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ABSTRACT Issued from a mass conservation cavitation model for a slightly compressible fluid,
a specific finite element discretization and a related fixed-point algorithm are introduced.
Convergence of this algorithm is proved. Moreover, the behavior of the solution of the
discrete problem towards the solution of the continuous problem is studied. Numerical results
are given for one and two-dimensional problems.

RESUME A partir d'un modéle de cavitation conservatif pour un fluide faiblement
compressible nous introduisons une discrétisation éléments finis spécifique et proposons un
algorithme de résolution de type point fixe. La convergence de cet algorithme est démontrée.
Nous étudions aussi la convergence de la solution du probléme discrétisé vers celle du
probleme continu. Des résultats numériqgues sont présentés dans le cas de problemes
unidimensionnels et bidimensionnels .
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1. Introduction

Cavitation is a well-known phenomenon in fluid mechanic when fluid is no
longer homogeneous and takes diphasic aspect with the appearance of air bubbles.
This kind of phenomenon can be found in most of the lubricated devices and
engineers try to describe it in terms of the physical variable commonly used in the
context of the lubrication: the pressure. This is not an easy thing because whereas
cavitation is mostly recognized as a three-dimensional phenomenon even for thin
film flow, the pressure in lubrication problems is assumed to be constant through the
gap height. Common practice was to modify full film results by setting the negative
pressures (or the pressures below the cavitation pressure level) to the cavitation
pressure value, obtaining by the way the so-called half-Sommerfeld model
[DOW 75]. Another method was to use the same procedure inside an over-relaxation
Gauss Seidel iterative loop. It can be proved [CRY 71] that it is equivalent to
consider the Reynolds boundary conditiépy/cn = 0 on the free boundary between
the full film and the cavitation area. Both methods are easy to implement and
reasonably accurate in term of load capacity. However the mass flow conservation is
often violated.

The starting point of another widely used model comes back to the work of
[FLO 57] in which a new variable is introduced to describe the cavitation as « a
proportion », namelyd, of the surface locally covered by the fluid, taking into
account the presence of air bubbles. This model which has the advantage to keep the
two dimensional feature in the description of the flow can be written in the form of
the following free boundary problem.

Find p andd and a splitting of the domain infa" andQ’ such that:

3
0>0, 0=1 di—¥p =div(30] on QF [1]

124 2

(h -~ 0
p=0, 0<6<], d|{?9uj:0 on Q [2]
h® ap - prelibro
——=(1-6hU.n onthe freeboundaryQ™ nQ [3]
64 on

h is the gapu is the viscosity,L_f is related to the velocities of the surrounding
surfaces and is the unitary normal vector to the free boundary.

From a mathematical aspect, this equation is highly nonlinear, mostly with
respect to the relation betweenandéd. Moreover it is an elliptic equation in the
non-cavitated area where ontyacts and an hyperbolic one in the cavitated area
where only § appears. In some sense, the free boundary condition [3] can be
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considered as a Rankine-Hugoniot condition [DOW 75]. So it is not surprising that
solving numerically this equation has not been an easy job and various strategies
have been proposed. In [LUN 69] an iterative strategy “try and check” for the free
boundary is proposed without too much details. Elrod introduced in [ELR 81] a
slight compressibility of the fluid, so that equations are easier to numerically
manage. Moreover, this model can cope with starvation effects. Although mass flow
conservation is gained, oscillations near the cavitation boundary often occur. To
prevent such oscillations, a modification of the Elrod algorithm by an upwind
procedure to cope with the convection term is proposed in [VIJ 89]. In [BAY 86] a
new algorithm is introduced in which at each node, only one of the two unkmowns
or ¢ acts. More recently, in [BON 95], a modified version of the Murty’s algorithm

is used. Based upon the complementary formulation of the Reynolds variational
inequality, Murty’s scheme [MUR 74] is applied without modification around the
rupture free boundary where conditigp/on = 0 is valid and has to be modified in

the vicinity of the reformation free boundaries. Another approach uses time
marching approach so that the solutions of equations [1][2][3] are obtained as
stabilized solutions after time integration of the unsteady Reynolds equations.
Various time discretization methods can be used like characteristics method
[BAY 90, BAY 98] or space-time conservation elements [CIO 00]. In that last
paper, evidence is shown of discrepancies in the results obtained by various
methods, even for a one dimensional slider bearing, especially if starved inlet is
considered.

