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ABSTRACT. Constitutive models based on nonlocal variables provide an effective and 
mechanically sound solution to the ill-posedness of the boundary value problem in the 
presence of damage induced softening. However, the averaging of constitutive variables 
entails other computational problems like the lack of symmetry of the tangent operator in a 
finite element approximation. ln the present paper, an isotropie local damage madel with 
symmetric tangent mat rix is presented. Two alternative nonlocal versions of the same madel 
are comparative/y discussed. ft is shawn how the symmetry of the tangent mat rix in the finite 
element approximation can be preserved formulating the nonlocal madel within the context of 
the thermodynamic nonlocal theory recent/y proposed by Borino et al. The computational 
implications of the adopted regularization technique are discussed by means of a simple one­
dimensional example. 

RÉSUMÉ. Les lois de comportement non locales permettent de reformuler de façon efficace et 
mécaniquement satisfaisante le problème aux limites initialement mal posé en présence 
d'adoucissement induit par l'endommagement. Cependant, l'utilisation de variables 
moyennes pose des problèmes numériques, comme le manque de symétrie de l'opérateur 
tangent dans une discrétisation par éléments finis. Dans ce papier, on présente un modèle 
d'endommagement isotrope local avec matrice tangente symétrique. Deux versions différentes 
non locales de ce modèle sont comparées. On montre comment la symétrie de la matrice 
tangente algorithmique peut être préservée en formulant le modèle non local avec la théorie 
non locale thermodynamique proposée récemment par Borino et al. Les conséquences 
numériques de la méthode de régularisation adoptée sont illustrées par un exemple simple 
monodimensionel. 
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1. Introduction 

In many instances of practical interest, the initiation of fracture is preceded by a 
significant strain localization phase in which the material is macroscopically integer 
and inelastic phenomena tend to be confined in a narrow region. In this phase, the 
use of continuum models with softening, like e.g. damage models, is justified. 
However, the strain softening behavior due to the development of material damage 
is weil known to produce unrealistic mesh sensitivity in standard finite element 
application. Zero energy dissipation is expected in the limit since strains tend to 
localize on a zero volume region as the mesh is refined. In statics, the failure of 
classical discretization methods can be explained, from the mathematical point of 
view, with the boundary value problem loosing ellipticity as a consequence of the 
softening material behavior. The ill-posedness of the boundary value problems 
reflects the fact that standard continuum mechanics theories are not appropriate 
when the microscopie material heterogeneity is characterized by an internai length 
which is not negligible if compared to the typical macroscopic length of the 
structure, so that the range of the microscopie interaction forces has to be considered 
long with respect to the macroscopic scale (see e.g. [GAN 00] for a recent 
discussion). 

Among the severa! regularization techniques proposed in the literature, one of 
the most computationally convenient seems the one based on the formulation of a 
nonlocal continuum (see [ERI 81] for nonlocal plasticity). The idea is that the long 
range nature of the microscopie interaction forces is taken into account at the 
macroscale by expressing the material constitutive law in terms of one or more 
nonlocal variables defined as suitable weighted averages of their local values over 
the interaction domain. In the formulation of a nonlocal mode!, severa! choices have 
to be made such as the definition of the nonlocal variable (variables), the definition 
of the weight function and the definition of the interaction domain. 

The adopted choices have important numerical consequences in finite element 
implementations (see [JIR 98] for a discussion of other aspects): the corrector phase 
of the iterative procedure, typically carried out at each Gauss point separately, may 
cease to be local [STR 96]; the consistent tangent matrix becomes non-symmetric 
[BAZ 88], [PIJ 95], [JIR 99]. The lack of symmetry has important consequences 
both from the theoretical and computational point of view. In particular a non 
symmetric mode! is not suitable for variational approaches and non symmetric 
solvers have to be used in numerical applications, with consequent increase of 
computing costs. 

In the present paper the discussion is confined to isotropie damage models. 
Within this context, it is shown that it is possible to formulate a very general 
isotropie local mode! endowed with a symmetric consistent tangent matrix. The 
mode! considered is based on the definition of two damage variables affecting the 
shear and bulk moduli separately. The consistent tensor of tangent elastic moduli is 
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derived and it is shown that it is symmetric provided that associative evolution 
equations are assumed for both damage and kinematic internai variables. 

