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ABSTRACT. The inelastic response for quasi-brittle mate rials is due to generation and growth 
of oriented mesocracks. A 3D madel taking into account most of effects induced by this kind 
of damage is outlined. The emphasis is put on the modelling of damage by me soc rack growth 
and frictional sliding on closed mesocrack lips. From a numerical point if view, a pure/y 
implicit local integration scheme has been chosen for bath damage and sliding evolutions. 
This method has been found panicularly adapted to the damage modelling at stake here. 
Although the proposed madel couples two dissipative phenomena, the numerical integration 
is facilitated by a law degree of effective connection between the equations governing each 
evolution. Simulations of boundary-value problems illustrate the peninence of the coupled 
madel. 

RÉSUMÉ. Le comportement inélastique des matériaux quasi fragiles est dû à la création et à la 
croissance de mésofissures orientées. On décrit ici un modèle 3D prenant en compte la 
plupart des effets induits par ce type d'endommagement. On insiste sur la modélisation de 
l'endommagement par mésofissuration et du glissement avec frottement sur les lèvres des 
fissures fermées. D'un point de vue numérique, un schéma d'intégration purement implicite se 
trouve particulièrement adapté au traitement de l'évolution de l'endommagement. Bien que le 
modèle associe deux phénomènes dissipatifs, l'intégration numérique est facilitée par le 
faible degré de couplage entre les équations régissant les deux évolutions. Des simulations 
par éléments finis illustrent enfin la pertinence du modèle couplé. 
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1. Introduction 

This paper addresses sorne issues concerning the modelling of the behaviour of 
quasi-brittle materials, comprising sorne rocks, concrete, ceramics ... These materials 
share the same damage process, namely the generation and growth of decohesion 
mesosurfaces (mesocracks). This phenomenon induces a degradation of the effective 
properties of the material. Besides, the generally oriented nature of flaws gives rise 
to a number of characteristic events such as induced anisotropy, volumetrie 
dilatancy, irreversible stress/strain effects, dissymmetry between tension and 
compression, unilateral behaviour due to crack opening/closure, dissipative frictional 
sliding on closed mesocrack lips ... The purpose of this paper is to summarize most 
salient features of a mode! capable of taking into account most of the above 
phenomena insisting specially on its numerical implementation and applications for a 
set of engineering problems concerning concrete structures. 

The postulate of combining both physical pertinence and numerical simplicity led 
the authors to search a third way between micromechanical and phenomenological 
approaches: the former propose an accurate picture of the real mechanisms but their use 
is frequently limited to particular loading paths due to inherent complexities 
encountered; the latter are generally designed to be easily implanted in Finite Element 
codes but suffer from a lack of physical motivation. Section 2 of this paper describes a 
3D damage mode! by mesocrack growth, originally proposed by Dragon [DRA 94], 
and recently developed by Halm and Dragon [HAL 96], [HAL 98]. Its particularity 
lies in its modular nature, with two main parts: 

- A first step deals with the modelling of the mesocrack growth as weil as with 
the moduli recovery phenomenon due to crack closure (unilateral effect). The 
emphasis is put on the stress continuity requirement when passing from open to 
closed cracks (and vice versa). Thus, f. ex., tension-compression cycles can be 
modelled. 

-The second leve! couples damage with a second dissipative phenomenon, 
namely frictional sliding on closed mesocracks and allows to simulate more complex 
loading paths (torsion, f. ex.). 

The purpose of the mode! depicted in Section 2 is to pro vide an efficient tool for 
resolving boundary-value problems involving non linear behaviour of quasi-brittle 
solids. Thus, a great care is taken of accuracy and simplicity of the numerical 
integration scheme related to both independent mechanisms as weil as to the coupled 
mode!. It is worth noting that the use of an implicit integration scheme for damage 
leads to the resolution of a linear equation, while classical elastoplastic models 
require more complex numerical treatment. Moreover the low degree of coupling 
between the two equations governing respectively damage and sliding evolutions 
avoids to solve an intricate non linear system. Details are given in Section 3. 