All these algorithms are mostly finite difference one and few convergence
theorems neither for the iterative process itself nor for the validity of the discrete
approximation with respect to the continuous problem seem to exist. It is the goal of
this paper to support by a rigorous way a cavitation model closed to the one
proposed by Elrod in [ELR 81], and a related finite element algorithm whose
convergence will be proved.

In the second section, the variational formulation of the init@b)(free
boundary problem is recalled and it is shown how to derive by different ways some
“compressible” approximations. A fixed-point algorithm is proposed in the third
section, deduced from the one proposed in [ALT 80] for the computation of a free
boundary problem in a porous medium. The basic idea being to introduce at the
discrete level a unique unknown which describes at each node either the pressure or
the saturation. In the present situation of lubricated slightly compressible flow, it
will be shown how to adapt this procedure. Sufficient conditions for its convergence
are given when the compressibility parameter is small. In the following section,
convergence of the discrete solution to the one of the continuous problem is studied
and a specific finite element is proposed. At last, some numerical results are given
for one and two-dimensional problems.
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2. Cavitation models in lubrication
2.1.Classical models and related approximations

It is convenient to write the problem in a divergence form which does not take
into account the boundary conditions, so [1][2][3] becomes:

Find p> 0, 0<6<1 6=1 if p>0 suchthat:

3
di H—%p—eﬂa =0 [4]
12u 2

where the derivation is taken in a distributional sense.

For the mathematical aspect, the main difficulty is linked to(ihe> 0) relation
which can be described by the Heaviside graph Y (figure 1) and gives evidence to
the fact that for p equals zeébjs not uniquely determined.

0 8 =Y(P) 0 8 =Y,(P)

(A)

P=T@) ? ' P=T.(6)

(B)

1 1

Figure 1. Graph of the Saturation-Pressure (A) and of the Pressure-Saturation (B)
relation and their related approximations
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To overcome the difficulty, one way [BAY 84] is to approximate the Heaviside
graph by a functioﬁ(g (figure 1) such that, for a small parameter 0:

1
Yg(t): &
1 if t>¢

if O<t<eg

Then for eachg , one has to solve the problem with only one unknown.

Find p, p=0 such that:
div H—sﬁp =div (Y (p)iU) [5]
124 a2

This problem is still a nonlinear one, but the formulation gives way to a fixed
point procedure in a somewhat natural manner by fixing p in the right hand side of
[5] and then by solving a sequence of classical linear elliptic problems.
Unfortunately, this approach does not lead to numerical convergence as cyclic
phenomena are observed.

Another way to obtain a problem with only one unknown is to approximate in
figure 1 the relationp=T(0) instead of the relatio® =Y(p) by introducing a
function T, (figure 1) defined by:

0 if t<1
Tg(t): E
&

if t>1

This approximation leads to the following relation:

p= 1 @-1*, where()"is the positive part of ().
&

The only unknown kept i¢ and the related problem to be solved becomes:

Find @. 6>0 such that:

H3

Y _ A i_’
EV(¢9—1) ) =div (¢0 2U) (6]

div (

Although being a problem with only one unknown, this approximation seems to
lead to a slightly more complicated problem than [5]. The primary interest of [6] is
that it can be obtained in a more physical way by taking into account the
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compressibility of the fluid, and it is the basis of the widely used algorithm proposed
by [ELR 81].

2.2 Cavitation and compressibility
So far, the lubricant has been supposed to be incompressible. However, the

Reynolds equation for a compressible flow is well known and can be written
[FRE 90]:

div (pH3Vp /12u) = div (oH /20) [7]

where p is the density of the fluid. For a slightly compressible fluid like water or
oil, the law linking p ande is usually described by:

1
pzzlog(p), p>1 p>0 (8]

where ¢ is of the order of magnitude dfo°. Taking into account the possible
existence of a cavitation area where p is zeroard. leads to generalize [8] in :

p;%log((p—l)++1), p>0 [0l

Rewriting [7] in term of p , we gain with derivation in the distributional sense :

3 —
di{H—ﬁ(p—ly —EpiUJZO [10]
a7 2

which is nothing else than equation [6] with instead ofd .

It is to be note that onc@ = p is computed, then the pressure deduced by these
two approximations will not be exactly the same :

p= (either) 1 @-1*, (or) 1Iog((p—l)+ +1)
& &
However, for small compressibility effectlog(l+ (0 —1)*)is equivalent to
(»—1)* so that these two values of p are very close.

