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ABSTRACT. Issued from a mass conservation cavitation model for a slightly compressible fluid,
a specific finite element discretization and a related fixed-point algorithm are introduced.
Convergence of this algorithm is proved. Moreover, the behavior of the solution of the
discrete problem towards the solution of the continuous problem is studied. Numerical results
are given for one and two-dimensional problems.

RÉSUMÉ. A partir d’un modèle de cavitation conservatif pour un fluide faiblement
compressible nous introduisons une discrétisation éléments finis spécifique et proposons un
algorithme de résolution de type point fixe. La convergence de cet algorithme est démontrée.
Nous étudions aussi la convergence de la solution du problème discrétisé vers celle du
problème continu. Des résultats numériques sont présentés dans le cas de problèmes
unidimensionnels et bidimensionnels .
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1. Introduction

Cavitation is a well-known phenomenon in fluid mechanic when fluid is no
longer homogeneous and takes diphasic aspect with the appearance of air bubbles.
This kind of phenomenon can be found in most of the lubricated devices and
engineers try  to describe it in terms of the physical variable commonly used in the
context of the lubrication: the pressure. This is not an easy thing because whereas
cavitation is mostly recognized as a three-dimensional phenomenon even for thin
film flow, the pressure in lubrication problems is assumed to be constant through the
gap height. Common practice was to modify full film results by setting the negative
pressures (or the pressures below the cavitation pressure level) to the cavitation
pressure value, obtaining by the way the so-called half-Sommerfeld model
[DOW 75]. Another method was to use the same procedure inside an over-relaxation
Gauss Seidel iterative loop. It can be proved [CRY 71] that it is equivalent to
consider the Reynolds boundary condition 0=¶¶ np on the free boundary between
the full film and the cavitation area. Both methods are easy to implement and
reasonably accurate in term of load capacity. However the mass flow conservation is
often violated.

The starting point of another widely used model comes back to the work of
[FLO 57] in which a new variable is introduced to describe the cavitation as « a
proportion », namely q, of the surface locally covered by the fluid, taking into
account the presence of air bubbles. This model which has the advantage to keep the
two dimensional feature in the description of the flow can be written in the form of
the following free boundary problem.

Find p and q and a splitting of the domain into W
+ and W0 such that:
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h is the gap, m is the viscosity, U  is related to the velocities of the surrounding
surfaces and n is the unitary normal vector to the free boundary.

From a mathematical aspect, this equation is highly nonlinear, mostly with
respect to the relation between p andq. Moreover it is an elliptic equation in the
non-cavitated area where only p acts and an hyperbolic one in the cavitated area
where only q appears. In some sense, the free boundary condition [3] can be
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considered as a Rankine-Hugoniot condition [DOW 75]. So it is not surprising that
solving numerically this equation has not been an easy job and various strategies
have been proposed. In [LUN 69] an iterative strategy “try and check” for the free
boundary is proposed without too much details. Elrod introduced in [ELR 81] a
slight compressibility of the fluid, so that equations are easier to numerically
manage. Moreover, this model can cope with starvation effects. Although mass flow
conservation is gained, oscillations near the cavitation boundary often occur. To
prevent such oscillations, a modification of the Elrod algorithm by an upwind
procedure to cope with the convection term is proposed in [VIJ 89]. In [BAY 86] a
new algorithm is introduced in which at each node, only one of the two unknowns p
or q acts. More recently, in [BON 95], a modified version of the Murty’s algorithm
is used. Based upon the complementary formulation of the Reynolds variational
inequality, Murty’s scheme [MUR 74] is applied without modification around the
rupture free boundary where condition 0=¶¶ np  is valid and has to be modified in
the vicinity of the reformation free boundaries. Another approach uses time
marching approach so that the solutions of equations [1][2][3] are obtained as
stabilized solutions after time integration of the unsteady Reynolds equations.
Various time discretization methods can be used like characteristics method
[BAY 90, BAY 98] or space-time conservation elements [CIO 00]. In that last
paper, evidence is shown of discrepancies in the results obtained by various
methods, even for a one dimensional slider bearing, especially if starved inlet is
considered.

