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ABSTRACT. The paper discusses some theoretical and mmzerical aspects of a gradient damage 

formulation. Thereby, the main motivation is provided by localization computations whereby 

classical local continuum fomzulations fait ta produce physically meaningful and numerically 

com·erging results. Therefore, we propose a fomzulation in tem1s of the Helmholtzfree energy 

incorporating the gradient of the damage field, a dissipation potential and the postulate of max· 

imum dissipation. As a result the driving force conjugated ta damage evolution incorporates 

besides the strictl_v local energy release rate essentially the divergence of a vectorial damage 

jlzLL At the numerical side, besides balance of linear momentum, the algorithmic consistency 
condition has ta be solved in weakfonn. 

RÉSUMÉ. Les aspects essentiels d'un modèle de rupture incorporant le gradient de 

l'endommagement sont discwés dans ce travail. Au niveau de la formulation, la particularité 

réside dans la définition de la I'Griable thermodynamique conjugée à l'endommagement. Celle­

ci inclut en plus de la partie classique (taln de restitution d'énergie dûe à l'endommagement) 

une contribution prenant en compte la dissipation dûe au gradient d'endommagement. Du côté 

numérique, l'endommagement est considéré conune variable nodale indépendante et/a condi­

tion de cohérence est traitée au niveau global. Les conséquences numériques de /afonnulation 
soli/ soulignées er illustrées sur des exemples simples. 

KEYIVORDS: Continuum Damage Mechanics, Gradient Regularizarion, Finite Element Method 

MOTS-CLÉS: Continuum Damage Mechanics, Gradient Regularizarion, Fini te Element Method 
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1. Introduction 

Softening at the continuum leve! due to damage accumulation mimics deteriora­
tion processes within the material at the micro scale. As a consequence of softening, 
damage tends to accumulate within narrow bands, so called localized zones. In ex­
periments these localization zones display a finite width which is related to the micro 
structure of the material. Upon further loading localized zones then most often forma 
precursor to the final rupture of the material. In a standard continuum description and 
in particular in the corresponding numerical solution schemes no finite width is ob­
tained, instead pathologically mesh dependent solutions are observed upon refinement 
of the discretization. 

Among the most effective remedies against the unphysical behavior displayed by 
a softening standard continuum and its numerical computation nonstandard contin­
uum theories have been proposed which incorporate higher gradients of those quan­
tities which are responsible for softening. Physically motivated gradient models in 
crystal plasticity were proposed, e.g. by Steinmann [STE 96] and Menzel & Stein­
mann [MEN 00]. Gradient dependent models, whereby the gradient dependence is 
essentially incorporated in the loading surface by the Laplacian of an internai variable, 
were treated by e.g. Cami [COM 96], de Barst, Benallal & Heeres [BOR 96a], Benal­
lal & Tvergaard [BEN 95]. The well-posedness of the initial boundary value problem 
for a continuum mode! was studied by Benallal, Billardon & Geymonat [BEN 93]. 

A variety of numerical strategies, different from the one proposed in this work, 
were investigated e.g. by Sluys, de Barst & Mühlhaus [SLU 93], Pamin [PAM 94], 
de Barst & Pamin [BOR 96b], Peerlings et. al [PEE 96], Steinmann [STE 99], Cami 
[COM99]. 

In this contribution the essential ingredient of gradient damage is an additional 
equation represented by the damage condition containing the quasi-nonlocal energy 
release rate. A noteworthy feature from the numerical point of view is thus the treat­
ment of the damage field as an independent variable. 

2. A Gradient damage formulation 

As a simple phenomenological measure of micro defect interactions we might 
consider the gradient of the damage field d = V' xd, which we include in the free 
Helmholtz energy 'li = 'l!(d, t::, d) of the standard local damage madel. Moreover, 
the madel is based on a dissipation potential and the postulate of maximum dis­
sipation. Therefore healing processes are excluded and a thermodynamically con­
sistent approach is envisioned. Thereby, due to the extension of the classical lo­
cal theory with the damage gradient contribution, the local dissipation inequality 
V = Y d + Y · d + P 2 0 for the who le body B incorporates the nonlocality residual 
P, which, according to the arguments by Polizzotto & Borino [POL 98] satisfies the 
insulation condition J

