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ABSTRACT. This paper reviews the theory of finite element mode-based elastohydrodynamic
lubrication analysis (as applied in a companion paper to the bearing and structural design of
a dynamically loaded automotive connecting rod).

RÉSUMÉ. La théorie présentée de l’analyse par la méthode des éléments finis des problèmes de
lubrification élastohydrodynamique exprime les déformées élastiques dans une base modale.
Cet article est accompagné d’un second qui applique le modèle à l’étude des paliers de bielle
de moteur d’automobile sous chargement dynamique.
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1. Introduction

This paper reviews the theory of finite element mode-based elastohydrodynamic
lubrication (EHL) analysis (as applied in a companion paper [BOE 01] to the
bearing and structural design of a dynamically loaded automotive connecting rod).
As such, it does not attempt a general bibliographical review of the finite element
method in lubrication, a task addressed elsewhere [BOU 01] in this special issue.
Rather, it is limited to an outline of several decades of work by the authors and their
colleagues, leading to their particular approach to problems of engine bearing
lubrication analysis.

Engine bearing loading presents particular problems for lubrication analysis. The
relatively high magnitude of loading introduces significant elastic deformation,
while the rapid variation of loading makes conservation of mass in cavitated films a
necessary analysis feature. Both features can be accommodated quite naturally via
finite element analysis, bringing also the usual advantages of irregular meshes for
irregular geometries. Modal analysis further allows a lower-order representation of
structural displacement patterns, resulting in a robust and efficient simulation
procedure which accommodates unrelated meshes for fluid and solid surfaces; as an
additional potential benefit, modal interpretation of dynamic behavior may be of use
in guiding structural design modifications [BOE 97b].

While engine bearing analyses typically concern cylindrical geometries, the
methods described here have equally well been applied to planar [BOE 95a] and
spherical geometries [KOT 95].

Presentation takes the form of a series of major sections covering related topics.
Topics are introduced in 'bottom-up' order, starting with basic (distributed) relations
of fluid and solid mechanics, followed by discretization via finite element analysis.
Next, fluid/solid interaction (coupling) relations are introduced in discrete form,
leading then to a discrete initial-boundary-value problem with algebraic constraints.
Finally, this 'nodal' problem is replaced by a similar lower-order 'modal' problem
through introduction of a constraining transformation to generalized coordinates.

The authors have elected an unusual mode of presentation, whereby each set of
relations is presented en bloc, followed by an explanatory commentary.

2. Fluid

2.1. Mechanics

2.1.1. Mean motion: momentum & constitution

<u> = <ua,b> - (1/12)(h2/m) ÑÑ p [1]
Couette Poiseuille
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with
<ua,b> º (ua + ub)/2  [2]

2.1.2. Power dissipation

H = HCouette + HPoiseuille ³ 0  [3]

with
HCouette º òA (m/h) Du × Du dA             ³ 0 [4]

HPoiseuilleº òA (1/12)(h3/m) ÑÑp × ÑÑp  dA  ³ 0 [5]

with
Du º  ub - ua  [6]

2.1.3. Surface tractions

t
a = - (m /h) Du + Ñ(ph/2) - p Ñ<z> [7]

t
b = + (m /h) Du + Ñ(ph/2) + p Ñ<z> [8]

with mean surface position1

<z> º (za + zb)/2 [9]

so
t

a + tb = Ñ(ph) [10]

2.1.4. Areal density: definition

r* º rh [11]

2.1.5. Lineal flux: definition

ƒ º rh < u > º r* < u >  [12]

                             
1. Mean surface position is everywhere zero for a mid-film coordinate system [BOO 89].
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2.1.6. Continuity: mass conservation

òS n × ƒ dS + (òA r* dA),t = 0  [13]

2.1.7. Commentary

Figure 1 shows solid bearing surfaces 'a' and 'b' separated by a fluid film of
thickness h.

Figure 2 shows an arbitrary cylindrical section of fluid film, its projection onto
the x-y reference plane, and 2-D mass flux and normal vectors on its boundary.

Figure 3 again shows the 2-D quantities in the x-y plane.

Detailed derivations of relations [1-13] are available elsewhere [BOO 89]. All
vector quantities therein are 2-D, lying in the x-y reference plane.

Derivation of mean fluid velocity relation [1] reflects equilibrated flow of a
purely viscous (inertialess) fluid between impervious surfaces without slip. Though
the full derivation is complex, all but the constant value can be inferred by
dimensional analysis considerations. Such purely viscous 'creeping' flows consist
only of surface ('Couette') and pressure gradient ('Poiseuille') driven components, as
seen in both the equation of motion [1] and the power dissipation relations [3-5].