All these algorithms are mostly finite difference one and few convergence
theorems neither for the iterative process itself nor for the validity of the discrete
approximation with respect to the continuous problem seem to exist. It is the goal of
this paper to support by a rigorous way a cavitation model closed to the one
proposed by Elrod in [ELR 81], and a related finite element algorithm whose
convergence will be proved.

In the second section, the variational formulation of the initial (p,q) free
boundary problem is recalled and it is shown how to derive by different ways some
“compressible” approximations. A fixed-point algorithm is proposed in the third
section, deduced from the one proposed in [ALT 80] for the computation of a free
boundary problem in a porous medium. The basic idea being to introduce at the
discrete level a unique unknown which describes at each node either the pressure or
the saturation. In the present situation of lubricated slightly compressible flow, it
will be shown how to adapt this procedure. Sufficient conditions for its convergence
are given when the compressibility parameter is small. In the following section,
convergence of the discrete solution to the one of the continuous problem is studied
and a specific finite element is proposed. At last, some numerical results are given
for one and two-dimensional problems.
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2. Cavitation models in lubrication

2.1. Classical models and related approximations

It is convenient to write the problem in a divergence form which does not take
into account the boundary conditions, so [1][2][3] becomes:

Find 01,10,0 >=££³ pifp qq  such that:
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where the derivation is taken in a distributional sense.

For the mathematical aspect, the main difficulty is linked to the )( q®p relation
which can be described by the Heaviside graph Y (figure 1) and gives evidence to
the fact that for p equals zero,q  is not uniquely determined.

q

   

Figure 1. Graph of the Saturation-Pressure (A) and of the Pressure-Saturation (B)
relation and their related approximations
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To overcome the difficulty, one way [BAY 84] is to approximate the Heaviside
graph by a function 

e
Y  (figure 1) such that, for a small parameter 0>e :
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Then for each e , one has to solve the problem with only one unknown.

Find 0, ³pp  such that:
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This problem is still a nonlinear one, but the formulation gives way to a fixed
point procedure in a somewhat natural manner by fixing p in the right hand side of
[5] and then by solving a sequence of classical linear elliptic problems.
Unfortunately, this approach does not lead to numerical convergence as cyclic
phenomena are observed.

Another way to obtain a problem with only one unknown is to approximate in
figure 1 the relation )(qTp=  instead of the relation )( pY=q  by introducing a
function 

e
T  (figure 1) defined by:
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p , where +)( is the positive part of (  ).

The only unknown kept is q  and the related problem to be solved becomes:

Find 0. ³qq such that:
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Although being a problem with only one unknown, this approximation seems to
lead to a slightly more complicated problem than [5]. The primary interest of [6] is
that it can be obtained in a more physical way by taking into account the
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compressibility of the fluid, and it is the basis of the widely used algorithm proposed
by [ELR 81].

2.2. Cavitation and compressibility

So far, the lubricant has been supposed to be incompressible. However, the
Reynolds equation for a compressible flow is well known and can be written
[FRE 90]:

)2/()12/( 3 UHdivpHdiv rmr =Ñ

r

[7]

where r is the density of the fluid. For a slightly compressible fluid like water or

oil, the law linking p and r  is usually described by:
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where e  is of the order of magnitude of 610- . Taking into account the possible
existence of a cavitation area where p is zero and 1£r  leads to generalize [8] in :
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Rewriting [7] in term of r , we gain with derivation in the distributional sense :
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which is nothing else than equation [6] with r  instead of q .

It is to be note that once rq º  is computed, then the pressure deduced by these

two approximations will not be exactly the same :
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However, for small compressibility effects ))1(1log( +
-+ r is equivalent to

+
- )1(r so that these two values of p are very close.