2.3.Variational formulation for the compressible model

Introducingu = r-1 as the primary unknown, equation [10] becomes:
&



A finite element algorithm for cavitation 659

(H3S ) H—
dlv[EVu j—d|v((1+au)?U) [11]

From this section on, to be able to define the useful functional spaces, we
consider a specific device such as a journal bearing with a circumferential supply
line. However, the same kind of study is valid for other boundary conditions,
corresponding to other working spaces (see sec 2.4)

Let us denote by(0,2zR)x (0, L) the surface of the (half-)bearing, p the pressure,
s the relative velocity in the circumferential direction of the shaft with respect to the
bearing and H the gap. We introduce rescaled variaklgsgo that:

&.y)e Q= (02 )= (0]

Boundary conditions are assumed for the rescaled preﬁs-ul:ep—

64SR
P= P, >0along the supply liney =1

p =0 (the atmospheric pressure) along the liney =0
p is 2 -periodic in the x-direction.

To introduce the variational formulation of [11], we consider different working

spaces for u and far* becauseH?! regularity is needed fan* but L2 regularity is
sufficient for u.

Recalling the change of unknowns:
u=L22, p=tiogl(p-D’ +1
we set:
Voz{ peHYQ), 27— periodicin x, ¢ =0for y=0and yzl}
Vaz{goe H1(Q), 27 - periodic in x, =0 fory=0, p=ug for yzl}
where:
u, = (e‘gpa —1)/ £

Then, the variational formulation of [11] is:
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Find u e L?(Q) such thatu® eV,,

.
jH{%Z—i (f)zaauY E;‘y”jdxdy I(1+g(u _u")H (/’dxdy Vo eV,[12]

recalling that u" = sup(,0) u™ =sup(-u,0) so thatu=u* —u-.

2.4.Models for other boundary conditions

For a journal bearing with a longitudinal supply line located {mﬁr 0} at a
given pressure p, >0 and =zero pressure boundary conditions on
{y=0,{y=1and{x=2z}, formulation [12] is stil valid by changing the
definitions ofV,andV, .

Vo =1lpe HY Q)0 OY)=9 (Z .y)=¢ K0)=9px1) =0}
Va={peH! Q)p Oy) U p K0)=0 &D=p(2r,y)=0}

If the supply pressure is equal to the cavitation pressure (=0), then the cavitation
may occur by a starvation effect at the vicinity of the supply {ine 0}. It is then

necessary to introduce an additional data g(y){>oﬂ 0} related to the inlet flow.
The variational formulation becomes:

Find ue L?(Q), such thatu* eV, and:

i S@J ?3;0 5 2 awjdXdyt j(1+e(u —u ))H op dxdy jg(y)H(O)w(O ydy

YpeV, = {pe HA(Q), p(x 0) =p(x,1) = p(27,0) = 0 |

It is to be noticed that the zero boundary conditiongea0} is not included in
the formulation and is not mandatory. It will be only obtained [BAY 86] when the
input flow whose value is controlled by the data g(y) is not great enough to fill the
gap around the boundady = 0}. For a given gap H, the maximum and minimum
value for g(y) can be found to prevent simultaneously overpressurg, oand
allows the non-cavitated ar€a* to be non empty.
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3. Finite element approximation

The goal is to define a discrete version of the variational formulation [12]. To
that purpose let us considey = {T,} a family of triangulations relying on a small
parameterh > 0, eachT, satisfying the suitable assumptions for a basis of finite
elements (PLagrange for instance). Létni },i e N, be the set of the nodes .

Due to the boundary conditions, we introduce some subsets of the index set:
N, :{ieNh, meQ, mel, ufa}
Non = {ie Ny, m eTo} Ny = {ie Ny, my e T, |
whereTy = {(x y),0< x< 27, y=0} andT, ={(x y),0< x< 27, y=1}.