In order to illustrate the pertinence of the coup led model and the efficiency of the 
integration algorithm, the constitutive equations have been introduced in 
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Code_Aster, the Finite Element code developed by Electricité de France. Section 4 
provides comments on sorne boundary-value problems underscoring the ability of the 
mode! for efficient structural analyses of concrete structures. 

2. Anisotropie damage and sliding model 

This section outlines the salient features of the anisotropie damage mode! by 
Dragon et al. [DRA 94], [HAL 96], [HAL 98]. The particularity of this mode! lies in 
its modular structure, each part dealing with a given dissipative mechanism: damage 
by mesocrack growth (with unilateral behaviour) and frictional sliding on closed 
mesocrack lips. The behaviour of the mesocracked material is assumed to be rate­
independent, isothermal and restrained to small strain. 

2.1. Damage by mesocrack growth and unilateral behaviour 

The mode! at stake here aims at describing the progressive mesocrack-induced 
anisotropie degradation and related behaviour of elastic quasi-brittle solids. It is 
based on a series of assumptions combining micromechanical considerations and 
macroscopic formulation: 

(i) Damage is described by a single internai variable, a second-order tensor D 
conveying information on crack orientation: 

[ 1] 

where ni stands for the normal of the i-th set of parallel cracks and d(i)(S) is a 
dimensionless scalar function proportional to the extent S of decohesion. The form 
[ 1] de ri v es from micromechanical considerations [KAC 92]. From a macroscopic 
point of view, Onat and Leckie [ONA 88] prove that D must be an even function of 
ni, and then at !east quadratic. The spectral decomposition of D leads to: 

3 

D = :Lokvk ®vk 
k=l 

[2) 

Expression [2] can be macroscopically interpreted as follows: any system of 
microcracks can be reduced to three equivalent orthogonal sets of cracks 
characterized by densities Ok and normal vectors vk. 

REMARK.- Unlike the case of« 1-d » models (the value of d is then bounded by 0 
and 1), values of the DiFcomponents within the relative tensorial representation 
cannot be straightforwardly interpreted in the same simplistic manner. In fact, when 
considering the scalar dimensionless density function di(S) as a part of the 
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micromechanical interpretation of the damage tensor D, one can - for a particular 
nature of defects considered (e.g. penny-shaped microcracks) - interpret di(S) in 

~>~ 
terms of the conventional crack density re = _,_· - . In such a case, d(S) can 

v 
theoretically vary within the interval [0,1]. So, one can state that Dij-components 
values take their micromechanically licit values in the interval [0,1] while the 
effective control of the evolution equations (including their algorithmic 
management) and local instability phenomena generated by the CDM mode! put 
effective limits weil below this conceptual absolute bound of unity. That is why such 
a damage mode! has to be associated with tools of detection of relevant local 
instabilities (i.e. localisation bifurcation) in the context of computational algorithms 
for efficient structural analysis. This association has been achieved for the first leve) 
of the mode) (frictionless damage mode! without unilateral behaviour), see 
[DRA 94]: it allows to correctly predict the incipience of localisation phenomena 
within 3D framework. The localisation detection is not treated in this paper. 

(ii) Micromechanical studies [KAC 92] show that 3D damage configurations 
should be rigorously described not by the single variable ~_[ 1], but by two damage 
parameters, namely D and its extension to the fourth-order D : 

However, when cracks are open, the influence of D can be neglected and the 
single variable D appears sufficient to mode) the degradation of solids containing 
cracks. Under compressive loading, favourably oriented cracks may close,_!eading to 
an elastic moduli recovery phenomenon. In this case, the contribution of D into the 
overall elastic properties can no longer be neglected. In order to maintain t_!le 
macroscopic interpretation [2], the complementary fourth-order entity (named D) 
necessary to account for the unilateral effec!Js directly built with the eigenvalues and 
eigenvectors of D and slightly differs from D : 

3 

D = _L.Dkvk ®vk ®vk ®vk 
k=l 

Note that there is no new information in D with respect to D, so D is not 
considered as a new damage variable. 