2.3. Variational formulation for the compressible model

Introducing 
e

r 1-
=u as the primary unknown, equation [10] becomes:
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From this section on, to be able to define the useful functional spaces, we
consider a specific device such as a journal bearing with a circumferential supply
line. However, the same kind of study is valid for other boundary conditions,
corresponding to other working spaces (see sec 2.4)

Let us denote by ),0()2,0( LR ´p the surface of the (half-)bearing, p the pressure,
s the relative velocity in the circumferential direction of the shaft with respect to the
bearing and H the gap. We introduce rescaled variables (x, y) so that:

)1,0()2,0(),( ´=WÎ pyx

Boundary conditions are assumed for the rescaled pressure 
sR

p
p

m6
=

0>= app along the supply line y = 1

0=p  (the atmospheric pressure) along the line y = 0

p is p2 -periodic in the x-direction.

To introduce the variational formulation of [11], we consider different working

spaces for u and for +u  because 1H  regularity is needed for +u  but 2L regularity is
sufficient for u.

Recalling the change of unknowns:
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Then, the variational formulation of [11] is:
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recalling that  )0,(sup)0,(sup uuuu -==
-+ so that -+

-= uuu .

2.4. Models for other boundary conditions

For a journal bearing with a longitudinal supply line located on { }0=x  at a

given pressure 0>ap  and zero pressure boundary conditions on

{ } { } { }p21,0 === xandyy , formulation [12] is still valid by changing the

definitions of 0V and aV .
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{ }0),2()1,()0,(,),0(),(1
====WÎ= yxxuyHV aa pjjjjj

If the supply pressure is equal to the cavitation pressure (=0), then the cavitation
may  occur by a starvation effect at the vicinity of the supply line { }0=x . It is then

necessary to introduce an additional data g(y) on { }0=x  related to the inlet flow.

The variational formulation becomes:
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It is to be noticed that the zero boundary conditions on { }0=x  is not included in

the formulation and is not mandatory. It will be only obtained [BAY 86] when the

input flow whose value is controlled by the data g(y) is not great enough to fill the

gap around  the boundary { }0=x . For a given gap H, the maximum and minimum

value for g(y) can be found to prevent simultaneously overpressure on 0G  and

allows the non-cavitated area +W  to be non empty.
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3. Finite element approximation

The goal is to define a discrete version of the variational formulation [12]. To

that purpose let us consider { }ih T=t  a family of triangulations relying on a small

parameter 0>h , each iT  satisfying the suitable assumptions for a basis of finite

elements (P1-Lagrange for instance). Let { } hi Nim Î,  be the set of the nodes in W .

Due to the boundary conditions, we introduce some subsets of the index set:

{ }aiihh mmNiN GÈGÏWÎÎ= 01 ,,

{ } { }aihahihoh mNiNmNiN GÎÎ=GÎÎ= ,,, 0

where { }0,20),,(0 =<<=G yxyx p  and { }1,20),,( =<<=G yxyxa p .

To approximate +u which lies in )(1
WH , we consider a basis of finite element

{ }iw , with 0³iw , such that the associated finite dimensional subspace hV  is

included in:
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This leads to the discrete finite dimensional approximation :
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find ( ) hhhh LVv ´Îg,  such that:
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It is to be noticed however that the number of degrees of freedom for hg  is

greater than the one for hv , which is exactly the number of equations implicitly

contained in [ ]14 . More precisely, 00 G= onvh  while hg  is unknown.

To obtain additional equations, keeping in mind the mass flow conservation
equation in the cavitation area, we set:
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It will be proved further that [11]-[18] is a well-posed problem whose solution
converges towards that of the continuous problem.
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In the following, we will introduce vectors hhV G, …associated to functions like

hhv g, … For the sake of simplicity, the components will be denoted without the

subscript h, for example hihih NiandvV Î=G= ),()( g .

Using the previous notations, we get:

FVBA hh =G+- ee )(

Taking [14] [15] [16] into account, we define the vector hN
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Then using [19], problem [14]-[18] is equivalent to problem (Q):
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In order to prove the existence of a solution of the discrete problem (Q), a fixed
point form associated to hU is well adapted. Let us define an application hC  from

hNR  into hoh NNR 1È by its components:
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PROPOSITION 3.1.– Under the assumptions:

hihijii NjNijiaa ÎÎ¹"£> ,,,0',0' [25]

hohihijii NjNNijiee ÎÈÎ¹"³< ,,,0,0 [26]

problem (Q) is equivalent to following problem (R)
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problem (R) : Find hN
h RU Î such that 0),( ³+= hhhh UIUAU e

PROOF.–

Rewriting each component of a solution to problem (Q) and taking into account
the sign conditions, we have:
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Now we will use monotonicity arguments to prove the existence result.