6
d P d1/ = 0 on the active! y damaged part of the who le body 
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IIi ili(d, E, d) = ilimac(d, E) + iligrd(d) ( 1) 

v Yd+Y·d+P='fd20 (2) 

1. Pdl' 0 with P=Yd-}'d-Y·d (3) 
Bd 

(]" a(d, E) = Of.ilimac (4) 

y Y(d, E) = -odilimac (5) 

y Y(d) = -odiligrd (6) 

y Y- divY (7) 

n·Y 0 on oB~xt Ç oB (8) 

d 0 on oBfnt (9) 

cp(Y;~~:) Y-~~: with Il:= ~~:(d) (10) 

cp(f'; ~~:) < 0 d20 dcp = 0 ( 1 1) 

(1) Free Energy, (2) Dissipation Inequality, (3) Insulation Condition of Nonlocal­
ity Residual, (4) Macroscopic Stress, (5) Energy Release Rate, (6) Damage Flux, 
(7) Quasi-Nonlocal Energy Release Rate, (8) Constitutive Boundary Conditions, 
(9) Continuity Boundary Conditions, ( 1 0) Damage Condition, ( 1 1) Kuhn-Tuc ker 
Conditions 

Table 1. Key Ingredients of Gradient Damage 

Bd Ç B. Thereby, the assumption of a bilinear form for the dissipation power V = Y d 
determines the quasi-nonloca1 energy release rate Y = }' ( E, d, d) as conjugated to the 
evolution of the independent arbitrary damage variable field in Bd Ç B. Moreover, 
applying the insulation condition, integration by parts and invoking Gauss theorem 
on the nonlocality residual yields a constitutive boundary condition (homogeneous 
Neumann b.c.) on oB~xt Ç oB for the vector field Y = Y(d) which is thermody­
namically conjugated to the gradient of the damage variable d and which we tend to 
denote the damage flux. In addition to that, it results also in the so-called continuity 
boundary condition d = 0, which is imposed on oBf,lt with oBd = oB~xt U oBfnt· 
Thus, compatibility between the evolution of the damage variable and its gradient is 
automatically assured. The quasi-nonlocal energy release rate essentially contains the 
divergence of the damage flux div Y in addition to the local en erg y release rate Y. Fi­
nally it can be stated that the damage condition and the Kuhn-Tuc ker conditions retain 
the same structure as for the local case. Therefore, we end up with a coupled problem 
for the two primary unknown fields x and d which have to satisfy a partial differentiai 
equation and an inequality constraint simultaneously, as will be shown in the sequel. 
The key ingredients of our gradient damage formulation are summarized in Table 1. 
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3. Strong form of the cou pied problem 

To set the stage for the following developments we first summarize the pertinent 
set of equations for the solution of the coup led boundary value problem in strong form. 

Let B denote the configuration occupied by a solid body. Then the displacement 
field u = u(x) and the damage field d = d(x) are parameterized in terms of the 
placements x E B. These two primary fields are determined by the simultaneous 
solution of a partial differentiai equation and a set of Kuhn-Tucker-complementary 
conditions. The boundary oB to B with outward normal n is subdivided into disjoint 
parts whereby either Neumann or Dirichlet boundary conditions for the two solution 
fields u(x) and d(x) are prescribed. The residua of the resulting coup led problem in 
strong form are displayed in Table 2. 

ru( u, d) 0 (1) 

r"'(u, d) < 0 rd(d) ~ 0 (2) 

B B" uBd and 0 =Ben Bd (3) 

Be {xE Bji{J ::; 0, d = 0} (4) 

Bd {xE Bji{J = 0, d > 0} (5) 

divu(u, d) + b = 0 

Y(u, d) - K(d) - divY(d) 

(1) Balance of Linear Momentum, (2) Kuhn-Tucker Conditions, (3) Additional 
Completeness and Non-Overlapping Requirements, (4) Elastic Solution Domain, 
(5) Damaged Solution Domain 

Table 2. Strong Form of the Coupled Problem 

4. Weak form of the cou pied problem 

As a prerequisite for a fini te element discretization the coupled nonlinear bound­
ary value problem has to be reformulated in weak form. Therefore, the equations 
in strong form are tested by the corresponding virtual quantities to render the virtual 
work expression, see Table 3. 