(iii) One assumes the existence of a thermodynamic potential (free energy per 
unit volume w), function of strain E, damage D and the fourth-order damage 
parameter D , and generating a form of elastic orthotropy for D -:f. 0, in connection 
with the three eigensystems [2]. Assurning linear elasticity and non interaction 
between cracks, the tensorial functions r~presentation theory [BOE 78] gives the 
general form of the terms entering w(E,D, D (D)): 
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w(E,D) == '12 À(tr E) 2 + Jl tr(E.E) + g tr(E.D) +a tr E tr(E.D) + 2f3 tr(E.E.D) 

-(a+213)E:[~H(-vk.E.vk)Dkvk ®vk ®vk ®vk lE [3] 

H stands for the classical Heaviside function and activates or deactivates the D­
term depending on whether the k-th equivalent set of mesocracks is open (vk.E. Vk>O) 
or closed (vk.E. vk~O). The proof for the form of the opening/closure criterion 
vk.E. vk==O can be found in [HAL 96]. À and J.! are the classical Lamé constants; a 
and 13 are material constants related to modified elastic moduli for a given damage 
state. The factor (a+213) in front of the Î> -term is obtained by assuming a total 
stiffness recovery in the direction normal to the closed crack. The linear term, 
reading g tr(E.D), generates residual phenomena for DtoO. The elastic stress cr and the 
damage thermodynamic force F 0 are determined by partial derivation: 

aw 
cr== - ==À (trE) 1 + 2Jl E +gD+ a [tr(E.D)I + (trE)D] + 213 (E.D + D.E) 

dE 
3 

- 2(a + 213) L H( -vk .E.vk )Dk (vk .E.vk )vk ®vk 
k=l 

0 dW 
F == -- ==-gE- a (trE) E- 213 E.E an 

3 

+(a+ 213) L H( -vk .E.vk )(vk .E.vk ) 2 v k ®vk 
k=l 

The forms of w, cr and F 0 respect the continuity conditions for multilinear elasticity 
[CUR 95], so that these functions remain continuous despite the presence ofH. 

(iv) The evolution of D, corresponding to the brittle, splitting-like crack kinetics, 
has been found to follow the normality rule with respect to a criterion in the space of 
components of the proper thermodynamic force F0

. The damage evolution is thus 
apparently following the principle of maximum dissipation and is related here to 
tensile (positive) straining E+ and to actual damage pattern. It should be stressed 
however that the particular damage criterion proposed in [DRA 94] f(F0,D)~O is 
explicitly dependent on the part FOI+== -gE+== F0 -F02-F0 I- of the driving force F0

. 

F0 I is the strain energy release rate term related to residual effects: F0 I == -gE, F02 

represents the remaining recoverable energy release rate. The former term is 
d d 0 h l' 0 FOI+ + + p+ 0 h p+ 0 0 l' h ecompose mto t e sp 1ttmg part == -gE , E == :E, w1t a positive 1ourt -
order projection operator selecting positive eigenvalues from strain, and the non­
splitting part Foi- == -g(E-E+). The damage criterion and rate-independent damage 
evolution law are thus as follows: 
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f(FD-FDI-_Fm,D) = ~itr[(Fo -Fol- -Foz).(Fo -Fol- -Foz)] 

+ B tr[(F 0 -F 01
- -F 02 ).D]- (C 0 +C

1
trD) $ 0 

[4] 

Note that the damage model including the unilateral effect necessitates the 
identification of eight material constants only, which can be relatively easily 
determined, see f. ex. [HAL 01]. 

2.2. Frictional sliding on closed mesocrack lips 

Even if it takes into account the unilateral effect the previous mode) does not 
restore the shear moduli when cracks close, assuming thus that cracks are perfectly 
lubricated. Because of the roughness of the crack lips and the consecutive friction, 
this assumption appears too strong: experimental data involving loading-unloading 
cycles for specimens undergoing frictional sliding on the lips (torsional tests for 
example) exhibit a shear moduli recovery in the direction parallel to the crack plane, 
due to blocking of crack lips displacement. The work by Gambarotta and 
Lagomarsino [GAM 93] proposes a 3D micromechanical model for this phenomenon 
which constitutes a progress with respect to sorne earlier 2D attempts. This section 
provides a macroscopic formulation suitable for boundary-value problems involving 
frictional sliding. It is built within the same thermodynamic framework as for 
damage and is based on following hypotheses: 

(i) Sliding occurs within the crack plane. A micromechanical study ([KAC 92], 
considering this time that crack displacement has no opening component) leads to 
the following possible expression for the sliding variable: 

Si stands for the cracked surface of the i-th set of parallel mesocracks of normal 
ni, Ç/ the sliding following the direction gi, V the representative volume element. As 
the influence of D reduces to that of three equivalent sets according to [2], y can be 
written in the analogous manner: 
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where v\ k = 1 ,2,3 are the D-eigenvectors. 