PROPOSITION 3.2.– Under assumptions [25][26], )( ih wW =  with e/1-=iw  is a

sub solution to problem (R).
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To define an upper solution is less obvious. The cavitation phenomenon is a
direct consequence of the lack of the maximum principle for the Reynolds equation
as the left hand side does not have a constant sign. So introducing a discrete
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PROPOSITION 3.3.– For 1ee < defined in [27], the problem:
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The ellipticity induces existence and uniqueness for  .
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To prove the positivity of hw
_

, it is not possible to choose )0,sup()(
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hh ww -=
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as a test function as in the continuous case, because the function -)(
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hw  does not

always belongs to hV .

Let us introduce:
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Now, hw  allows to get a super solution. Let us denote by hW  the vector on
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the linear function yuyx a=Y ),(  on each node, we have

PROPOSITION 3.4.– Under assumptions [25] [26] and ),min( 21 eee <  (see [27]),

hhh WW Y+=  is a super solution to the fixed point problem (R).
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to the fact that 0³iw , this is equivalent to:

å
Î

£Y--=

hNj
jjijii wafJ 0)('

We compute for any f  in VVh Ì :

ò
W

=

¶

¶
= 0)(),( 3 dxdy

y
xHuyua aaR

f
f

This can be written :
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å
Î

Î"=

hNj
hjij Nia 1,0y

so that :

å å
Î

+-=

hNj j
jijjijii bwafJ ye' .

From the definition of hW , we have:

å ò
Î W

=

hNj

ijij dxdyxHwa wb )0),('inf('

then:

ò ò òå
W W W

¶

¶

+-

¶

¶

= dxdy
x

xHdxdyxHdxdy
x

xHJ i
j

j
i

i
i

w
wewb

w
)()0),('(inf)(

= - { }
{ }{ }

ò ò
> <

-+-+

0' 0'

1()(')1()('
H H

aiai dxdyyuxHdxdyyuxH bewew

Taking 
au

1-
<
b

e  is a sufficient condition to ensure 0£iJ .

THEOREM 3.5.– Under assumptions [25] [26] and ),min( 21 eee < (see [27]),

problem (Q) has at least one solution hU  such that :

ii wu ££- e/1

PROOF.– By definition [20]-[24] hA  is a continuous mapping, and we will show that

hA  is monotone, that is : If )()( ihih vVanduU == are such that ii vu £  for every

i, then   )()( hhihhi VAUA £ for every i.

- for ,ahNiÎ  hiA  is constant;

- for the other cases, we have to prove first the monotonicity of hC , then the

one of hA  can be immediately deduced as it is the product of hA  by a positive

constant or 0. For instance for ,ohNiÎ

å
Î

¹

--
--=-

hNj
ij

jjijhhihhi vueVCUC )()()( e

jjjjjj vuimpliesvu "³"£
-- ,,    then from [26] we get )()( hhihhi VCUC £ .
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As a conclusion, we have shown that hA  is a monotone continuous mapping in
hNR  with a sub- and a super solution, so that hA  has at least one fixed point which

is a solution to problem (R) and equivalently to problem (Q).

COMPUTATIONAL ALGORITHM.– From theorem 3.5 it is easy to define an algorithm
to obtain a numerical solution of problem (Q): Starting from the sub solution

)/1(0
e-=U or from the super solution )(0

iwU = , we build two sequences

)(1 n
h

n UAU =
+ which are known to converge towards the fixed point solution to

problem (Q). As these sequences stay respectively below and above the solution, the
present algorithm allows to obtain lower and upper bounds for the required solution.

We will show in the next section that the finite element approximation is a
convergent approximation from the continuous problem as h tends to zero.

4. Convergence results

It will be shown that any fixed point solution of problem (Q) tends to a solution
of the continuous problem [12] when h tends to zero. In that sense the convergence
theorem can be considered as an existence theorem for problem [12]. For the
convergence proof, various properties of the discretization are needed. In a second
part of the section, it will be shown that peculiar finite elements discretization fulfils
the required conditions.