Note that the decomposition of the solution domain B into an active damaged 
and an inactive elastic domain B = Bd U Be and 0 = Be n Bd is indeed a quite 
implicit definition at this stage since one has to test for ali possible combinations of 
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cu(u, d; Ju) 0 'ï/Ju (1) 

G"' ( u, d; Jd) < 0 éd(d; Jcp) 2: 0 'ï/Jd, Jcp > 0 (2) 

B Be u Bd and 0 = W n Bd (3) 

Be {xE BIG'~'::; 0, (Jd = 0 'ï/ Jd, bep> 0 in Be} (4) 

Bd {xE BIG"'= 0, éd> 0 'ï/ Jd, Jcp > 0 in Bd} (5) 

G"(u, d; Ju) { Ju · tPdA + { [Ju · b- Y'x6u: a(u,d)]dV 
laB' la 

G'~'(u, d; Jd) la [Jd[Y(u, d)- ~~:(d)] + V'Jd · Y(d)] dV 

la JcpddV 

( 1) Weak Form of Balance of Linear Momentum, (2) Weak Form of Kuhn-Tuc ker 
Conditions, (3) Additional Completeness and Non-Overlapping Requirements, ( 4) 
Elastic Solution Domain, (5) Damaged Solution Domain 

Table 3. Weak Form of the Coupled Problem 

supports with ali admissible test functions. Furthermore, it is remarkably that the 
above decomposition corresponds to the pointwise complementary condition dcp = O. 

5. Discretized form of the coup led problem 

The above set of equations has to be discretized in time and space, whereby we 
apply without loss of generality the implicit Euler backward method and resort to the 
standard Bubnov-Galerkin finite element method. Th en the temporal integration of the 
primary variables u and d renders a discretized temporal update for the values Un+l 
and dn+l· Furthermore, based on the iso-parametric concept, the displacement field 
uhla. = L:k N;uk E H1(B) together with its variation Juhla. = L:k N;Juk E 
HP ( B) is elementwise expanded in terms of the nodal values uk and Juk by the same 
shape functions as the geometry xhiB. = L:k N;xk. Moreover, the damage field 
dhla. = L:k N1dk E HI(B) together with its variation Jdhla. = L:k N1Jdk E 
H 1 (B) is elementwise expanded by independent shape functions in terms of the nodal 
values dk and Jdk. Likewise, the test function Jcpla. = L:k N1J'Pk E L2 (B) is 
discretized by the same shape functions as for the damage field in terms of nodal 
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values Jr.pk. The corresponding discrete algorithmic equations of the coup led problem 
are given in Table 4. 

R~(u~+ 1 ,d~+ 1 ) 0 'v'KinE (1) 

R~(u~+', d~+ 1 ) < 0 6.R'J.:(d~+ 1 ) ~ 0 'v'KinE (2) 

E lill~+! u llll~t+l and 0 =lill~+! n lill~,+' (3) 

E~+l {K E El Rk ~ 0, 6-R'J.: = 0} (4) 

E~+l {K E El R~ = 0, 6-R'J.: > 0} (5) 

R~ A 1 N;t~+i d..-1 + I[N;bn+i - V.rN;· · u(u~+l· d~+i )] dl' 

8!3, nül3' !3, 

R~ ~ 1 [Nj [Y(u~+,,d~+,)- ~(d~+ 1 )] + 'VxNj · Y(d~+,)] dV 
!3, 

~ 1 [Nj [d~+l- d~]] dV 
!3, 

(1) Discrcte Algorithmic Balance of Lincar Momentum, (2) Discrete Algorith­
mic Kuhn-Tucker Conditions, (3) Addition al Completeness and Non-Overlapping 
Conditions, (4) Discrete Algorithmic Elastic Solution Domain, (5) Discrete Algo­
rithmic Damaged Solution Domain 

Table 4. Discretized Form of the Coupled Problem 

Note that now the discrete algorithmic decomposition of the node point set is in­
deed a complete explicit definition since one only has to check separately ali node 
points K E E. Furthermore it is remarkably that the above discrete algorithmic de­
composition corresponds to the discrete algorithmic complcmentary condition 
6-R'}.;R~ = 0 'v'K in E. 

