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ABSTRACT. An adaptive .fini te element strategy for non local damage computations is presented. 
The proposed approach is based on the combination of a residual-type error estimator and 
quadrilateral h-remeshing. A distinctive feature of the error estimator is that it consists in solv­
ing simple local problems over elements and sa-ca/led patches. The paper focuses on how the 
nonlocality of the constitutive mode/ should be accounted for when solving the se local prob­
lems. ft is shawn that the nonlocal damage models must be slightly modi.fied. The resulting 
adaptive strategy is illustrated by means of sorne numerical examples involving the single-edge 
notched bearn test. 

RÉSUMÉ. On présente une stratégie adaptative par éléments finis pour des calculs avec endom­
magement non local. La méthode qu'on propose combine un estimateur d'erreur résiduel avec 
un raffinement de type h pour des éléments quadrilatères. Une des caractéristiques principales 
de cet estimateur est que l'on résout des problèmes locaux et simples, d'abord sur les éléments 
et, ensuite, sur des domaines que l'on appelle "patches ". L'article est consacré à la descrip­
tion du traitement non local du problème. 
On montre ainsi que la loi de comportement d'endommagement non local doit être légèrement 
modifiée. La stratégie adaptative qui s'en déduit est utilisée dans des exemples numériques 
simulant le test de la poutre entaillée ( "single-edge notched bearn"). 
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1. Introduction 

Damage models are nowadays a standard approach to mode! the failure of concrete 
and other quasi-brittle materials [LEM 90]. To avoid the pathological mesh depen­
dence of numerical simulations carried out with local models, various regularisation 
techniques may be used [BOR 93]. One possibility, considered in this work, is the use 
of nonlocal damage models [PU 87, BAZ 88, MAZ 89]. The basic idea of nonlocal 
modcls is that the damage parameter that describes the loss of stiffness depends on 
the strain state in a neighbourhood (associated to a characteristic length) of the point 
under consideration. 

To ensure the quality of the finite element solution, an adaptive strategy based on 
error estimation was recently proposed by the authors [ROD 00]. A salient feature 
of the approach proposed in that reference is the extension of an existing residual­
type nonlinear error estimator [DIE 98, HUE 00] to the context of nonlocal damage 
models, where tangent stiffness matrices are not readily available. 

Attention is focused here on the fact that the error estimator is based on local 
computations over elements and so-called patches. It will be shown thal it is important 
to account for the nonlocality of the damage mode! wh en solving these local problems. 
These leads to a slight modification of the nonlocal damage mode! to be used during 
error estimation. 

An outline of paper follows. Nonlocal damage models are briefly reviewed in sec­
tion 2. Section 3 is devoted to the error estima tor. After reviewing its main ingredients 
in section 3.1, section 3.2 discusses the required modification of the damage mode! so 
that its nonlocality is taken into account during error estimation. The resulting adap­
tive strategy is illustrated in section 4 by means of two numerical examples involving 
the single-edge notched bearn test. The concluding remarks of section 5 close the 
paper. 

2. Nonlocal damage models 

The basic features of nonlocal damage models are briefty reviewed in this section. 
For the sake of clarity, only isotropie elastic-damage models are considered. These 
simple models are sufficient to illustrate how the error estimator based on local com­
putations takes into account the nonlocality of the mode!. However, the approach can 
be extended to more complex nonlocal damage models, incorporating, for instance, 
anisotropy and/or coupling with plasticity [MAZ 89]. 

The Joss of stiffness associated to mechanical degradation of the material is repre­
sented by a parame ter D, according to 

a = (1 - D)C : e, [1] 

where a and e are respectively the Cauchy stress tensor and the small strain tensor, 
and C is the tensor of elastic moduli (E: Young's modulus; v: Poisson's coefficient). 
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Paramcter D ranges between 0 (virgin material, with elastic stiffness) and 1 (com­
pletely damaged material, with no stiffness). For computational purposes, an upper 
bound of Dmax = 0.99999 is set. In this manner, zero stiffness is avoided and it is not 
necessary to remove the full y damaged elements from the mesh. 

It is assumed that D depends on astate variable Y, which in tum depends on the 
strains: 

Y=Y(e). [2] 

The basic idea of nonlocal damage models is averaging the state var~ble Y in the 
neighbourhood of each point. In this mann er, the non local statc variable Y is obtained: 

Y= { a(d)Y dV/ { a(d)dV. k lv 
[3] 

The weight function a, which depends on the distance d to the point un der consid­
eration, is typically the Gaussian 

a(d) =exp[- C~) 
2

] , [4] 

where the characteristic length le is a material parameter of the nonlocal damage 
mode!, which acts as a localization limiter and can be associated to the grain size 
[PIJ 91]. The nonlocal state variable drives the evolution of damage, 

D = D(Y). 