4.1. Assumptions related to the discretization

We need assumptions related to the free boundary problem at the limit.

DEFINITION 4.1.– A pair of vectors )(),(),( ihihhh vVwithV g=G=G  satisfies

condition [30] : “if there exists a positive constant C, such that
hCvimpliesNifor ihi £Î³ 10g ”

We will give in §4.3 an example of discretization such that technical conditions
[27] and [30] are satisfied.

4.2. Convergence theorem

Let hU be a solution to the discrete problem (Q), setting

å å
Î Î

-+
==

h h
Ni Ni

iihiih uanduv cgw ,  and
max

3
min

3 2 H

H

p
e = [31]

we have the theorem:
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THEOREM 4.2.– Assuming [27] [30] and 3ee £ , then there exists )(1*
WHinv  and

*g  in )(W¥L such that for a subsequence, )( hv converges to *v , weakly in )(1
WH

and ( hg ) converges to *g , weakly in )(2
WL . Moreover *** g-= vu  is solution of

[12].

PROOF.– By proposition 3.1, hv and hg defined by [31] satisfy [14]-[18]. We set

yuvv ahh -=

~ as a test function hf  in [14].

For aih onyxNi GÈG=Î 01 0),(,w and is periodic for x=0 and x=1, so that:

0),cos()()(),( 3
2

3
2

=÷

ø

ö
ç

è

æ
=

¶

¶

÷

ø

ö
ç

è

æ
= ò ò

W W¶

dvynxH
L

R
udxdy

y
xH

L

R
uyua ia

i
aiar w

w
w

Consequently 0)~,( =har vyua . Then:

ò
W

¶

¶
+-+= dxdy

x

v
xHyuvvva h

ahhhhr

~
)()~1()~,~( eege

ò ò
W W

¶

¶

+

¶

¶

+-£ dxdy
x

v
vxHdxdy

v

v
xHyuvH h

h
h

ahh

~
~)(

~
)()1(~ 23

min eeeg

Using Cauchy Schwarz's and Poincaré's inequality, we obtain:

2
maxmax

23
min

~2~2)1(~
hhah vHvHuvH pepe ++£

pepe 2)1(~)2( maxmax
3
min HuvHH ah +£-

Assumption 3ee £  shows that hv~ and consequently hv are bounded in

)(1
WH with respect to e  and h. Using now the sub solution ÷

ø

ö
ç

è

æ
-==

e

1
ih wW , it is

obvious that .
1

)( e
g £

W
¥Lh

This last result shows that for fixed e , 
)(W¥Lhg  is bounded with respect to h,

but the bound is e -dependent. Thus the first part of the theorem is proved and we
know that 0*,0* ³³ gv  and 0**1 ³-+ egev  almost everywhere in W .

Using a classical interpolation argument in finite element approximation, for any

�  in V there exists hf in hV such that hf converges strongly in )(1
WH towards

.f So we can pass to the limit in [14]:
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ò
W

Î"
¶

¶
-+= Vdxdy

x
xHvar f

f
egenf ,)(*)*1()*,(

Assumption [30] is useful to prove that *)*,( gv is actually a solution to the

continuous problem. This technical argument can be found in [CHA 87] and is
similar to that in [ALT 80] ( th. 3.4) inducing the result:

{ } { } ...0*0* W=Ì> ineavg

4.3. Special discretizations

Consider a regular hexagonal triangulation in W  (see fig.2), corresponding to
meshes

),(max,
2

1
, yx

y
y

x
x hhh

N
h

N
h ===

p
[32]

hV is the classical 1P -finite element subspace of perV  corresponding to

piecewise-linear function iw in which the periodicity is introduced in a natural way

by equalling the degrees of freedom for 0=x  and p2=x .

hL  is the space of linear combinations of the characteristic functions ic  of the

shadowed set (fig.2) corresponding to the node im  for hNi 1Î , and its intersection

with W  for .ahoh NNi ÈÎ

Figure 2. Hexagonal finite element and notations
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REMARK 4.3.– It will be difficult to consider such a special hexagonal triangulation
for a more general nonrectangular W  or in the case of the use of an automatic
triangulation. It is probably possible to show without further restrictions that a
general regular triangulation fulfils the required assumptions, following same kind
of arguments as in [PIE 82].