The initially unknown decomposition of the discretization node point set into ac­
tive and inactive subsets E = E~+l U E~+l at time step tn+l is determined iteratively 
by an active set search. Thereby, the strategy is borrowed from convex nonlinear pro­
gramming as is frequently used e.g. in multi-surface and crystal plasticity. 
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An efficient algorithm for the solution of the coup led problem stated in the above 
sections is offered by a monolithic iterative strategy. Here, the discrete algorithmic 
balance of linear momentum together with the discrete algorithmic Kuhn-Tucker con­
ditions are solved simultaneously within a typical Newton-Raphson scheme. 

6. Constitutive update 

Typically, a strain-driven constitutive update algorithm has to provide the updated 
dependent variables, like stress, damage flux, etc. at ti me t n+ 1, moreovcr its consistent 
linearization is essential in order to set up the appropriate global iteration matrix for 
the quadratically converging global Newton-Raphson strategy. 

The constitutive update of the simplest geometrically linear damage prototype 
mode! for given En+l, dn+l is summarized in Table 5. Note that despite its implicit 
character the constitutive upùate does not rely on local iterations usually employed in 
standard update algorithms. 

O'n+l [1- dn+dE, : En+l ( 1) 

O'n+l E,: En+l (2) 

Yn+l -cdn+l (3) 

}'n+l 
1 
2 En+l : E, : En+l (4) 

Kn+l 
-1 1 

r/J (dn+tl = Ko- h ln(1- dn+d (5) 

(1) Nominal Stress, (2) Effective Stress, (3) Damage Flux, (4) Local Energy Re­
lease Rate, (5) Internai Variable Update 

Table 5. Update Algorithmfor Gradient Damage 

Note that the damage variable d is a given input for the update of the internai 
variable K. Thereby, for convenience of exposition we use here a simple exponential­
type evolution law for the damage evolution, which allows a closed form update for 
the internai variable K. Otherwise, an additionallocal iteration for K = rjJ- 1 (d) would 
become necessary but does not li mit the generality of the formulation proposed here. It 
is remarkable th at the linearization of the constitutive update, i.e. the tangent operator 
results in a symmetric global iteration matrix. 

Note that the update algorithm in the local case varies significantly. Here, only the 
strains En+l are given and in a first step the local energy release rate Yn+l is computed. 
Based on this the history variable Kn+l is determined from the maximum of the new 
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local energy release rate Yn+l• the old value Kn or the initial damage threshold Ko, 

respectively. Finally, the updated damage variable dn+i is computed from the new 
history variable Kn+l· Thus in contrast to the gradient update algorithm the damage 
variable dis a dependent variable in the local case. 

7. Examples 

In the above sections the theory as weil as the numerics were outlined for a gradi­
ent damage formulation. This is now applied to computational examples showing the 
performance of the elaborated mode! by modifying the gradient parameter as weil as 
discretization density in deterioration processes. 

7.1. One-dimensional bar under uniaxial tension 

!Omm 

lOO mm 

Figure 1. I-D-Madel Problem: Bar under Uniaxial Tension 

As a mode! problem we will examine in the sequel the bar in Fig. 1 under uniax­
ial tension for the sake of demonstration. The problem statement, which includes a 
slight material imperfection in the middle of the bar, is taken from Peerlings, de Borst, 
Brekelmans & de Vree [PEE 96], whereby homogeneous Neumann boundary condi­
tions for the damage flux were prescribed at the boundary. The material is modeled 
based on a linear elastic gradient damage formulation with a simple exponential-type 
evolution law for the damage evolution. The material parameters for the following 
examples are summarized in Table 6. 