Surface tractions [7,8] act on fluid surfaces 'a' and 'b' as indicated.

Relatively unfamiliar areal (as contrasted with volumetric) mass density [11] and
lineal (as opposed to areal) mass flux [12] are appropriate for thin film analysis.

Mass conservation relation [13] implies impervious surfaces 'a' and 'b' .

2.2. Mathematical forms

2.2.1. Continuity: integral (weak) form

òA ( ÑÑ × ƒ + r* ,t ) dA = 0  [14]

2.2.2. Continuity: differential (strong) form

ÑÑ × ƒ + r* ,t = 0  [15]

2.2.3. Continuity: integral (weighted) form

òA f ( ÑÑ × ƒ + r* ,t ) dA = 0  [16]
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2.2.4. Combination: continuity & motion (Reynolds equation)

ÑÑ× (h2 /12) (r*/m) ÑÑp = r* ,t + ÑÑ × r* < ua,b>
      diffusion               unsteady  steady (convection/entrainment)

= rr* ,t + Ñrr* ×× < ua,b> + rr* Ñ ×× < ua,b>  [17]
squeeze    wedge                stretch

or

ÑÑ × (h3 /12) (r/m) ÑÑp = (rh),t + ÑÑ × (rh) < ua,b>

= rh,t + hr,t squeeze

+ r ÑÑh × < ua,b> + h ÑÑr × < ua,b> wedge

+ rh ÑÑ × < ua,b> stretch [18]

2.2.5. Functional (augumented)

 J = 1/2 òA (h2/12) (r*/m) ÑÑp × ÑÑp dA

 - òA r* < ua,b> × ÑÑp dA + òA r* ,t p dA

+ òSƒ ƒ × n p dS [19]

2.2.6. Commentary

Continuity forms [14-16] evidently derive directly from [13] through application
of the divergence theorem, noting that the region of integration is arbitrary.

The Reynolds equation is of such great importance in lubrication analysis that
alternate forms [17,18] are shown and their terms appropriately identified. (It should
be noted that the labeled 'stretch' term is negligible for ordinary bearings.)

The augmented functional [19] corresponding to [17] is a common starting point
for approximate solutions.

2.3. Distributed problem formulation

2.3.1. Boundary conditions

boundary Sp : p ‘essential’  [20]

boundary Sƒ : ƒ ×× n ‘natural’  [21]
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with
S = Sp È Sƒ [22]

where Sp is non-vanishing.

2.3.2. Boundary-value problem

Satisfy combined field equation [17/18] with respect to pressure distribution p
meeting both conditions [20] and [21].

2.3.3. Variational problem

Minimize augmented functional [19] with respect to pressure distribution p
meeting only condition [20], thus meeting condition [21] naturally.

(The two problem formulations are formally equivalent [BOO 72].)

2.4. Discrete relations

2.4.1. Variational method

J = 1/2 òA (h2/12) (r*/m) ÑÑp × ÑÑp dA

-  òA r* < ua,b> × ÑÑp dA + òA r* ,t p dA

 + òSƒ ƒ × n p dS  [19]
with

p = S Ni pi [23]
gives

J = 1/2 SS pi Fij pj - S qi pi - S qe
i pi  [24]

so
¶J/¶pi = 0

gives
SFij pj = qi + qe

i  [25]

with
Fij º òA (h2/12) (r*/m) ÑÑ Ni × ÑÑ Nj dA  [26]

qi º - òSƒ ƒ × n Ni dA  [27]

qe
i = qu

i + q¶r*
i  [28]

with
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qu
i º òA r* < ua,b> × ÑÑNi dA  [29]

q¶r*
i º - òA r* ,t Ni dA  [30]

2.4.2. Weighted residual (Galerkin) method

òA f ( ÑÑ × ƒ + r* ,t ) dA = 0  [16]

with
p = S Ni pi [23]

f = S Ni f i [31]

gives essentially the same result [24-29].