To approximateu® which lies in H*(Q), we consider a basis of finite element
{a)i}, withe; 20, such that the associated finite dimensional subspgces
included in:

Vper = {¢ ceH'@), 27 - xperiodic}
To approximate u which belongs II?J(Q), we consider a set of characteristic
functions {;(,} such that Z;(i (X)=1 VxeQ. The corresponding finite

ieNh
dimensional spaces are:

\A={V=vai, ie Nn,vieR}

Vi ={veV,, V=0Vie Ny, UNg}
Ly ={7=27i1ia ie Ny, 7 € R}
i
We introduce the bilinear form :

(3 v aw (R) v ow
a,(v,w)_lH {6)( = +(Lj ayaydeoly [13]

This leads to the discrete finite dimensional approximation :
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f|nd (Vh,]/h) th X Lh SUCh that
_ Oy
8 () = | (L 2V =y ) H —* dxdy [14]
Q

for every ¢, in Vg, , with the constraints :

¥=0 o2, y=0on,, v,=u;only, [15]
1

0<y,<=onQ, y,=00nT, [16]
&

W (myn(m)=0 VieN, [17]

It is to be noticed however that the number of degrees of freedom, fas
greater than the one for, , which is exactly the number of equations implicitly
contained in[14]. More precisely,v, =0onT, while y, is unknown.

To obtain additional equations, keeping in mind the mass flow conservation
eqguation in the cavitation area, we set:

j(l—gyh)H(x)aa%dxdyzo Vie Ng, [18]
Q

It will be proved further that [11]-[18] is a well-posed problem whose solution
converges towards that of the continuous problem.

The matrices and vectord= (g ), B= (), E=(g;),F = (f;) are defined as
follows:

. 0w 20w, Ow,
3 =IH3(X) aﬂ—‘{ﬂj T ldxdy, ie Ny, jeN,
2 OX 0OX L oy oy

Ow; . .
by :J'H(x)w]. — Oy PNy jeN,
Q
aa)i . .
g =IH(X)ZJ dedy i€ Nop UNy,, jeNy
Q

Ow; .
f :iH(x)a—X'dxdy ie Ny, U Ny,

a,] :bij =0 |f iENOh jENh
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In the following, we will introduce vector¥,,, T, ...associated to functions like
Vp,7h-.- FOr the sake of simplicity, the components will be denoted without the
subscript h, for examplé/, = (v) andT}, =(7;),ie N,,.

Using the previous notations, we get:
(A—EB)Vh +$Fh =F
Taking [14] [15] [16] into account, we define the vectdy = (u, )i“ihl such that:

+

y = maxqy ,0)=v , u7 =max(-u;,0)=y; [19]
Then using [19], problem [14]-[18] is equivalent to problem (Q):

Find Y e R" suctthat

(A-B)U; +6EU; = F

U=uU,>0 VieNy, u’ =0 VieNg
l+eu; 20 VieNy

problem(Q)

In order to prove the existence of a solution of the discrete problem (Q), a fixed
point form associated td, is well adapted. Let us define an applicatiop from
RV into RNon“MNin py its components:

Chi(Uh):fi_ z(é‘? Lﬁ_+a:ij UT) iENOhUNlh
j=i, jeNh

where & = g —&b; and an applicationd, from R™ into R™ :

C.U,)/a) if Gi(U)=0andie Ny, [20]
-Cu(Uy) /e if G(U)<OandieN,, [24]
AilUn) =4 U, it ieN, [22]
-GiU)/e  if C;U,)<0 and ieN, [23
0 if C,U,)=0 and ieN,, [24]

PrRoPOSITION3.1.—Under the assumptions:
a,'|>0,a'USO, Vlij, |€N|h, ]eNh [25]

QI < 0,eij ZO, Vi # j, ie Nih UNOh! jE Nh [26]

problem (Q) is equivalent to following problem (R)
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problem (R). Find U, e RM such thaty ,, = A,U ), | +&U, >0

PrROOE—

Rewriting each component of a solutionpi@blem (Q)and taking into account
the sign conditions, we have:

& U +eq U =Cp(Uy)
Now, for ie Ny, and u; >0, Cp; (U,)=0 and we get [20] while foii € Ny,

andu, <0, C,,; U, )<0 and we get [21]. lfie N, thenu;” =0 and this implies
Up; <0 so that:

If C,WU,)=0 we necessarily have [24], else [23]. So the equality
U = Ay, (U,)is gained and the reverse is proved by the same arguments.

Now we will use monotonicity arguments to prove the existence result.

PROPOSITION3.2— Under assumptions [25][26]W, = (w;) with w; =-1/¢ is a
sub solution to problem (R).