In the following we will show that the assumptions given in the existence and
convergence theorems are satisfied for the particular hexagonal finite element
introduced in the present subsection. The arguments used are very similar to that in
[ALT 80] so attention will be focused on the particular difficulties arising in relation
to the variable e  linked to the compressibility model.

PROPOSITION 4.4.– If the meshes ratio 
y

x

h

h

L

R
=t  is such that ,1£t  for sufficiently

small e  ( 4ee £  see [33] ), assumption [25] is fulfilled.

PROOF.– Using notations of figure 2:

ò £-=

32

2
0)(4/)1( 322

UTT

xij dxdyxHha t

ò <-=

32

22
0)(

2

1

UTT

j
x

ij dxdyxH
h

b w  so that 0'
2
£ija  as soon as 

max

min 32

H

H

hy

t
e £ .

This condition is mesh-dependent, but a rough bound is valid ÷
ø

ö
ç
è

æ
£

2

1
yh so that

for 
max

3
min4

H

Ht
e £ then .0'

2
£ija  Similar technical and easy computations show that

for 4ee £  assumptions [25] are satisfied where :

max

3
minmax

2

4 )
1

3(
max3

2
,4,

4

1
min

H

H

H

H
÷

÷

ø

ö

ç

ç

è

æ

+

¢

-
=

t
tt

p

t
e [33]

PROPOSITION 4.5.– If 1£t  and 
3
4ee £  [33], condition [30] is satisfied for the

hexagonal finite element.

PROOF.– The details are to be found in [CHA 87]. 1£t induces condition [30] for

the incompressible model ).0( =e  The condition 
3
4ee £  shows that it is still true

for the compressible model if the "compressibility "e is small enough.

Gathering the results of propositions 4.4 and 4.5, we can conclude that for the
particular hexagonal finite element introduced in that section, for 1£t  and for
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),,,(min 4321 eeeee £ the cavitation model has at least one solution, the discrete

model has also at least one solution that converges for small h to the continuous one.

5. Numerical results

To make more clearly evidence of the influence of the various parameters
introduced in the numerical procedure namely the compressibility parametere , the
number of degrees of freedom N, and the required precision PREC. We first
consider a one-dimensional parabolic slider bearing with starved inlet, like the one
introduced in [CIO 00]. Physical date are given in table 1.

Parameter Value Units
Length 7.62x10-2 m

Minimum Height 2.54x10-2 m

Maximum Height 5.08x10-2 m

Velocity 4.57 m/s
Viscosity 0.039 Pas

Table 1. Physical Conditions for Slider Bearings

Instead of periodic boundary conditions, we have to consider Dirichlet boundary
conditions and the problem is described by the one-dimensional equation deduces
from [12] by cancelling the derivatives with respect of y. Positive part of u  is
approximated by classical one dimensional P1 approximation and negative part by

å ii cl , ic  being the characteristic function of [ ]ii xx ,1- . The input flow g is

0.55.

The iterations have been carried on until the relative difference between the
computed output flow at x = 1 and the given input flow at x = 0 is less than PREC.

All the computations were conducted  with the value  PREC = 610- . As a
comparison point, we add in the table the results obtained by the purely
incompressible approach using "0" =e described in [BAY 86]. Table 2 gives for
various values of e  and degrees of freedom N the relative number RITER of

iterations and the value of the load  ò
W

= dxxpW )( .
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e= 0 W = 0.6974 W = 0.7368 W = 0.7503 W = 0.7571