2.4.3. Alternate forms

Fij º òA (h3/12) (r/m) (Ni,x Nj,x + Ni,y Nj,y) Da  [32]

qe
i = qux

i + quy
i + q¶h

i + q¶ri  [33]
with

qux
i º òA rh < uxa,b> Ni,x dA [34]

quy
i º òA rh < uya,b> Ni,y dA [35]

q�hi º - òA r h,t Ni dA  [36]

q�ri º - òA h r,t Ni dA  [37]

so if

r,t = S Nj Drj  [38]

h,t = S Nj Dhj  [39]

< uxa,b> = S Nj < uxa,b>j  [40]

< uya,b> = S Nj < uya,b>j  [41]

then
qux

i º (S òA rh Ni,x Nj dA) < uxa,b>j º Qux
ij < uxa,b>j  [42]

quy
i º (S òA rh Ni,y Nj dA) < uya,b>j º Quy

ij < uya,b>j  [43]
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q¶h
i º - (S òA r Ni Nj dA) Dhj º QDh

ij Dhj  [44]

q¶r
i º - (S òA h Ni Nj dA) Drj º QDr

ij  Drj  [45]

with
Qux

ij º òA rh Ni,x Nj dA  [46]

Quy
ij º òA rh Ni,y Nj dA  [47]

QDh
ij º - òA r NiNj dA  [48]

QDr
ij º - òA h NiNj dA  [49]

2.4.4. Commentary

Nodal flows qi and qei are here defined by [27-30] as positive inward (in direct
opposition to the commonly applied lubrication convention [BOO 72]), thus
ensuring that fluidity matrix Fij is here positive semidefinite (and singular). This
break with tradition has the effect of bringing the form of lubrication equations into
alignment with analogous ones from other fields (e.g., conductive heat transfer).

Interpolations [23, 38-41] require shape functions for specific elements.
Appendix A.1 provides a family of such functions for the commonly-used 3-node
linear triangular elements suggested by Figure 4.

Further detail requires specification of the behavior of functions h, r, m .
Appendix A.2 provides resulting matrices for these 3-node linear triangular elements
with linearly interpolated h and uniform r, m .

2.5. Discrete problem formulation

2.5.1. Pressure-flow relation

Supposing full knowledge of fluidity matrix Fij and equivalent flows qei , a
typical problem consists of n relations

SFij pj = qi + qe
i  [25]

with n complementary knowns/unknowns pi , qi .

Since either pressure pi or flow qi (but not both) is known for each node, solution
follows standard methods of finite element analysis for 'mixed' problems.

For example, pressure pi is typically known for external boundary nodes, while
flow qi is typically known (zero) for internal nodes.

Positive values of flows qi and qei inspire positive shifts in pressure pi .
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2.5.2. Work-equivalent nodal forces

Similarly

òA ph,t dA = S ri Dhi  [50]

with
= S Nj pj  [51]

h,t = S Ni Dhi  [52]

gives
SAij pj = ri  [53]

with
Aij º  òA Ni Nj dA  [54]

2.5.3. Nodal kinematics

di º hi - ci  [55]

2.5.4. Nodal equation of motion

S Cij Ddj + bi = - ri  [56]

Commentary

Explicit expressions for damping Cij and static force bi can be obtained (with
some effort) through combining relations [25], [33], [42-45], [53], [55], [56] with
specified nodal qi , pi .

(As seen below, symbolic evaluation of these coefficients is not always
required.)

2.6. Cavitation

2.6.1. Mechanics

2.6.1.1. Dynamic (mass-conserving)

(p - pcav) (rliq - r) = 0

pcav £ p

0 £ r £ rliq

m /mliq = r /rliq  [57]
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Figure 1. Bearing surfaces separated Figure 2. Arbitrary cylindrical section
by a fluid film  of the film

Figure 3. 2D projection of the Figure 4. Triangular element mesh
cylindrical section 

2.6.1.2. Quasi-static

r = rliq

pcav £ p

0 £ rliq

m  = mliq [58]
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2.6.1.3. Commentary

The distributed and discrete fluid models above can be extended to address
cavitation through treating the fluid film as a mixture of incompressible liquid and
fully compressible vapor (of negligible density and viscosity). The liquid/vapor
demarcation is assumed to be 2-dimensional.

Figure 5(a) illustrates the abrupt (non-analytic) pressure-density relations [57]
assumed for the fluid mixture, while Figure 5(b) illustrates reduced relations [58] for
a pure liquid.

2.6.2. Problem formulation

The distributed boundary-value problem given above is simply augmented by
initial specification of mixture density to form an initial -boundary-value problem.

            (a) dynamic  (b) quasi-static

Figure 5 (a et b). Mixture pressure-density relation
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2.6.3. Problem solution

The presumed scenario of cavitation under this mixture model is 3-fold:

Initiation  occurs instantaneously when pressure drops locally to its cavitation
value, whereupon mixture density begins to drop from liquid value as vapor begins
to form.

Evolution of cavitation, once initiated, proceeds temporally at cavitation
pressure and declining and/or increasing mixture density. (Transport in fixed-
pressure cavitated zones is driven entirely by the 'Couette' term of equation [1].)

Reformation occurs instantaneously wherever mixture density rises to liquid
value, whereupon pressure is no longer fixed at cavitation pressure.