PROOF— We have to prove tha#,; W, )= -1/ ¢ for every index. This is obvious
for positive components ofy, (W,,) so that it suffices to consider the components
SUCh thatc:hl (\Nh)< 0, Vie NOh U Nlh

aa)i

Q‘Ii (V\(]) = fi - qu :I H(X)(l_ZZJ (X))dedy

4 8

From assumptionz;(]- =1, we deduce thaG, (W,) =¢; .
jeNy,

For ie Nlhu Noh,eli <0,then /hi (Vw:_Chi(W)/éQi =-1/¢

To define an upper solution is less obvious. The cavitation phenomenon is a
direct consequence of the lack of the maximum principle for the Reynolds equation
as the left hand side does not have a constant sign. So introducing a discrete

Reynolds-like equation with left hand siginf (o(lj_H ,Oj (8 >0) is a way to obtain
X

3

. H min
a super solution for small . We sete; = >
Adrca

wherea = max |H'(x)|and:
(xy)eQ
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£y = F=1 it B>1 [27]

a

PROPOSITION3.3.—For ¢ < &, defined in [27], the problem:

Find W,, in V,,, such that :
- Y
8, (W, d) ¢ HOIW, ™ dxdy=—-4inf (H"(), O)gndxdy Vg Vo
Q Q

has a unique solution. Moreov@y, is positive.

PROOF— Let us first prove that the bilinear form :
0
qwWe) =g (W¢)—$I H(x)wa—¢dxdy
X
Q
is V,, elliptic.

2
alp.g) =2 (p.9)+e| H(YT-dxay

Q

Considering the subset A of2: A:{H‘(x)<0} and using the Poincaré’s
inequality :

2
_ I H (3¢ 2dxdy< I ag?dxdy< 4z % j (%)dedw j @j (ag )2dxdy
Q Q

A Q y
and we have:

d 2
a(s,p) = ([(H — Zag{(aii)z + @j (%)szxdyz (e, —&)dr 2a||¢||\2/0h

The ellipticity induces existence and uniqueness\ar.

To prove the positivity ofvn, it is not possible to choosévn )™ = supfwh , 0)

as a test function as in the continuous case, because the fufwtipn does not
always belongs t,, .

Let us introduce:
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¢Th = ZV_Vi_wi

ieNj,

By construction g, belongs toVy,,, so that :

a(Wy, d) =~ inf (H (3,0)gndxcly [28]
Q
Moreover, by the definition of,, :
aWy,fn) =—a(@n, o)+ D, (F —&ly)w ™ xwy” [29]
i, jeNi,
For i=j, w'xw; is zero. Fori= j, & =g —&b; is negative so that [29]

induces a(wn ,4,)<0, while [28] implies a(wn,¢,)>0 becauseg and ¢, are

positive. Thena(Wh,ah) is zero which implies in turn that

a(ﬁhﬁh)=0

From the definition 0f¢7h, we gainw, =0 for every i and the positivity of
W, is proved.
Now, W, allows to get a super solution. Let us denoteVijy the vector on

RV with component®, and ‘¥, the vector whose components are the values of
the linear function?¥(x y) = u,y on each node, we have

PROPOSITION3.4.— Under assumptions [25] [26] and < min(gq,¢,) (see [27]),

V_Vh =Wh + ¥, is a super solution to the fixed point problem (R).

PROOF— As Wh is positive andwi =0 for ie N, and wi =u,for ieNy,, we

only have to prove tha#; (V=Vh) svvi for ie Ny, and G, (V=Vh)20(see [20 ]. Due
to the fact thais/Ti >0, this is equivalent to:
‘Ji = fi - Za'ij (WJ —\PJ)SO
jeNp
We compute for any in V,, cV:

R(W Y, 0) = uaf H3(X)%dxdy=o
Q oy

This can be written :
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zaijl//J-:O, ViENlh
jeNp

so that :

J=1f-)a W+e) by, .

jeNy, j
From the definition of, , we have:

> & w; = A [inf( H (3,00 dxdy
jeNy Q

then:

0 i . . 0 i
J :i H(x)a—a))(dxdy—ﬁgj;mf (H(><),O)widxdy+gzj: E[H(X)a)j 6—0))(dxdy

== [ HOw @rey goxdy- [{ HOo; @+ ey, y-pldxdy
{H'>O} {H'<O}

g1

a

Taking ¢ < is a sufficient condition to ensu® <0.