The total bar is discretized with 80, 160, 320, 640, 1280 and 2560 elements. 
Thereby, due to the symmetry in the problem statement only one half of the bar is 
considered. The Joad is applied using arclength control enabling to trace the post-peak 
branch of the load-deflection curves. The main objective is to show the performance 
of the gradient mode!. Therefore as a comparison, the local mode! is also addressed. 
For different possibilities of discretization techniques for the local and quasi-local 
case we refer to Liebe and Steinmann [LIE 01]. Likewise, a two-field finite element 
formulation for elasticity coupled to local damage was proposed by Florez-Lopez et. 
al [FLO 94]. In this work, we focus on the classical approach in local damage with 
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E 

J<;o 

h 

10000.00 N/mm2 

9000.00 N/mm2 

0.01 N/mm2 

0.01 

(1) 

(2) 

(3) 

(4) 

( 1) Elastic Modulus, (2) Reduced Elastic Modulus, (3) Initial Damage Threshold, 
(4) Exponential Hardening Modulus 

Table 6. Material Parameters 

linear element expansions for the displacement. Hereby, the local damage variable 
field is not separately discretized. The element type for gradient damage reftects a 
continuous expansion in both the displacement as weil as the damage variable field. 
Hereby, it appears that the choice of linear expansions in both discretized fields yields 
the most effective and efficient results. This can be explained by considering the dis­
cretized Kuhn-Tucker conditions, which seem to be mainly affected by the choice of 
discretization order. Using quadratic expansions for the displacements renders piece­
wise linear strains and would result in a quadratic expansion of the elastically stored 
energy Y. This quantity would then be coupled with a highly nonlinear history vari­
able expression K and a piecewise constant damage gradient, which causes oscilla­
tions in both the damage variable distribution as weil as in the load-deftection curves. 
Therefore, we use linear-linear approximations (P0 1P0 1) for the following examples 
in gradient damage, which give stable results. The different element formulations are 
described in Table 7. 

Damage For­
mulation 

local 
gradient 

Discretization 1 Continuity of Ap- 1 Element Type 
Variable j proximation 

1 

u 1 cu 1 pu 1 Expansion 1 

1 u, d C 0 /C0 P 0 1P0 1 Expansion 

Table 7. Classification of Element Formulations 

Firstly, as a reference for the gradient mode! we investigate the local damage case. 
Here, in order to trigger localization we additionally introduced a graded imperfection 
in the middle of the bar. Hereby, the first element has the lowest elastic modulus and 
the neighboring elements a slightly increased elastic modulus E 9 = 9500.0N jmm 2 

compared to the rest of the bar elements with the highest elastic modulus. The re-
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sul ting load-deftection curves for the classical local P 0 1 element type are displayed 
in Fig. 2. The typical deficiency in terms of a quasi-Jack of convergence in the post­
peak branch of the curves can be observed upon mesh refinement. This is even more 
emphasized in Fig. 3 depicting the corresponding distribution of the damage variable, 
whereby a concentration of damage evolution is accumulated in on! y one element. 

600,-----,-----,------,-----,-----,~----.-----.-----~ 
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k. 300 
"0 
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_,.,._./"/ .. - .: 
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" .... 
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160 elements 

320 elements 
640 elements 
1280 elements 

1.5 2 25 3.5 

/>; 
00~-~--0~.5~--~------L-----~----~-----l----~----~ 

Deflections u 

Figure 2. Load versus Defiection ( P 0 1) 

Second! y, to overcome the Jack of discretization invariance the following examples 
are based on the incorporation of the gradient regularization in the constitutive mode! 
as described in the previous sections. First we show the quasi-mesh independence for a 
constant gradient parameter c = 100.0 upon mesh densification, see Fig. 4 and Fig. 5. 
Clearly, also for different gradient parameters the solution converges upon mesh den­
sification. Thereby, higher values of the gradient parameter render a somewhat more 
ductile post-peak behavior, see Fig. 6 and Fig. 7. In any case, the corresponding dis­
tribution of the localized zone is convergent. 

Note that the influence of modifying the gradient parameter results in a variation 
of ductility in the load-deftection curves, see Fig. 6 as weil as in the damage variable 
distribution, see Fig. 7. Hereby, the regularizing effect of the incorporation of gradi­
ents into the damage mode! is obvious as the jumps in the damage variable distribution 
in the local mode! are smoothed out in the gradient one. Nevertheless, the overall so­
lution shows a shrinkage of the localized band width upon further loading into a crack 
line mode, i.e. a graduai transition from a damaged zone into a line crack. 
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80 dements 
160 elements 

320 dements 
640 elements 
1280 clements 
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0 10 15 20 25 30 35 40 45 50 

Placements x 

Figure 3. Damage Variable Distribution ( P 0 1) 
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Figure 4. Load versus Deflectionfor c = 100.0 ( P 0 1P0 1) 
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091~ 
!\'\ 

0.8 ' 

~ 0.7 
(!) 