Discrete cavitation algorithms can be built upon quasi-static relation [25] when
initial values of mixture density ri at internal nodes are specified initially and then
integrated forward over time ([KUM 90b], [KUM 91a,b,c], [LAB 85],
[BOE 95a]2, etc.)

At any one node, 1 of 3 variables (pressure pi, flow qi, equivalent flow q�ri) is
always unknown (though iteration may be necessary to determine which one). For
example, suppose that the fluid film is initially entirely liquid and that boundary
nodes have fixed pressure (greater than cavitation value) and null density rate flow;
for boundary nodes the unknown variable is flow. At any one interior node flow is
null, pressure is greater than/equal to cavitation value, and density rate equivalent
flow is greater than/equal to zero; iteration with quasi-static relation [25] determines
a consistent pairing of nodal pressure and density rate equivalent flow. (Nodal
density rate is then determined from density rate equivalent flow.)

If nodal density rates are used to integrate nodal density values forward in time,
the resulting “dynamic”  algorithm is mass-conserving; if nodal density is
maintained at its liquid value, the resulting 'quasi-static' algorithm is not mass-
conserving.

3. Solid

Discrete relations

Structural solids follow the conventional relations of quasi-static linear elasticity
embodied in commercial software and expressed in discretized form as

SKij dj = ri + rei  [59]
                             
2. Such “normal separation” studies are much more general than may be supposed, since the
(arbitrary) x-y reference frame can always be chosen in such a way that observed mean
tangential surface motion vanishes.
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where equivalent nodal forces re
i encompass external load, body forces, etc. Because

displacements di are relative, stiffness Kij and forces ri must be derived from their
more conventional counterparts (based on absolute displacements); detailed
formulas for such derivations are available [KUM 90, BOE 97a, BOE 00]. It should
be noted that stiffness matrix Kij is always singular, since rigid body relative
displacements di must be allowed.

4. Fluid-solid system

4.1. Discrete relations

4.1.1. Fluid

C(d,t) Dd + b(d,t) = - r (t)  [56]

4.1.2. Solid

K  d = r  + r e  [59]

4.1.3. Commentary

Singly subscripted variables are represented by singly underlined bold symbols,
and doubly subscripted variables are represented by doubly underlined bold
symbols.

– Vector c and matrices A and K  are considered fixed system parameters.

– Vector b and matrix C are known functions of d (and t).

– Vector b and matrix C depend on matrices A , F , and Qe.

– Vector r e is a known function of t.

– Matrices A , K  , and C are square and symmetric (iffi r is uniform).

– Matrix A is nonsingular, while both K  and C are singular.

Relations [56], [59] appear variously [KUM 89,90], [KOT 95], [BOE 97a,b], etc.
(These relations can be considered generalizations of other relations developed for a
very simple prototypical application [BOO 84].)

4.2. Modal problem

4.2.1. Kinematic constraint transformation

d = T d'  [60]

4.2.2. Constrained solid

K ' d' = r ' + r e '  [61]
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where
K ' º  TT K  T [62]

r ' º  TT r  [63]

r e ' º  TT r e [64]

4.2.3. Constrained fluid

C'(d',t) Dd' + b'(d',t) = - r '(t)  [65]

where
C' º  TT C T [66]

b' º  TT b [67]

r ' º  TT r  [63]

4.2.4. Constrained fluid-solid system

C'(d',t) Dd' + b'(d',t) + K ' d' = r e '(t)  [68]
or

Dd' = C' -1 ( r e ' - b' - K ' d') [69]

4.2.5. Commentary

Due account is taken of forces of constraint in forming the transformations.

The chief motivation for the transformations is reduction in system order. Owing
to the (normally radically) reduced order of the modal representation, numerical
determination of the coefficients C’  and b’  via [56] is conventional. However,
additional advantages accrue. For example, generalized coordinates d' may
themselves be more intuitively meaningful than nodal displacements d .

In principle, transformation T could be selected in a wide variety of ways.
Discrete (nodal) versions of distributed orthogonal functions would be attractive,
allowing quite seamlessly for unrelated separate meshes on fluid and solid surfaces.
On the other hand, if T satisfies the general eigenproblem [BOE 95b]

TT K  T = TT A T LL [70]

where matrix LL is a diagonal “spectral” matrix of (unknown) eigenvalues, then K’
and A' are diagonal, and the resulting transformation T is mesh-invariant (in the
sense that the basic shape of modes is invariant). This common approach also allows
relatively easily for unrelated separate meshes on fluid and solid surfaces following
a single (static) translation of T from solid to fluid mesh representation. An example
of a transformation mode family obtained in this fashion is illustrated in the
companion paper [BOE 01]. There the eigenmode shapes are shown in order of their
corresponding eigenvalues, progressing from rigid body modeshapes (corresponding
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to null eigenvalues) to successively more complex elastic modes, usually (though
not always) occurring in rough pairs. (It can be shown formally that the ordering of
suitably normalized eigenmode shapes by modal strain energy is equivalent to
ordering by their eigenvalues.)