THEOREM 3.5.— Under assumptions [25] [26] ande <min(eq,s,) (See [27]),
problem (Q) has at least one solutibh, such that :

—1/5Sui SWl

PrROOF— By definition [20]-[24] A, is a continuous mapping, and we will show that
A, is monotone, that is : Iy, = (y) andV;, =(v;) are such thaty <v; for every
i, then A, (U,) < A, (V) for every i.

—for ie N,,, Ay isconstant;

—for the other cases, we have to prove first the monotonicitg,of then the
one of A, can be immediately deduced as it is the producipfby a positive
constant or 0. For instance foe N,

Chi (Un) = Ci (Vi) Z—ZE g (U —vy)
j=i
JeN,

U <v;,V; implies u; 2v;,v; then from [26] we geC;(Uy,) < Cy; (Vy,) -
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As a conclusion, we have shown thgf is a monotone continuous mapping in
R with a sub- and a super solution, so tigthas at least one fixed point which
is a solution to problem (R) and equivalently to problem (Q).

COMPUTATIONAL ALGORITHM.— From theorem 3.5 it is easy to define an algorithm
to obtain a numerical solution gfroblem (Q): Starting from the sub solution

U%=(-1/¢)or from the super squtiorUO:(Wi), we build two sequences

unt = A, (U ") which are known to converge towards the fixed point solution to

problem (Q) As these sequences stay respectively below and above the solution, the
present algorithm allows to obtain lower and upper bounds for the required solution.

We will show in the next section that the finite element approximation is a
convergent approximation from the continuous problem as h tends to zero.

4. Convergence results

It will be shown that any fixed point solution of problem (Q) tends to a solution
of the continuous problem [12] when h tends to zero. In that sense the convergence
theorem can be considered as an existence theorem for problem [12]. For the
convergence proof, various properties of the discretization are needed. In a second
part of the section, it will be shown that peculiar finite elements discretization fulfils
the required conditions.

4.1. Assumptions related to the discretization

We need assumptions related to the free boundary problem at the limit.

DEFINITION 4.1.—A pair of vectors(Vy,,I'y,) with V, =(v;),I}, =(r;) satisfies
condition [30]: “if there exists a positive constant C, such that
yi 20 for ie Ny, implies v <Ch”

We will give in 84.3 an example of discretization such that technical conditions
[27] and [30] are satisfied.

4.2 Convergence theorem

Let U, be a solution to the discrete problem (Q), setting

\ﬁ:zq+wi and 7h:ZUi_Zi , ands; = —— [31]

ieNy, ieN,

we have the theorem:
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THEOREM4.2.—Assuming [27] [30] ands < 5, then there existy” in H*(Q) and
y* in L”(Q)such that for a subsequendg;,) converges tos* , weakly inH L)

and (y,) converges tg/* , weakly in L2(Q). Moreovert =v* —y* is solution of
[12].

PROOF— By proposition 3.1v,and y,defined by [31] satisfy [14]-[18]. We set
V= V, — U, Y as a test functiog, in [14].

For ie Ny, ,w; (x y)=00nT,uT,and is periodic for x=0 and x=1, so that:
R)’ oo, R\’
a (U Y 0;) = Ua(—j I H® (x) — dxdy= ua(—j J. H® (X)v; cos(n, y)dv=0
L Q ay L oQ

Consequentlya, (u, y,Vy,)=0. Then:

- - - oV,
8, (%, %) = [ @+ &~y + ot Y H () T dixdy
Q

- oV, ~ 0V,
HEW [ < ([ AL-epp +eu, y)H(x)Eh dxdy+ gi H(X)V,, 6—)?dxdy

Using Cauchy Schwarz's and Poincaré's inequality, we obtain:
HEn [Val® < @F £Us) Hinax V27 [V |+ 6H max 22V |

( Hr?\in - gHmax27z)"vh" < (+euy))H max\/z
Assumption £ <&3 shows that|V,|and consequently|v,|are bounded in

H*(Q) with respect toe and h. Using now the sub solutiaM, :[wi :—lj, it is
&

. 1
obvious that||7h" @) = =
This last result shows that for fixed, [y,|| (IS bounded with respect to h,

but the bound iss -dependent. Thus the first part of the theorem is proved and we
know thatv* >0, y* >0 andl + sv* —sy* > 0 almost everywhere i .