A nonlocal formulation of the mode! is then proposed, based on the 
thermodynamic formulation of Borino et al. [BOR 99], [BEN 00]. While in 
[BEN 00] a kinematic internai variable was assumed as the primai nonlocal variable, 
in the mode! here proposed the primai nonlocal variables are the damage variables. 
Following [BOR 99], the nonlocality is transferred onto the conjugate variables 
which in the present case are the energy release rates, by means of an energy 
equivalence which allows to eliminate the so called nonlocality residual [ERI 81]. It 
is shown that, unlike in [BEN 00], the proposed mode! maintains the attractive 
feature thal ali constitutive computations can be performed locally, at the Gauss 
point leve! [PIJ 87], [COM 00], and that it gives rise to a symmetric finite element 
tangent stiffness matrix. 

A one-dimensional problem is studied for a simplified version of the mode!, with 
a single damage variable. The results obtained with the proposed dual nonlocal 
formulation and with the standard nonlocal formulation of [COM 00] are compared. 

2. A "symmetric" isotropie local damage model 

Let e =E-lj31E, be the deviatoric part of the strain tensor E, E, being its 
volumetrie part and 1 the second order identity tensor. The free energy density 
potential under isothermal conditions for the proposed damage mode! is defined as 

[ 1] 

where G0 and K0 are the initial elastic and shear moduli, respectively, d(; and dK 
are shear and volumetrie damage variables and Ç is a scalar variable of kinematic 

nature. The state equations defining the conjugale static variables are given by 

[2] 

where s = CJ- lp is the stress deviator and p = l/3 a kk is the mean stress; X is a 

static internai variable and Y(; , YK represent the elastic energy release rates. 

The activation of damage is governed by the following activation functions and 

loading-unloading conditions 
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[3] 

y being a scalar dissipation multiplier. The associative evolution equations are 
given by 

0 df 0 d - df 0 

0 i = - df y' de =-y; K -~y, S 
' dYc; uYK dX 

[4] 

Finally, the rate of dissipation density is given by 

[5] 

REMARK 1.- The presence of separate damage variables dG, d K adds flexibility to 
the mode!. The activation function may be defined in a form more suited for 
materials with non-symmetric tension-compression behavior like concrete and the 
separate evolution equations for deviatoric and volumetrie damages allow for a 
varying Poisson' s coefficient white preserving the isotropie nature of the mode!. U 

REMARK 2.- The scalar internai variable Ç accounts for material rearrangements at 
the microscale due to damage development. Damage is the only dissipation 
mechanism considered in this mode!. U 

In finite element applications, the constitutive law is integrated within a time­
step, in the corrector phase of the iterative procedure, according to an Euler 
backward-difference scheme. This implies computing ali derivatives in [4 at the end 
of the step. At the end of the corrector phase, a relation between stress and strain 
increments is implicitly obtained: Llcr = Llcr( LiE) . In the subsequent predictor phase, 
the consistent tangent elastic tensor is computed by differentiating this relation 

under the assumption of continuous loading in the increment, i.e. 

[6] 

with ali quantities evaluated at the end of the step. Taking into account eqs. [43 and 
23], one has 

[7] 
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After sorne algebra, the explicit expression of the consistent tangent elastic 
tensor is obtained as: 

&J=D'd :& 

D'' '2G0 (1-d0 )1 @1 +[ K, (1-d, )-~G, (1-d0 )-Ki A[ :ç, J' e;} ® 1 + 

[8] 

where 1 ® 1 denotes the fourth order symmetric identity tensor of components 

(1@ 1 )ijhk = 1/2 ( oihojk + oikojh). 