Damage starts .above a threshold Y0 (that is, D 
decrease (that is, D :::: 0). 

[5] 

0 for Y < Y0 ) and it cannot 

To define a particular mode!, it is necessary to specify the definition of the state 
variable, equation [2], and the evolution law for damage, equation [5]. 

In the modified von Mises mode! [VRE 95] Y depends on the first strain invariant 
h, the second deviatoric strain invariant }z and the rati~ k of compressive strength 
to tensile strength. Regarding the damage evolution for Y > Y0 , an exponentiallaw 
[PIJ 91, ASK 00] is used. The modified von Mises mode! is summarized in table 1. 
More details about this mode! can be found in [VRE 95, PEE 98]. 

3. The error estimator 

In order to control the finite element discretization errors, an adaptive strategy is 
employed [ROD 00]. It is based on the combination of a residual-type error estimator 
[DIE 98, HUE 00] and h-remeshing. The error distribution is computed with the error 
estimator and translated into desired element sizes with a so-called optimality cri teri on 
[DIE 99]. An unstructured quadrilateral mesh generator [SAR 00] is then used to 
build a mesh with the desired sizes. This iterative process stops (typically after 2 to 4 
iterations) when the relative error of the solution (i.e. energy norm of the error divided 
by energy norm of the solution) is below a prescribed threshold set a priori. 
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Damage evolution: D = 1- Yo(I__-A) 
y 

Table 1. Modified von Mises mode! 

k-1 12k 
( ) 

2 

l-2v h + (l+v)2 ]z 

- A exp [-B (Y - Y0 ) J 

3.1. A residual-type error estimator based on local computations 

The error estimator used in this work was first developed for Iinear problems 
[DiE 98] and later extended to nonlinear problems [HUE 00, DiE 00]. A detailed 
presentation and analysis can be found in these references. Here, only a brief review 
is given. 

Using a mesh of characteristic size H, the finite element method provides the 
discrete nonlinear equilibrium equation 

[6] 

where the unknown is the nodal dis placement vector uH, f}ft ( uH) is the vector of 
nodal internai forces associated with uH and f'jpt is the discretized extemal force 
term. 

To es ti mate the error in UH, a fin er mesh of size h (h « H) is used as reference. 
On this finer mesh, the problem reads 

[7) 

The error in displacements is defined as the difference between the two solutions: 

[8] 

Note, however, that computing uh is computationally rouch more expensive than 
corn pu ting uH, because it involves solving the nonlinear problem over the fine mesh, 
see equation [7]. For this reason, the basic idea of the error estimator is to approxima te 
eu by low-cost local computations over subdomains. This is a standard strategy in 
residual-type error estimators. 

The proposed approach consists of two phases. First, a simple residual problem 
is solved inside each element of the coarse mesh (interior estimate). Note that ele­
ments are the natural subdomains for the local computations. To avoid the expen­
sive flux-splitting procedures of other residual-type estimators, homogeneous Dirich­
let boundary conditions are prescribed for each element (that is, eu = 0 in the element 
boundary). 
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Figure 1. Patch associated to a node of the coarse mesh subdivided into 4 x 4 elements 
of the fine mesh 

Of course, the error is not really zero in the element boundary. For this reason, a 
second set of simple problems is solved. The idea is to use a different partition of the 
computational domain into subdomains. A natural choice is to associate these subdo­
mains, called patches, to the nodes of the coarse mesh. Since four-noded quadrilateral 
elements are used, a patch consists of one-fourth of each element sharing the node, 
see figure 1. By combining equations [7] and [8], the nonlinear problem to be solved 
on every element and every patch can be recast as 

f int(u + e ) - rext h H u - h · [9] 

These local problems are solved over the fine mesh of size h. Every element of the 
coarse mesh H is subdivided into 4 x 4 elements of size h (i.e. the fine mesh is nested 
into the coarse mesh, with h = H / 4). Due to the patch definition, every patch also 
consists of 4 x 4 elements of size h, see figure l. For the iterative solution of equation 
[9], UH is taken as an initial approximation to uh (that is, the initial approximation 
for the error is eu = 0). This means that the final state obtained with the coarse 
mesh of size H is taken as the initial state for solving the local problem over each 
elementlpatch with the fine mesh of size h. 