Using a classical interpolation argument in finite element approximation, for any
[/ in V there existsg, in V,such thatg, converges strongly inH1(Q) towards
¢. S0 we can pass to the limit in [14]:
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a(V, ¢) = [@+ev* —ar*) H(x)g—ﬁdxdy, Vg eV

Assumption [30] is useful to prove thét*, y*) is actually a solution to the

continuous problem. This technical argument can be found in [CHA 87] and is
similar to that in [ALT 80] ( th. 3.4) inducing the result:

rr>0lc{v =0} aeinQ

4.3. Special discretizations

Consider a regular hexagonal triangulation{n (see fig.2), corresponding to
meshes

1
h,=—o, h = o h=max (h,,h,) [32]

Vi is the classical P -finite element subspace of/, corresponding to

piecewise-linear functionw; in which the periodicity is introduced in a natural way
by equalling the degrees of freedom for 0 and x=2r .

L, is the space of linear combinations of the characteristic funcfionsf the
shadowed set (fig.2) corresponding to the nagefor ie Ny, , and its intersection
W|th Q fOI’ ie NOh () Nah'

J5

Figure 2. Hexagonal finite element and notations
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ReMARK 4.3.— It will be difficult to consider such a special hexagonal triangulation
for a more general nonrectangulgx or in the case of the use of an automatic
triangulation. It is probably possible to show without further restrictions that a
general regular triangulation fulfils the required assumptions, following same kind
of arguments as in [PIE 82].

In the following we will show that the assumptions given in the existence and
convergence theorems are satisfied for the particular hexagonal finite element
introduced in the present subsection. The arguments used are very similar to that in
[ALT 80] so attention will be focused on the particular difficulties arising in relation
to the variableg linked to the compressibility model.

h, . -
PROPOSITION4.4.—If the meshes ratia :%h—x is such thatr <1, for sufficiently
y
small ¢ (¢ < ¢, see [33]), assumption [25] is fulfilte

PrROOF— Using notations of figure 2:

a, = 62 -1D/4K IH3(><)dxdy <0

TUT,

H 3
by, = —% I H(Yw;,dxdy<0 so thata}; <0 as soon as sﬁ n

I = H
X TOT, y o omax

This condition is mesh-dependent, but a rough bound is {al}dg %] so that

4H 3 . . :
for e <—™ then ajj, < 0. Similar technical and easy computations show that
max

for ¢ < g, assumptions [25] are satisfied where :

2 3

(1 2H H3

gq =min| 127 ap, 2max e Lyl Fimin [33]
Az 3ma>1H'| 7" ) H max

PrRoPOSITION4.5.—If 7<1 and gs%“ [33], condition [30] is satisfied for the
hexagonal finite element.

PROOF— The details are to be found in [CHA 8%]<1linduces condition [30] for
the incompressible moddk = 0). The conditiong < %4 shows that it is still true
for the compressible model if the "compressibilitiis small enough.

Gathering the results of propositions 4.4 and 4.5, we can conclude that for the
particular hexagonal finite element introduced in that section,zfell and for
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& <min (sq,6,,63,&4) the cavitation model has at least one solution, the discrete
model has also at least one solution that converges for small h to the continuous one.

5. Numerical results

To make more clearly evidence of the influence of the various parameters
introduced in the numerical procedure namely the compressibility paramettes
number of degrees of freedom N, and the required precision PREC. We first
consider a one-dimensional parabolic slider bearing with starved inlet, like the one
introduced in [CIO 00]. Physical date are given in table 1.

Parameter Value Units
Length 7.62x10° m
Minimum Height 2.54x10 m
Maximum Height 5.08x10 m
Velocity 4.57 m/s
Viscosity 0.039 Pas

Table 1. Physical Conditions for Slider Bearings

Instead of periodic boundary conditions, we have to consider Dirichlet boundary
conditions and the problem is described by the one-dimensional equation deduces
from [12] by cancelling the derivatives with respect of y. Positive part of u is
approximated by classical one dimensiongagproximation and negative part by
Zﬂi i » xi being the characteristic function {))‘(i,l, xi]. The input flow g is

0.55.