3. Nonlocal version of the "symmetric" isotropie damage model 

The nonlocal version of the model is obtained substituting one of the constitutive 
variables by its weighted average over the whole domain Q of the structure. The 
averaged quantity reflects the effect of the interaction at the microscale between the 
considered material point and the neighboring points. The decaying effect of the 
interaction with the distance is taken into account by the weighting function. In the 
literature, there exist severa) proposais concerning the choice of the nonlocal 
variable (see [JIR 98] and [GAN 99] for a recent discussion on the subject). From 
the computational standpoint, the most convenient choices are those which allow to 
carry out the constitutive calculations locally at each Gauss point, without 
introducing any coupling at constitutive leve) as, e.g., in [PIJ 87] and [COM 00], 
where the strain invariants have been selected as nonlocal variables. In the present 
context, this would imply defining two nonlocal variables as follows 

with: 

( ) 
= W0 (JJx - sJI) 

W X,S - ( ) , w x w, (Il• -•Ill, exp[ Jx ~n· w (x), Lw, (IHI)"' 
[10] 

le being a material internai length related to the width of the Iocalization zone. The 

particular definition of the weighting function W accounts for the effect of the 

boundary on the nonlocal interaction at the microscale and allows to reproduce in a 

simple way a uniform field. In other words, if YG is constant over the body, it seems 
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logic and desirable that also Y;, be uniform. However, the adopted definition of W 

in [ 10] 1 is such that W (x, s) ;t W ( s, x) . This Jack of symmetry of the weighting 

function entails that also the consistent tangent operator is not symmetric for the 

nonlocal mode! [BAZ 88], [PIJ 95], [JIR 99] even if the consistent tangent operator 

of the underlying local mode! is symmetric. 

A more rigorous treatment of the boundary effect could be inspired to 
homogeneization techniques for periodic structures in the proximity of geometrie 
boundaries (see e.g. [LEG 97]). 

The non-symmetric nonlocal version of mode! [1]-[5] is governed by eqs. [ 1], [2] 
and by the following activation conditions and evolution equations 

f (Y;,' YK, x) ~ 0, y ~ 0; y f = 0 

~ =- {)J y 
a x 

[ 11] 

A symmetric nonlocal formulation of the same local damage mode! can be 
achieved following the thermodynamic nonlocal approach of Borino et al. 
[BOR 99], [BEN 00]. An application of that theory to the present mode! which 
preserves the computational advantages of the above non-symmetric nonlocal mode! 
is obtained by assuming that the damage variables are the variables reflecting at the 
macroscale the microscopie interaction due to the heterogeneity of the material and, 
therefore, have to be considered nonlocal [BAZ 88]. Hence, one can set: 

where: 

The dissipation rate density takes the expression: 

[ 14] 

P being the so called nonlocality residual representing the energy exchanged 
between the considered material point and other points belonging to its interaction 
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domain due to the intrinsic nonlocality of the developing damage mechanism. The 
fact that the system is thermodynamically isolated implies the following insulation 
condition [ERI 81], [BOR 99] 

[15] 

The insulation condition allows to eliminate the nonlocality residual and to 
transfer the nonlocality onto the dual variables of the nonlocal damage variables 

defined in the mode!, i.e. the energy release rates ~; and YK. One can write 

From the insulation condition [15] it follows that: 

Having in mind the definitions [ 13], from eq. [17 one obtains 

where W * is the adjoint function of W, i.e. 

3 

c: 
.Q 2 
ü 
c: .a 
"' c: 

~1 
-~ 

W*(x,s)= Wo(llx-sll) with W(s)= Lwo(llx-sll)dx 
W(s) " 

..[)....W(.44L,s) 

-w·(.44L,s) 

--<>-- W(.11 L,s) 

"' :2. 
"' ~ 
3: 

1.2 l 

0.8 

[ 16] 

[17] 

[19] 

-D-Ic/L=0.2 
--lc/L=0.1 

0.6 +----r--~-~--~-----. 
0.2 0.4 0.6 

s/L 
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x/L 
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(a) 

Figure 1. a) One-dimensional weight functions W( x,s) and W*( x,s) for varying 

position x over a bar for l/L=0.2; (b)function foLw * (x,s )ds for varying 

characteristic length le 
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A plot of the weight functions W and W* centered at various positions over a bar 
of length Lis shown in figure la where the influence of the boundary on the shape 
of the weight function is also evidenced. The activation function and the evolution 
equations [3] and [4] are now written in terms of the dual nonlocal variables as in 
the non-symmetric non-local mode! [ 11] 

y ;?:0; y f =0 

~ =- df y 
a x 

[20] 