(ii) Frictional blocking induces a macroscopic recovery of the shear moduli. In 
Expression [3], the degradation of the shear moduli is related to the 13-term in the 
first line. Invariants involving y will thus replace the previous 13-term in the free 
energy w(E,D,y) taking into account this additional dissipative phenomenon. Due to 
the particular structure of D and y and the fact that only simultaneous (y,D)­
invariants enter w, two additional invariants convey useful information: tr(E.y.D) and 
tr(y.y.D). 

(iii) According to the points (i) and (ii), the following expression is proposed for 
the free energy of the sol id containing sliding cracks: 

w(E,D,y) = Yz À (tr d + f..l tr(E.E) + g tr(E.D) + a tr E tr(E.D) + 213 tr(E.E.D) 
3 

+ L H(-v k .E.Vk )[-a E: (DkLk): E- 213 tr(E.E.Dk) 
k=l 

+ 413 tr(E.yk .Dk)- 213 tr(yk .yk .Dk)] 

with Lk = vk ®vk ®vk ®vk and Dk = Dkvk ®vk. The coefficients 413 and -213 
in the last line have been calculated by assuming: (1) the continuity between the 
expressions of w corresponding respectively to open and closed cracks, (2) sliding y 
is equal to the strain E in the crack plane at the very closure moment. The elastic 
stress as weil as the thermodynamic force related to D contains the contribution of 
each equivalent set (open or closed, sliding or blocked): 

is: 

a= À (trE) 1 + 2f..l E + gD+ a [tr(E.D)I + (trE)D] + 213 (E.D + D.E) 
3 

+ LH(-vk.E.vk)[-2aDk(vk.E.vk)vk ®vk 
k=l 

-213 (E.Dk + Dk .E) + 213 (yk .Dk + Dk .yk)] [5] 

F0 =-gE- a (trE) E- 213 u 
3 

+ LH(-Vk.E.Vk)[a(vk.E.Vk) 2 Vk ®vk +213Lk :(E.E) 
k=l 

The thermodynamic force related to sliding concerning a particular equivalent set 

Fyk =- ~~ = H( -v k .E.V k )[- 213 (E.Dk + Dk .E) + 213 (yk .Dk + Dk .yk)] [6] 

(iv) The mode! considers frictional non-sliding/sliding phenomena on mesocrack 
lips on a macroscopic scale by an approach similar to that to damage. Although it is 
widely employed in many models [HOR 83], [GAM 93] ... , the Coulomb's criterion 
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is not suitable in this context because of its micromechanical formulation. The 
pertinent quantity governing sliding on an equivalent system k is the thermodynamic 
force Fyk (which can be physically interpreted as the sliding energy release rate). One 
assumes that the sliding criterion explicitly depends on the norm of the tangential 
part Fyn of the force Fyk and on the normal strain vk.E.Vk. Unlike the Coulomb's law, 
the normality rule with respect to the function defining the reversibility domain has 
been found to keep a strong physical sense: it indicates a connection between y and 
FyTk indicating that sliding occurs in the crack plane (as long as damage axes do not 
rotate). The sliding convex reversibility domain hk can be written as: 

where p is a friction coefficient in the sense meant by the above thermodynamic 
force (tangential component)- normal strain relationship, and: 

The normality rule gives: 

2.3. Damage and sliding coupling 

The both dissipative phenomena (damage and frictional sliding) described 
independently in the previous paragraphs may occur simultaneously under particular 
loading paths. One assumes that the splitting-Jike kinetics considered in 
Paragraph 2.1. is stiJl valid for closed sliding cracks even when they branch: after a 
short transitional distance, cracks tend to grow perpendicularly to positive principal 
strain direction (see, f. ex., [BAR 97]). The sliding evolution law needs a rewriting, 
especially when the principal axes of Dk rotate (for Dk-non-proportional loading 
paths): in this case, sliding tends to depart from the crack plane and thus the driving 
force for sliding has to incorporate not only the tangential part FyTk of fYk but also a 
fraction of the normal part fYNk. Let be the following partition of Fyk: 