As a consequence, information must be projected from the coarse mesh H to the 
fine mesh h. To ensure the consistency between the various projected fields, the fol­
lowing projection strate gy is employed: ( l) Displacements and damage are projected 
over the fine mesh. To project the nodal field of displacements, the finite element ap­
proximation based on mesh H is used. The damage field must be projected from the 
Gauss points of the coarse mesh to the Gauss points of the fine mesh. A very simple 
and efficient strategy is used: the value of damage at each Gauss point of the coarse 
mesh is assigned to ali the Gauss points of the four corresponding elements of the 
fine mesh, see figure 2. With this projection strategy, the risk of unrealistic values of 
damage (i.e. D < 0 or D > 1) is precluded; (2) strains and stresses are not projected, 
but computed from the projected displacements and damage. In this manner, the con­
sistency between ali the "projected" quantities (displacements, damage, strains and 
stresses) is guaranteed. To keep the notation simple, these fields are still denoted with 
an H subscript denoting they are associated to the solution of the global problem over 
the mesh of size H, even though they are now supported by the mesh of size h. 
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Figure 2. Projection strategy for the damage field. The value at each Gauss point of 
the element of size H is assigned to the four associated elements of size h 

3.2. Accounting for the nonlocality of the mode[ 

At this point, it is important to remark that the proposed error estimator for nonlo­
cal damage models is based on local computations over subdomains (i.e. elements and 
patches). The nonlocality of the damage mode! must be accounted for when solving 
the local problems. Note that, upon mesh refinement, the element size may become 
smaller that the characteristic length le. With the proposed approach, the interaction 
between adjacent elements is considered (thanks to the loop over patches, that overlap 
elements), but not the interaction between more distant elements. However, this is not 
regarded as a significant drawback of the suggested approach; due to the weighting 
function a of the nonlocal average, see equation [4], the error in one element has a 
limited influence on the error in distant elements. Moreover, accounting for the inter­
action between distant elements during the error estimation would destroy the most 
attractive feature of the suggested approach: it consists of solving independent local 
problems. Note, for instance, that the error estimation algorithm has a computational 
cost of O(N) (with N the number of elements) and can be parallelized. 

On the other hand, it is essential that these local problems are solved taking into 
account the current mechanical properties (i.e. the damaged stiffness) of each el­
ement/patch. As discussed in the following, this implies that the nonlocal damage 
mode! must be slightly modified. 

The standard and the modified nonlocal damage models are summarized in table 
2. In the standard mode! -that is, the one used for solving the global problem, see 
equation [6]-, the error in strains e~ is computed as the symmetrized gradient of the 
error in dis placements eu and added to the strains eH to produce the strains eh over 
the element/patch. After that, th_E local state variable Yh is computed and averaged 
into the nonlocal state variable Yh. Fin~ly, damage Dh is obtained. Note that the 
nonlocal average that transforms Yh into Yh is over a local support (the element/patch 
under consideration). This fact leads to non-physical responses, especially in zones 
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Error in strains 
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Modified mode! 

Yh ~ YH + : (éH)ee _________., 
ey: Error in Y 

Nonlocal variable ey ~ ey Yh = YH + ey 

( ~: nonlocal average over local support) 

Damage 

Table 2. Standard and modified nonlocal damage models 

of large damage gradients. Assum~, for instance, that the error in strains is small and 
~h ~ SH. A small_ variation in Y is also expected. However, it may happen that 
Yh « Y H, because Yh con tains no information about nearby zones. 

This point is illustrated in figure 3, which depicts the local state variable, the non­
local state variable and the damage parameter for a given time increment in a zone of 
the coarse mesh with large gradients. The circled element has a very smalllocal state 
variable Y H, see figure 3(a), below the threshold Y0 . However, sin ce the elements to 
the right Eave large values of Yii, it has a relatively large (above Y0 ) nonlocal state 
variable Y H, see figure 3(b ), which leads to damage, see figure 3( c ). If the standard 
mode! is used to solve the local problem on the circled element during error estima­
tion, a small error in strains leads to a small variation in the local state variable which, 
after nonlocal av~aging_ over the element, results in a low value of the nonlocal state 
variable (that is, Yh « YH ). As a consequence, damage cannot increase in the circled 
element during error estim!ltion. When estimating the error for the circled element, 
the nonlocal state variable Y H, rather than the local state variable Y H, is representative 
of its mechanical properties. 