REMARK 3.- A dual nonlocal damage mode! based on the thermodynamic approach 
has been presented by Benvenuti et al. [BEN 00]. In their mode!, however, on! y the 
kinematic internai variable Ç has a nonlocal nature, while the damage variable is 
local. While the issue of the most appropriate choice seems to be still open from the 
mechanical point of view, from the computational standpoint the definition of a 
nonlocal kinematic internai variable leads to a nonlocal constitutive problem in the 
corrector phase of a standard finite element implementation. On the contrary, the 
integration of eqs. [20] leads to the same local, and therefore computationally 
convenient, problem as in the non-symmetric mode! [11] [COM 00]. [J 

REMARK 4.- The weight function used for the definition of the dual nonlocal 
variables in [ 18 does not allow for the reproduction of a uniform field as, in general 
(see figure lb), 

f W* (x,s )ds = J Wo (llx -sll) ds * 1 
n n W (s) 

[21] 

However, in the absence of damage, it appears to be an obvious requirement that 

a uniform strain field generates a uniform field of strain energy release rates 5';; and 

YK. Therefore, in the applications, the weight function Win eq. [10] 1 will be used 

for fG and fK, while the weight function W* in [19] will be used for ~; and dK, 

satisfying in this way condition [ 17]. U 

The algorithmic tangent matrix can be computed for the dual nonlocal mode! 
following the procedure proposed by Jirâsek [JIR 99]. Let 

[22] 

be the vector of internai equivalent nodal forces and let u be the vector of nodal 

displacements in a fini te element discretization. Let N8 be the total number of Gauss 

points used to carry out the numerical integration over ali the elements in the mesh. 
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and let N;c• be the number of Gauss points where f(Yc,YK,x)=O and Y >0 at 

the end of the correction phase. Let us also defi ne the following quantities at Gauss 

points q and p 

Acu,, = Aq ( :~ y , AKK, = A" ( ()()~ y , Ac;K, = AKc, = Aq ( :~. ()()~ î l G )q l K )q l (, K )q [23] 

where A is defined in [7]z. After sorne algebra one obtains the symmetric elasto­

damage tangent matrix K'd 

N Na.:t N 

-f!t{wPW/ù1WpqWq~ [ -\;c;,K~1 UUTK~;p + (24] 
p=l q=l 1=1 

+AcK, (K~;,uuTK~P + K~,uuTK~;p )+ AKK,K~, uuTK~P ]} 

where w P denotes the Gauss weight at Gauss point p and 

[25] 

represent the deviatoric and volumetrie contributions of the same Gauss point to the 
initial undamaged stiffness matrix. In [25], D0 is the matrix of initial elastic moduli, 
Be and BK are compatibility matrices such that: 

e(x) = BG (x)u, Pfv (x)= BK (x)u [26] 

and pT = {1/3 1/3 1/3 0 0 0}. It should be noted that in [24 the index p runs 

over the whole set of Gauss points. This is because the global damage variable at a 

point varies as a consequence of the variation of the local damage at any point in the 

body. Thus, even though at a point o_ne has y = 0 and the material point unioads 

elastically, at the same point one has d -:;; 0 if there is at !east one active point in the 

structure. By contrast, the index q runs only over the active Gauss points since it 

concerns the dependence of the nonlocal damage variables at point p on their 

corresponding local variables which are zero at inactive Gauss points. On the basis 

* * of these considerations and noting that, while wpq -:;; wqp and wpq -:;; wqp ' one has 

WP"w"; = W,"w";, the symmetry of K'd can be easily assessed. 
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4. A simple nonlocal damage model 

To study the effects of the dual nonlocal regularization described in the previous 
Section a simple model, with only one damage variable d, is considered. 
Applications of the two damage variables model to concrete problems will be 
presented in a forthcoming paper. The simplified model is based on the following 
free energy density: 

[27] 
-k (1-Ç)[ln" _c_+ n ln"_,_c_ + n (n -1)1n"-2 _c_+ ... +n !ln-c-+ n !] 