L fYk = ~ + FyNk = ~ + 413({Dk)vk®Vk- 413(E:Dk)Vk®vk 
~ ~ 

= Fk - 413(E:Dk)vk®vk 
Fk is the appropriate part of Fyk to enter the expression of the criterion hk taking 

into account Dk-axes rotation and avoiding discontinuities when cracks open 
[HAL 98]. Note that in the case of proportionalloading paths (i.e. f:Dk=O), the term 
Fk reduces to FyTk. 
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h\F",vk.E.Vk) = ~+ tr[Fk .Fk] + pv k .E.Vk ~0 ifvk.E.Vk~0 
The normality assumption leads to: 

[7] 

REMARK.- It was obvious for the present authors that controlling the following 
effects: (i) damage-induced anisotropy, (ii) damage related volumetrie dilatancy, (iii) 
damage related residual effects, (iv) rigorous 3D treatment of the unilateral problem, 
(v) idem for the frictional resistance and sliding effect for closed microcracks 
involving the dissipative coupling with damage, should first have been embraced 
within the framework of classical local approach. The non locality of constitutive 
equations, which can be now postulated for particular purposeful aspects of the 
mode!, would allow enlarging its domain of pertinence by e.g. casting the underlying 
hypothesis of non interacting microcrack in the actual one and treat the problems of 
clustering and related enhancement vs. shielding microcracks interactions. This is 
planned as further work. 

3. Numerical treatment 

In order to treat complex boundary-value problems, an accurate numerical tool 
has to be associated with the previous mode!. The strong non linearity of the damage 
and frictional sliding mechanisms requires a time integration algorithm for the 
evolution of the damage variable D and of the sliding variable y. This section 
summarises the local (i.e. for each integration point of a Finite Element 
discretization) integration scheme for both evolution laws [4] and [7], After dealing 
separately with damage and sliding mechanisms respectively, the coupling of the 
both ones is considered. 

3.1. Local integration for the damage mode[ 

Let 1 be the time interval [O,T], with the partition 1 = u:, [t,, t,+1 ]. Given the 

mechanical state 'Ir= (t,,D,,yk,,a,) at time t, and the prescribed strain increment dE (such 

as Er+t = Er + dE), the integration problem amounts to calculate the stat 

q,+1 = (Er+t.Dr+t.'Y"r+t.(Jr+t). Since only damage evolution is concerned in this paragraph, 
y" is considered constant (y",= y",+t). The tensors Er+t. Dr+t and a,+1 are determined by: 

Er+t =Er+ dE 
Dr+t =D,+ dD 
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[8] 

with Ga standing for Relation [5]. This calculation comprises two steps. 

(i) Elastic prediction: First, the increment is assumed elastic, i.e. ~D = O. One 
checks whether the mechanical state (Er+~oD,) meets the condition: 

If [9] is satisfied, the elastic prediction coïncides with the solution of the 
problem. Then, 

Dr+l =D, 

and 0",+1 is calculated by [8]. Otherwise, if f(Er+~oD,)>O, the mechanical state has to be 
corrected in order to determine the increment ~D. 

(ii) Non linear correction: The incrementai formulation leads to the following 
formulation for the damage evolution: 

+ 

with GD (ê;+l' Dr+l) = t:r+l + B Dr+l 
~2 tr(ê;+l <+l) 

The increment ~D depends on E+r+l and Dr+I> i.e. the value of E+ and D at the end 
of the integration interval [t,,t,+d· This assumption corresponds to a fully implicit 
integration scheme, which is known for its unconditional stability [ORT 85] 
whatever ilE is. It is worth noting that unlike for most of elastoplastic models, the 
implicit scheme is weil adapted to the damage model presented in Section 2.1: in 
fact, the damage multiplier increment M 0 is obtained by solving the criterion 
f(E+r+I>Dr+l) = 0 which reduces to a linear equation whose solution is: 

tr E ;+1 
Yr+l = + B trD, 

~2 tr(E;+ 1.E;+1 ) 

Z,+1 = ~tr(E;+l"ê;+J+Btr(E;+I"D,) 
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3.2. Local integration for the sliding mode[ 

In this paragraph, damage is assumed constant (Dr+l = D,). The sliding integration 
follows the same scheme as for damage. 

