frequency(Hz)

(X104)
Loss factor Frequency(Hz)

(X104)
Loss factor

7.8 4.95 10-2 7.7 7.28 10-2

44.0 7.58 10-2 43.1 1.10 10-2

128.8 1.03 10-2 125.1 1.48 10-2

267.0 1.54 10-2 257.2 2.07 10-1

294.4 2.37 10-1 273.3 3.46 10-1

Table 12. Natural frequencies and loss factors of the cylindrical shell when Kc=1.0

It appears that the Modal Strain Energy Method involves significant errors in the
evaluation of the loss factors, especially for large damping: the error is about 10%
for a small Kc and 30% for large one. Here we limited ourselves to the cheap version
of MSEM by computing the strain energy corresponding to the real mode. More
relevant values of the loss factor could be obtained by introducing a complex mode
[SON 81], but this leads to a higher computational cost because the computation of
the complex mode involves the inversion of a complex matrix.

4. Conclusions

In this paper, a class of finite elements has been developed for damped sandwich
structures. The basic idea is to extend in a finite element framework classical
assumptions about the displacement field in a sandwich [RAO 78]. The obtained
finite elements have only eight degrees of freedom per node that are the longitudinal
displacements of the elastic layers, the deflection and three rotations. In this paper,
we have only tested a triangular plate element with three nodes, the formulation
being based on the Discrete Kirchhoff Theory. Several examples have been
presented to validate this technique for different geometries (beam, plate, and
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cylindrical shell). A good agreement has been obtained between the proposed
method and known experimental, analytical and numerical results.
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