1-Ç 1-Ç 1-Ç 1-Ç 

where 0 0 is the undamaged elastic tensor and k, c and n are material parameters. The 
state equations are given by: 

3 

'<?2 
a.. 
;:;;. 
Ul 
Ul 

~ 
êiî 1 

0 0.0002 0.0004 0.0006 0.0008 0.001 

strain 

Figure 2. Stress-strain behavior for the simple damage mode[ for varying n 

The activation function, loading-unloading conditions and evolution equations 
are defined as: 

t (f.x) = f- x~ o, r ~ o, tr = o 

d
. at . . =-=r=r. ()y 

Ji df . . .,=--r=r a x 
[29] 

and therefore the kinematic internai variable Ç coïncides with the damage variable d. 
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The local mode! is such that, in one dimension, the stress vanishes only 
asymptotically, for E--t oo, but with a bounded fracture energy density. This can be 
seen by specializing the mode! to one dimension. For E > E0 , E0 being the strain at the 
linear elastic limit, from the condition/= 0, one has (figure 2) 

Ee 2 ;; 

[ 

1 1 
a =cexp -( 2k) EE [30] 

E denoting the Young's modulus. The fracture energy density is defined as 

[ Il 2 -
1 ~ 1 2 ~ EE " 

g1 =-Eé~ +f adE =-EE0 +f cexp -(-) EEdE 
2 ~ 2 ~ 2k 

[31] 

If 1 denotes the in te grand in [31 ]z, the boundedness of g 1 can be established 
noting that 

lim _!_=0 
E->~ ljE 

[32] 

The nonlocal variables d and f are defined according to [13] and [18] taking 
into account Remark 4, i.e. 

J(x)= faw*(x,s)d(s)ds, f(x)= faw(x,s)Y(s)ds [33] 

The symmetric consistent tangent matrix can be computed for the simplified 
mode! following the same procedure as in the previous Section 

[34] 

5. One-dimensional numerical application 

The simplified damage mode! is used for the simulation of a tensile test on a 
prismatic bar. The problem data and geometry, together with the adopted meshes are 
shown in figure 1. To trigger the damage localization, the elements at the left 
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boundary have been slightly weakened. The problem has been solved adopting two 
nonlocal approaches: (model A) the non-symmetric approach of Comi [COM 00] 
based on the definition of nonlocal strain invariants (in this simple case coinciding 
with the energy release rate); (model B) the symmetric dual nonlocal approach of 
Borino et al. [BOR 99] in the form discussed in Section 3. Note that different values 
of le have been adopted for the two models to obtain comparable damage 
accumulation in the part of the bar where unloading occurs after localization. 

The parameter le can be identified using a back-analysis technique based on one 
dimensional tests where the width of the process zone is measured. Alternatively, an 
analytical approach can be pursued where le is related to the length of the stationary 
harmonie localization wave (see e.g. [SLU 93]). This type of study has still to be 
carried out for the symmetric nonlocal model considered here. 

• L= 100mm • 

JXI><J><J><D<J :u,R 

~ 
~ 

A = 100 mm2 (cross section) 
E= 30000 MPa 
v= o. 
k= .00015 MPa 
C= 2.72 
n=2 
le= 20 mm (modelA) 
le= 15 mm (model 8) 

Figure 3. One-dimensional test problem: geometry, adopted meshes and mate rial 
data 

As shown in figure 4, both approaches provide an effective regularization of the 
problem as the results in terms of reaction force versus imposed displacement 
rapidly converge towards a mesh independent solution. From figure 4, it appears that 
the dual regularization technique produces an initially more ductile response with a 
subsequent very steep drop of the reaction force. The displacement controlled 
analysis cannot proceed further due to a global snap-back behavior which is not 
observed in the analysis with mode! A regularization. Both behaviors can be 
observed in uniaxial tension tests depending on the material properties and testing 
conditions. Since the present numerical test does not simulate a physical experiment, 
it is not possible to assess which one of the two results is more realistic. 