(i) Elastic prediction: The step is assumed elastic Ci'r+l = '(,). The damage 
eigenvalues D\+1 and eigenvectors v\+1 are known, so the value of F\+1 entering hk 
is given by: 

Fk Fyk 4A Dk ( k k ) k 'X' k r+l = r+l + 1-' r+l V r+I·Er+I·V r+l V r+I\CIV r+l 

Then the value of hk is checked: 

1 (Fk Fk ) k k - tr r+l · r+l + PV r+I'Er+l .V r+l 
2 

If h\+ 1 ~0, '(,+1 = '(, and the mechanical state is fully determined. Otherwise (if 
h\+1>0), the frictional sliding evolution undergoes the following correction. 

(ii) Non linear correction: The sliding increment !:!.'( is obtained by solving the 
following system: 

[10] 
[ 11] 

Equations [ 10] and [ 11] stand respective! y for Equations [6] and [7]. Again, this 
system corresponds to an implicit integration scheme. But white the damage 
integration reduced to a linear equation, the above system remains non-linear and its 
solving necessitates a Newton-Raphson algorithm. 

3.3. Fully coupled mode[ 

The bath above dissipative mechanisms (damage and frictional sliding) may 
occur simultaneously along particular loading paths. The problem is then to 
determine the coupled increments !:J.D and !:!.'( simultaneously. The integration is 
here facilitated by the low degree of effective connection between fon one hand and 
hk on the other: whereas hk is a function of D and '(, f only depends on D and the 
equation f = 0 can be solved without explicit reference to sliding. The general 
algorithm is as follows: 

(1) The value of vk.E.Vk of the normal strain for each equivalent microcrack 
system is checked. 
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(2) If vk.E.v~O, the corresponding system is open; sliding does not occur and 11D 
is calculated as described in Paragraph 2.1. 

(3) If vk.E.vk::;o, the corresponding system is closed and may slide. Both criteria f 
::;o, hk::;o are checked; 11D and 11'( are calculated, if necessary, by solving 
successive! y f = 0 for the damage evolution and later hk = 0 for the sliding one. 

REMARK.- The numerical algorithm is apparently standard and this constitutes 
paradoxically a non negligible contribution: the model deals with two strongly 
coupled dissipative phenomena (damage by mesocrack growth, frictional sliding) 
with on! y nine material constants. However, the particular structure of the equations 
governing the evolution of the internai variables, optimised somewhat by the 
modelling procedure, allows a classical backward difference time integration scheme 
to be efficient enough in spi te of the complexity of the mechanisms at stake. 

4. Numerical example 

This section presents an application of the mode! for structural analysis. The 
three major phenomena, i.e. degradation, unilateral effect and frictional sliding are 
illustrated. A numerical simulation of boundary-value problem requires an efficient 
tool including a reliable mode! (in the case of damage mode! with unilateral effect, 
great care must be taken of the continuity of the response) and of an efficient 
integration scheme. With the implicit scheme used, the tangent operator has a great 
influence on the time needed by the simulation. 

4.1. Geometry and loads 

The numerical test is carried out on a slab with a symmetrical double edge notch. 
The material constants are given in Table 1. This set has been identified for a 
Fontainebleau sandstone. The geometry of the specimen is described in Figure 1. 
The structure is constrained against x- and y-displacements along the lower edge A1-

A2 and the lower half A 2-B2 of the right-hand side. Stress is applied on the top face 
A3-Â! and the upper half of the left-hand side A4-B4 via sheets considered to be 
infinitely rigid that are stuck to the test specimen. The upper face ArA4 is 
maintained in the horizontal position and the left face A4-84 in the vertical position. 
The test specimen is first subjected to a positive displacement of ArÂ!, then a 
compressive force Pn is applied; finally, in addition to the compressive force, a 
shearing force P, is applied. The slab is meshed by QUA4 elements under the 
hypothesis of plane stress. The concerned mesh appears in Figure 2: while relatively 
rough, it has been refined in the critical areas, i.e. in the central band and around the 
notches. 
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Figure 1. Geometry oftlze test specimen 