For this reason, a modification of the non local damage mode! is pr'2Posed here, see 
table 2. The difference resides in the way the nonlocal state variable Yh is computed. 
By means of a first-order Taylor expansion, the local state variable Yh is expressed as 
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YH plus an error term ey. The derivative ~~ is computed analytically by means of 
the chain rule 

dY dY h dY ]z 
-=--+--
de; dh E; dJ2 E; . 

[10] 

In equation [ 1 0], E; denotes a component of the strain vector. Ali the derivatives 
in the RHS are very simple to compute from the definition of the local state variable 
Y, see table 1 and of the strain invariants h and J 2. 

_ The error term ey is averaged over the elementfpatc~ into ey. As a consequence, 

Yh is computed as the addition of a reference value Y H, which describes the real 
damaged stiffness, and an error term ey. For doing so, it is necessary to project -by 
means of the same projection strate gy used for the damage field, see figure 2- Y H 

and ~~(eH) into the fine mesh. 

With this modified mode!, a small variation in strains does result in a small vari­
ation in the non local state variable (that is, Yh ~ Y H ). Going back to figure 3, this 
peans __!hat the damage lev~! of t~e circled element may either remain constant (for 
Yh < YH) or increase (for Yh > YH) during error estimation. 

To sum up: the standard mode! is not capable of capturing the spread of the dam­
aged zone associated to error estimation. 

4. Numerical examples: the single-edge notched bearn 

The proposed adaptive strategy is illustrated here by means of the single-edged 
notched bearn (SENB) test [CAR 93]. The geometry, loads and supports are shown in 
figure 4. A plane stress analysis is performed. The concrete bearn is modelled with the 
modified von Mises mode! with exponential damage evolution, see table 1. The steel 
loading platens are assumed to be elastic. Two sets of material parameters are used, 
see table 3. For material 1, there is a significant post-peak softening in the stress-strain 
law for concrete. For material 2, on the contrary, the softening is very slight, so the 
residual strength almost coïncides with the peak strength [PEE 98]. 

Material 1 Material2 
Parame ter Con crete Steel Concrete Steel 

E 28000 MPa 280000MPa 35000 MPa 350000MPa 
v 0.1 0.2 0.2 0.2 

Yo 1.5 x 10-4 6.0 x 10-5 

A 0.8 0.08 
B 9000 8200 

le lOmm lOmm 

Table 3. The two sets of material parameters: (a) large softening; (b) very slight 

softening 
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(c) 

0.10 
0.30 
0.50 
0.70 
0.90 
0.94 
0.98 

(b) 

Figure 3. Fields in a zone of large gradients: (a) local state variable Y; (b) nonlocal 
state variable Y; (c) damage. The damage threshold is Y0 = 1.5 x 10-4 
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Figure 4. Single-edge notched bearn: problem statement. Ail distances in mm 
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(c) (d) 

Figure 5. SENB test with materiall, initial approximation in the adaptive process. (a) 
Mesh 0: 659 elements and 719 nodes; (b)final damage distribution; (c)final deformed 
mesh ( x300); ( d) error distribution. The global relative error is 3.96% 

4.1. Test with materiall 

The results with material 1 are shown in figures 5 to 7. The initial mesh is shown 
in figure 5(a). Note that this mesh is relatively coarse, with only one element in the 
notch width. The final damage distribution and deformed mesh (ampli fied 300 times), 
corresponding to a CMSD (crack-mouth sliding displacement) of0.08 mm, is depicted 
in figure 5(b). The curved crack pattern observed in experiments [CAR 93] is clearly 
captured. The error estimation procedure discussed in section 3.2 is employed to 
compute the error field of figure 5(d). The error is larger in the damaged zone and 
near the loading platens. The global relative error (i.e. energy norm of the error in 
displacements over the energy norm of displacements) is 3.96%, above a threshold set 
a priori of 2%, so adaptivity is required. 

The error field of figure 5(d) is translated into the mesh of figure 6(a). Note the 
element concentration in the crack and the central supports. This finer mesh leads 
to a better definition of the damaged zone, see figure 6(b). The error estimator now 
detects that the largest errors are associated to the edges of the cracked zone, see 
figure 6(d). The global relative error of 2.11% is still slightly above the error goal, so 
another adaptive iteration is performed. The outcome of this second iteration is shown 
in figure 7. The qualitative results of iteration 1 are confirmed: ( 1) small elements are 
needed to control the error in the damaged zones and close to the loading platens and 
(2) error is Iarger in the edges th an in the centre of the crack. The global relative error 
of 1. 77% is below the threshold of 2%, so the adaptive iterative process stops. 