RITER = 1 RITER = 5.6 RITER = 15 RITER = 30

e=10-1 W = 0.1788 W = 0.1841 W = 0.1859 W = 0.1868

RITER = 0.1 RITER = 0.5 RITER = 1.2 RITER = 2.2

e=10-2 W = 0.5529 W = 0.5809 W = 0.5905 W = 0.5953

RITER = 0.6 RITER = 3 RITER = 7.6 RITER = 14.2

e=10-3 W = 0.6769 W = 0.7179 W = 0.7309 W = 0.7374

RITER = 0.9 RITER = 5.2 RITER = 13.6 RITER = 26.5

e=10-4 W = 0.6956 W = 0.735 W = 0.7484 W = 0.7551

RITER = 1 RITER = 5.6 RITER = 14.8 RITER = 29.2

e=10-5 W = 0.6972 W = 0.7366 W = 0.7501 W = 0.7569

RITER = 1 RITER = 5.6 RITER = 14.8 RITER = 29.2

e=10-7 W =0.6974 W = 0.7368 W = 0.7503 W = 0.7571

RITER = 1 RITER = 5.6 RITER = 14.8 RITER = 29.2

Table 2. Load W and relative number of iterations RITER (reference RITER=1 for
N=200, e=0) compressible parameter e and degrees of freedom (PREC = 10-6

Table 3 shows the same outputs, for constant values of N = 800 and e =10-5 for
various values of PREC.

PREC = 10-2 W = 0.6053 RITER = 1

PREC = 10-3 W = 0.7407 RITER = 2.5

PREC = 10-4 W = 0.7553 RITER = 3

PREC = 10-5 W = 0.7568 RITER = 3.1

PREC = 10-6 W = 0.7569 RITER = 3.1

PREC = 10-7 W = 0.7569 RITER = 3.1

Table 3. Load W and relative number of iterations RITER (reference RITER=1 for
PREC=10-3) for various values of PREC
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Figure 3. Pressure versus e

Figure 4. q -profile versus e
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Figures 3 and 4 depict the pressure and the q profiles for various values of e,
including the incompressible case and results issued from [CIO 00] by the type
differencing  method.

These results suggest that as soon as e is less than 10-3, the load and the
computation cost do not depend on e. For e greater than 10 -3, the number of iteration
decreases as e increases; this shows numerically the regularising effect of
introducing the compressibility. The necessity of choosing a small value of PREC
and a sufficiently great number of degrees of freedom is also clear.

At last, we consider a two-dimensional bearing with periodic boundary
conditions. The data are: supply pressure = 19 x 105 Pa, eccentricity = 0.8, R/L =
0.5, e =10 -5, degrees of freedom = 900.

Figure 5 depicts the cavitation area and is compared with the one obtained in
[LUN 69] and that obtained by the Christopherson algorithm [CRY 71].

Figure 5. Pressure distribution and cavitation area computed by
___ the present alg.  •• the Lundholm alg.   •• the Christopherson alg.

The importance of the parameter t = R hx/Lhy is illustrated in figure 6 (cf. Th 4.2)
in which we give the relative error between the input flow Qg and the output flow Ql
for various degrees of freedom (600 to 900 nodes), various t and various numbers of
iterations (NITER = 300 to 600):

ò ò
G G

¶

¶
=

¶

¶
=

0

33

a

dx
Y

p
HQdx

x

p
HQ lg

Computing time of the present code appears to be very sensitive to the ratio t ,
the optimum value of which is about 0.5.

To obtain a discrepancy between output and input flows at most of 10% requires
about 300 to 400 iterations while the convergence of the load is obtained before half
the overall computational time.
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Figure 6. Error between input and output flow as a function of the number of nodes,
the  value t  and NITER

6. Concluding remarks

The convergence of the fixed-point algorithm corresponding to (problem Q) has
been proved in theorem 4.2. It can be shown that the implementation of a Gauss
Seidel process is also a convergent one. The convergence being theoretically at least
as fast as for the present Jacobi algorithm. The numerical results confirm the fact
with an improvement of 40% in the number of required iterations for a given value
of PREC.

It could seem surprising that for one-dimensional devices, so many degrees of
freedom and a so small value of PREC are needed to obtain a good convergence.
This can be explained by the stiffness of the problem, which lies only in the x-
direction. So that the 1-dimensional case is more difficult that the 2-dimensional one
in which the introduction of the second dimension renders the solution globally
smoother.
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