:0 
<Il 

~ 06 

(!) 

gjl 0.5 

E 
<Il 
Cl 

0.4 

0.3 

·Hl elements 
80 elements 
160 elements 

320 elements 
640 elements 
1280 elements 

0.2L---~----~-----L----~----L---~----~-----L-----L--~ 

0 10 15 20 25 30 35 40 45 

Placements x 

Figure S. Damage Variable Distribution for c = 100.0 ( P 0 1P0 1) 
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Figure 6. Load versus Deflectionfor constant mesh discretization (640 elements) 
and varied c = 0.0, 0.1, 1.0, 10.0, 100.0 
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c= 0.1 
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Figure 7. Damage Variable Distribution for constant mesh discretization (640 
elements) and varied c = 0.0, 0.1, 1.0, 10.0, 100.0 

7.2. Two-dimensional panel under uniaxial tension 

Finally, in order to show the performance of the damage gradient formulation in 2d 
we investigate the panel in Fig. 8 under tension. Again we have included a slight ma­
terial imperfection in the center elements. The material is modeled in analogy to the 
1 d example, see Table 6. The bar is discretized with 20x 10 and 40x20 Q 1 Q !-elements 
(continuous approximation of both displacement field and damage field). Again, we 
focus here on the damage variable distribution which emphasizes the convergent per­
formance of the gradient damage formulation as displayed in Fig. 9 and Fig. 1 O. 

-
20 

• • 
50 mm - 1 1 lw 

IOOmm 

Figure 8. 2-D-Model Problem: Panel with Center-Imperfection 
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Figure 9. Damage Distribution short/y be fore reaching d= /, c= 100, coarse mesh 
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Figure 10. Damage Distribution short/y be fore rea ching d= /, c= 100, fine mesh 

8. Conclusion 

We have dcrived a theoretical formulation and the corrcsponding discretized algo­
rithmic format of a gradient damage model. Based on a positive domain dissipation 
and the postulate of maximum dissipation we end up with algorithmic Kuhn-Tucker 
conditions in dependencc on the quasi-nonlocal energy relcase rate, which is conju­
gated to the damage evolution. On the numerical sidc, duc to this special structure, an 
active set search bccomes necessary for the monolithic iterative solution of the cou­
pied problem within a typical Newton-Raphson strategy. Nevertheless only standard 
FE-data structures and corresponding FE-modules are involved. Moreover, wc end up 
with a symmetric iteration matrix avoiding the use of a secant stiffness matrix as typ-
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ically adopted in nonlocal models. In addition to that, other gradient damage models 
usually result in a non-symmetric tangent operator, see e.g. Peerlings et al. [PEE 96]. 

Considering a mode! problem of an one-dimensional bar under uniaxial tension 
we firstly investigated the classical local element formulation with only continuous 
element expansions for the displacement. Here, the local theory resulted in spurious 
mesh dependence in particular for the damage variable distribution. This could only 
be remedied by using the gradient formulation with gradient parameters c > O. For 
verification we investigated the behavior for c = 1.0, 10.0, 100.0. Thereby, it could be 
noted that with increasing gradient parameter the solution becomes somewhat more 
ductile. In any case, mesh densification renders mesh objective results and convergent 
distributions of the damage variable field in both 1 d as weil as 2d computations. It 
is remarkable, thal a graduai transition from a damaged zone into a line crack can be 
observed in the load-deflection curves in contras! to standard gradient models. 

Therefore, it was emphasized that based on the theory and numerics underlying 
the gradient mode! advocated here, the regularization effect in damage is consider­
able. Moreover, the simultaneous solution of the discrete algorithmic Kuhn-Tuc ker 
conditions in addition to the discretized algorithmic balance of linear momentum of­
fers an elegant solution strategy in the numerical treatment of gradient damage. In 
particular it is notable that the additional discrete algorithmic loading and unloading 
conditions complemented by an active set search are implemented on a nodal basis, 
which is in contrast to alternative gradient-enhanced formulations. 
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