À(MPa) ~(MPa) a(MPa) ~(MPa) g(MPa) Co(MPa) C1 (MPa) B (1) p(MPa) 

26 250 17 500 1 900 -20400 -110 0.001 0.55 0 2 500 

Table 1. Constitutive parameters 

4.2. Mesocrack growth 

Figure 2 shows a damage map during the first stage of the loading history, i.e. 
tension (by displacement imposed) on A3-~. More precisely, the damage presented 
here is the component Dyy of the damage tensor. Due to the strongly brittle behaviour of 
sandstone, damage rapidly localizes around the notches for a low leve! of Dyy 
(maximum about 0.12) and becomes quasi-negligible in the central slab section. 
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Figure 2. D, .... map 
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The unilateral effect is observed in Figure 3, (force P" vs. difference of the 
vertical displacement of the two edge points in the right notch). After a degradation 
in the first stage of the loading history, the unloading stage exhibits two major 
effects: first the appearence of residual strain-like quantity ô for Pn = 0 and second 
the stiffening of the material caused by the mesocrack closure. 

B,OOE-01 
Pn (kN) 

3,0E-02 

-1 ,60E+00 

Figure 3. P n vs. 8 (difference of the vertical displacement of the two edge points in 
the right notch) 
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4.4. Frictional sliding 

The first stage of the loading generates microcracks, principally concentrated 
around the notches. After crack closure (stage 2), a shear loading is applied. Figure 
4a shows the intensity of the frictional sliding: even if numerous microcracks are 
located close to the notches, one observes a high density of sliding cracks within a 
band crossing the sample. Even the central zone, damaged to slighter degree than 
near-notch zones, is affected by this effect. However, due to the very low levet of 
damage, the incipience of frictional sliding does not notably influence the 
distribution and the leve! of the stress (f.ex., Von Mises stress, Figure 4b): the 
difference between the values of Von Mises stress with or without frictional sliding 
does not exceed a few percent. The damage localization phenomenon acts here as an 
inhibitor for the sliding mechanism. This precocious influence of localization is 
corroborated by recent works [GIR 00]. Frictional sliding may influence more 
drastically the stress distribution for more ductile materials such as sorne concretes. 
Further work (sorne of which being under way) deals with this subject. 

. , ... ·-···~- ........ : ..... .-~ -i·~--~---· 

: ····-··~··---_._;._,~-~-----+•••t;·-·-·.-
'·• ·-·-·-·' '•-: '' ,_,.__; •' ..-T• ~-t • :--

Figure 4a. Sliding Yxy map Figure 4b. Von Mises stress map 

S. Conclusion 

The vocation of the mode! depicted in this paper is to pro vide the engineer with an 
efficient white physically motivated tool for structural analysis: it seems that a 
reasonable compromise has been found between the pertinence of the 3D theoretical 
formalism and its applicability for industrial boundary-value problems. The constitutive 
equations and the required continuity of the stress-strain response stem from the tensor 
functions representation theory and the multilinear functions theory, the latter applied to 
managing unilateral effects linked to damage deactivation. Although two coupled 
dissipative phenomena - mesocrack growth and frictional sliding on closed mesocrack 
lips - are considered, the low degree of numerical coupling between the respective 
equations goveming these two mechanisms allows a convenient algorithmic treatment 
and FE implementation; an example of application of the mode! shows its capacity to 
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illustrate the mesocrack growth and the recovery of effective properties. Further works 
attempt to clarify whether the localization effects are premature compared to intrinsic 
material and structural response, i.e. whether they represent a specifie excessive mode! 
tendency to be amended. It could be done, f. ex., by introducing sorne rate-dependance 
into the mode! which would in this manner account for genuine viscosity of engineering 
materials like concrete and would contribute as a regularizing factor for numerical 
calculations. Another axis of prospective short term research is to quantify on a broader 
basis the effects induced by frictional sliding. 
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