No matter how the transformation mode family may finally be calculated, a
judicious selection from it is necessary to obtain desired reduction in system order.
As demonstrated in the companion paper [BOE 01], the selection process can be
approached iteratively, adding higher modes until apparent numerical convergence.
Fortunately, the section process need only be performed once for a particular design.

(If only rigid body modes are selected, analysis reduces to one for rigid
surfaces.)

Whatever modes are selected, modal displacements (generalized coordinates)
contained in d’ are specified initially and then numerically integrated forward in
time according to the system ODE [69]. In the event that dynamic cavitation is to be
considered, fluid mixture density r must be followed in time as well.

See [KUM  89], [KUM 90a], [BOE 95b], [BOE 97a] for details of this modal
formulation and [OLS 97], [OLS 01] for details of a variation not covered here.

5. Nomenclature

5.1. Distributed variables

t time [T]
x,y,z spatial coordinates [L]

D temporal derivative (total) [T-1]

,t temporal derivative (partial) [T-1]

ÑÑ spatial derivative [L-1]

A area [L2]

S boundary [L]

n unit outward normal [-]

h thickness [L]

c clearance [L]

d displacement [L]

m viscosity [FL-2 T]

r volumetric mass density [ML-3]

r* areal mass density [ML-2]

ƒ lineal mass flux [ML-1 T-1]

u fluid velocity  [LT-1]
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ua, ub surface velocities  [LT -1]

<z> surface position average [L]

<u> fluid velocity average [LT-1]

<ua,b> surface velocity average [LT -1]

Du surface velocity difference [LT-1]

p pressure [FL-2]

tt surface traction [FL-2]

J functional [F2L-3T]

H power dissipation [FLT-1]

f weight function [-]

Ni shape function [-]

5.2. Discrete variables

i, j, k node index [-]

n node total [-]

Fij fluidity [LT]

Qij fluidity [various]

qi flow [MT -1]

qe
i equivalent flow [MT -1]

Cij damping [FL-1 T]

Kij stiffness [FL-1]

bi static force [F]

ri force [F]

re
i equivalent force [F]

Tij transformation [L] 3

Lii eigenvalue [FL-3]
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Appendix A. 3-node triangular element
Reference: [BOO 72]

A.1. Shape functions

A typical element has 3 nodes numbered (consecutively) counterclockwise and 3
linear shape (interpolation) functions

Ni(x,y) = (ai + bi x + ci y) / (2A)             [A1]

orthonormalized such that
Ni(xj, yj) = dij              [A2]

so that more generally

SNi(x,y) = 1              [A3]
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Setting (arbitrarily)
2A = a1 + a2 + a3              [A4]

the required coefficients are thus

a1 = x2y3 - x3y2  b1 = y2 - y3 c1 = x3 - x2

a2 = x3y1 - x1y3  b2 = y3 - y1 c2 = x1 - x3

a3 = x1y2 - x2y1  b3 = y1 - y2 c3 = x2 - x1           [A5]

Differentiation gives

Ni,x = bi / (2A) 
Ni,y = ci / (2A)              [A6]

while integration gives

< N1
lN2

mN3
n > º (1/A) ò N1

lN2
mN3

n dA = 2 l! m! n! / (2+l+m+n)!         [A7]

A.2. Fluid matrices

If
h = S Nj hj            [A8]

r , m = uniform            [A9]

then
Aij = (1+ dij ) A /12           [A10]

Fij = (r/m) < h3 > (bi bj + ci cj) / (48A)                         [A11]

Qux
ij = r bi fj / 24            [A12]

Quy
ij = r ci fj / 24            [A13]

QDh
ij = - r (1+ dij ) A /12           [A14]

QDr
ij = - Gij A /60           [A15]

with

fj º ò  hk (1 + dkj) = ò  hk + hj = 3 < h > + hj                         [A16]

Gij º ò  hk [(1 + dij ) + (dik + dkj)
2 ]

= 3 < h > (1 + dij ) + 2 ò  hk d ik d kj + hi + hj           [A17]
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with

< h > = ò  hk / 3          [A18]

< h3 > = ( ò  hk ò  hk
2 + P hk ) /10          [A19]

with indicated sums and products over

k = 1 to 3           [A20]