The iterations have been carried on until the relative difference between the
computed output flow at x = 1 and the given input flow at x = 0 is less than PREC.
All the computations were conducted with the value PREQOZ. As a
comparison point, we add in the table the results obtained by the purely
incompressible approach usirig = 0" described in [BAY 86]. Table 2 gives for
various values ofg and degrees of freedom N the relative number RITER of

iterations and the value of the load/= I p(Xdx.
Q
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e=0 W =0.6974 W =0.7368 W =0.7503 W =0.7571
RITER=1 RITER =5.6 RITER =15 RITER =30
e=10" W =0.1788 W =0.1841 W =0.1859 W =0.1868
RITER =0.1 RITER = 0.5 RITER =1.2 RITER = 2.2
e=10" W =0.5529 W = 0.5809 W = 0.5905 W =0.5953
RITER = 0.6 RITER =3 RITER=7.6 RITER = 14.2
e=10° W =0.6769 W =0.7179 W =0.7309 W =0.7374
RITER =0.9 RITER =5.2 RITER = 13.6 RITER = 26.5
e=10" W = 0.6956 W =0.735 W =0.7484 W =0.7551
RITER=1 RITER =5.6 RITER =14.8 RITER =29.2
£=10" W =0.6972 W =0.7366 W =0.7501 W =0.7569
RITER=1 RITER =5.6 RITER =14.8 RITER =29.2
e=10" W =0.6974 W =0.7368 W =0.7503 W =0.7571
RITER=1 RITER =5.6 RITER =14.8 RITER =29.2

Table 2.Load W and relative number of iterations RITER (reference RITER=1 for

N=200, e=0) compressible parameter e and degrees of freedom (PRE€ = 10

Table 3 shows the same outputs, for constant values of N = 8@0=a8dfor
various values of PREC.

Table 3.Load W and relative number of iterations RITER (reference RITER=1 for

PREC=10 |W=0.6053 |RITER=1
PREC=10 |W=0.7407 |RITER=25
PREC=10 |[W=0.7553 |RITER=3
PREC=10 |W=0.7568 |RITER=3.1
PREC=10 |W=0.7569 |RITER=3.1
PREC=10 |W=0.7569 |RITER=3.1

PREC=10’) for various values of PREC
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Figures 3 and 4 depict the pressure andttpeofiles for various values aof,
including the incompressible case and results issued from [CIO 00] by the type
differencing method.

These results suggest that as soore ds less than 1} the load and the
computation cost do not dependsrFore greater than 18, the number of iteration
decreases ag increases; this shows numerically the regularising effect of
introducing the compressibility. The necessity of choosing a small value of PREC
and a sufficiently great number of degrees of freedom is also clear.

At last, we consider a two-dimensional bearing with periodic boundary
conditions. The data are: supply pressure = 19°XPH) eccentricity = 0.8, R/L =
0.5, =107, degrees of freedom = 900.

Figure 5 depicts the cavitation area and is compared with the one obtained in
[LUN 69] and that obtained by the Christopherson algorithm [CRY 71].

O

Figure 5. Pressure distribution and cavitation area computed by
____the present alge the Lundholm alg. e the Christopherson alg.

The importance of the parametet R h/Lh, is illustrated in figure 6 (cf. Th 4.2)
in which we give the relative error between the input floya the output flow Q
for various degrees of freedom (600 to 900 nodes), vatiansl various numbers of
iterations (NITER = 300 to 600):
P dx
oY

p 3
—[H*Pax o - [H
Qg I ox QI
Iy Ia
Computing time of the present code appears to be very sensitive to the,ratio
the optimum value of which is about 0.5.

To obtain a discrepancy between output and input flows at most of 10% requires
about 300 to 400 iterations while the convergence of the load is obtained before half
the overall computational time.
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o
ERROR 0

5Q L
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M " 2 A A A e

~®——~8— 300 NODES T=Rh,/Lh,
A 600 NODES

—@———g— 900 NODES

Figure 6. Error between input and output flow as a function of the number of nodes,
the valuer and NITER

6. Concluding remarks

The convergence of the fixed-point algorithm correspondingnublem Q)has
been proved in theorem 4.2. It can be shown that the implementation of a Gauss
Seidel process is also a convergent one. The convergence being theoretically at least
as fast as for the present Jacobi algorithm. The numerical results confirm the fact
with an improvement of 40% in the number of required iterations for a given value
of PREC.

It could seem surprising that for one-dimensional devices, so many degrees of
freedom and a so small value of PREC are needed to obtain a good convergence.
This can be explained by the stiffness of the problem, which lies only in the x-
direction. So that the 1-dimensional case is more difficult that the 2-dimensional one
in which the introduction of the second dimension renders the solution globally
smoother.
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