The longitudinal strain evolution obtained by means of the two regularizations is 
shown in figure 5. While model A regularization gives rise to a sharp strain 
localization, the model B technique produces a smoother profile with a much lower 
peak value developing at a significant distance from the boundary, where sorne 
elements have been weakened. This is a consequence of the effect of the boundary 
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due to the particular shape of the weight function as already mentioned in Section 3 
(see figure 1). 

- 2 
"' a.. 

:::;;: 

0 00 0.01 
u [mm] 

madel B 

madel A 

0.02 

Figure 4. Reaction per unit cross-section area versus imposed displacement with 
nonlocal models A and B: convergence with meslz refinement 
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2E-4 

SE-4 

U:.01 08 

OE+O - OE+O 

20 40 60 80 100 20 40 60 80 

(a) 
axial position [mm] 

(b) 
axial position [mm] 

Figure 5. Strain evolution for imposed displacement u: (a) madel A; (b) madel B 

100 

The difference is less pronounced in terms of local damage profiles, as illustrated 
in figure 6a for a displacement u=0.0168 mm. Again, with mode! B regularization 
the damage peak is offset with respect to the boundary. lt should also be noted that 
for equal imposed displacement u, the mode! A regularization leads to a higher 
damage peak. The comparison between the local and nonlocal damages in mode! B 
analysis is shown in figure 6b. It can be noted that the nonlocal damage presents a 
sharper peak though at al most the same value of the local one. 
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Finally, the stress profiles are shown in figure 7. It turns out that the dual 
regularization has the beneficiai effect to reduce the stress oscillation caused by the 
weighting process [JIR 99]. Furthermore, in both cases stress oscillation tends to 
reduce as the mesh is refined. 

"' 0> 

E o.5 
"' "0 

(a) 

20 40 60 60 100 
axial position [mmJ 

"' 0> 

1.0 

E o.5 
"' "0 

(b) 

non local damage 

20 40 60 60 100 
axial position [mmJ 

Figure 6. lmposed displacement u=0.0168 mm: (a) damage profiles d (x) for 
models A and B; (b) local d (x) and non local d (x) damage profiles for mode[ B 

- 2.0 .. 
c.. 
~ 
;;u 
"' ~ 
u; 1.0 

0.5 

model B ... 
modelA 

u = .0148 mm 

80 elements 

40 elements 

20 40 60 80 100 
axial position [mm) 

Figure 7. Stress distributions along the bar for mode! A and mode! B upon mesh 
refinement 
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6. Conclusions 

The finite element implementation of a family of isotropie nonlocal damage 
models has been discussed. Attention has been focussed on the issue of the 
symmetry of the consistent tangent opera tor. 

A rather general isotropie local damage mode! based on two damage variables 
affecting separately the shear and bulk moduli has been presented. The explicit 
expression of the consistent tangent matrix has been derived and it has been shown 
that symmetry is obtained provided that associative evolutions are postulated for the 
damage and the internai variables. Then the mode! has been re-formulated as a 
nonlocal mode! following the approach proposed in [PIJ 87] and [COM 00] which 
consists of assuming as nonlocal variable the elastic energy release rate. This has the 
advantage that ali constitutive calculations can be carried out separately at each 
Gauss point during the corrector phase of the standard finite element iterative 
procedure. The consistent tangent matrix for the considered nonlocal mode! is weil 
known to be non-symmetric [BAZ 88], [JIR 99]. 

A nonlocal version of the same mode!, based on the thermodynamically founded 
nonlocal theory recently put forward by Borino et al. [BOR 99] and preserving the 
symmetry of the underlying local mode! has also been formulated. In this new 
version of the mode!, the nonlocal nature, originally conferred to the damage 
variables, is transferred to their conjugate variables, the energy release rates, on the 
basis of an energy equivalence which allows to eliminate the so called nonlocality 
residual. The explicit expression of the finite element tangent stiffness matrix of the 
new nonlocal mode! has been derived and it has been shown that it is symmetric. 

A one-dimensional test has been carried out for a simpler nonlocal mode! based 
on a single damage variable. The regularization property of the dual nonlocal 
formulation has been assessed even though the issue of the influence of the 
boundary conditions with the development of a significant boundary layer seems to 
deserve further consideration. 
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