The relation between damage and error is illustrated by figure 8, which depicts 
profiles of these two fields along the crack. Note th at the two error peaks are associated 
to the edges of the damaged zone (i.e. large damage gradients). This indicates that the 
damage gradient is a good error indicator [HUE 99] for these models. 
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(c) (d) 

Figure 6. SENB test with mate rial 1, after one iteration in the adaptive process. (a) 
Mesh 1: 1155 elements and 1228 nod es; (b) final damage distribution; ( c) final de­
formed mesh (x300); (d) errordistribution. The global relative error is 2.11% 

(c) (d) 

Figure 7. SENB test with material 1, after two iterations in the adaptive process. 
(a) Mesh 2: 1389 elements and 1469 nades; (b)final damage distribution; (c)final 
deformed mesh ( x300); (d) error distribution. The global relative error is 1. 77% 

4.2. Test with material 2 

The SENB test is now reproduced with material 2, see table 3. The small value of 
parameter A leads to a stress-strain law with almost no softening. A very similar law 
has been employed to simulate the SENB test with gradient-enhanced damage models 
[PEE 98]. 

The results are shown in figures 9 to Il. The initial mesh is the same as before, 
see figure 9(a). The change in the material parameters lead to a completely different 
failure pattern, dominated by bending of opposite sign in the two halves of the bearn, 
see figures 9(b) and 9(c). A crack at the notch tip is also initiated, but it is only a 
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Figure 8. SENB test with materiall. Profiles of damage (dashed fine) and error (solid 
fine) ac ross the crack. The two error peaks are associated to large damage gradients 

(c) (d) 

Figure 9. SENB test with material2, initial approximation in the adaptive process. (a) 
Mesh 0: 659 elements and 719 nod es; (b )final damage distribution; ( c)final deformed 
mesh ( x300); ( d) error distribution. The global relative error is 3.66% 

secondary mechanism. The error estimation procedure has no difficulties in reftecting 
the change in the failure mode, see figure 9(d). The global relative error is 3.66%, so 
adaptivity is required. 

Figures JO and Il illustrate the adaptive process. Note that meshes 1 and 2 are 
quite different from the ones obtained with material 1. The global relative errors are 
2.46% and 2.13%. This value is still slightly above the threshold of 2%. However, 
an additional iteration is considered not necessary for the illustrative purposes of this 
test. 

A final comparison between the two sets of material parameters is offered by figure 
12, where the total Joad is plotted versus the CMSD for meshes 0 and 2. The results 
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(c) (d) 

Figure 10. SENB test with material2, after one iteration in the adaptive process. (a) 
Mesh 1: 776 elements and 848 nod es; (b)final damage distribution; (c)final deformed 
mesh ( x300); ( d) error distribution. The global relative error is 2.46% 

(c) (d) 

Figure 11. SENB test with mate rial 2, after two iterations in the adaptive process. (a) 
Mesh 2: 870 elements and 954 nades; (b)final damage distribution; (c)final deformed 
mesh ( x300); ( d) error distribution. The global relative error is 2.13% 

obtained with material 1 -a peak Joad of around 60 kN and post-peak structural 
softening, see figure 12(a)- are in good agreement with the experiments [CAR 93]. 
With material 2, on the other hand, the peak Joad is quite higher and no softening is 
observed, see figure 12(b ). 

5. Concluding remarks 

An adaptive strategy based on error estimation for nonlocal damage models has 
been presented. The constitutive mode! has been slightly modified in order to account 
for its nonlocality during the error estimation procedure, see table 2. The basic idea 
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(a) (b) 

Figure 12. Totalload versus crack-mouth sliding displacement (CMSD)for meshes 0 
(solid tine) and 2 (dashed fine): (a) with material 1; (b) with material2 (see table 3) 

of the modification is that the error in the local state variable, rather than the variable 
itself, is averaged. By doing so, the error estimation takes into account the real me­
chanical properties of the damaged material, while retaining its most attractive feature: 
it consists in solving simple, independent problems over elements and patches. 

The resulting adaptive strategy has been illustrated by means of the single-edge 
notched bearn test. With two sets of material parameters leading to very different fail­
ure modes, h-remeshing concentrates elements where needed according to the error 
estimator, un til the global relative error falls below an error threshold. By keeping the 
discretization error under control, it is possible to en sure the quality of the FE solution 
and assess the influence of the material parameters in an objective way. 
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