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ABSTRACT. As fracture in metal forming is maint y due to the development of ductile damage 
and in arder to represent the damage of anisotropie sheet-metals, an extension of the Gurson 
madel is presented and implemented in the context of plane-stress state for shell elements. 
With the damage madel, a failure criterion has to be used to signify the void coalescence but 
it is questionable whether the critical void volume fraction is a material constant. The void 
coalescence failure mechanism by internai necking is cons ide red by using the Thomason 's 
plastic limit-load model. The paper closes with a numerical and experimental study of the 
failure of rectangular strips of a titanium alloy in severa/ Nakazima's experiments conducted 
by the authors. The potential advantage of using the Gurson mode[ with the Thomas on' s void 
coalescence mode[ is discussed in the framework of sheet metal forming simulation. 

RÉSUMÉ. La rupture dans les opérations d'emboutissage est principalement due au 
développement de l'endommagement ductile. Pour représenter la rupture des tôles 
anisotropes, une extension du modèle de Gurson est proposée et implémentée dans les 
éléments de coque en état de contraintes planes. Avec le modèle d'endommagement, un 
critère de ruplure par coalescence des cavités est utilisé mais la question de savoir si la 
porosité critique est une constante du matériau est posée. Le mécanisme de coalescence par 
striction interne de l'espace entre cavités est considéré en utilisant le modèle de coalescence 
de Thomason. Une étude expérimentale et numérique de la rupture d'un alliage de titane 
dans des essais de type Nakazima est présentée. L'avantage potentiel d'utiliser le modèle de 
Gurson avec le modèle de coalescence de Thomason est discuté dans le cadre de la 
simulation de la mise en forme des tôles. 

KEYWORDS: damage and coalescence models, sheet metal-forming, simulation of failure, 
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1. Introduction 

The increasing use of sheet-metals with high elastic-limits and with a limited 
formability such as aluminum or titanium alloys, leads to new problems in the 
simulation of the sheet forming processes of these materials, In the experiments 
conducted by the authors to determine their Forming Limit Diagrams (FLD), it is 
currently observed that necking is immediately follows by failure and crack always 
appears. Moreover, the necking of the sheet is hardly visible and consequently, 
plastic-instability theories alone fail to predict the failure of these sheet-metals. 
There are severa! ways to achieve analysis of failure occurrence in sheet-metal 
forming. One way consists to carried out a conventional F.E. simulation and by post­
processing the F.E. results, in using an experimental necking-failure curve, to detect 
the zones where risks of cracks can occur. 

On the other-hand, a large number of macroscopic fracture criteria for failure 
which occurs after necking have been evaluated by many authors consisting of 
products, integrais and sums of macroscopic stresses and strains. To determine the 
values of these criteria at the onset of failure, both experiments and F.E. simulations 
are needed. When applying these criteria, it was found that the main factor affecting 
the accuracy is the mode in which failure takes place, mainly under deep-drawing or 
under stretching conditions. The equivalent Mises-stress was judged best for the 
prediction of both deep-drawing and stretch-drawing cracks but the locus of 
maximum equivalent stress does not necessarily coincides with the locus of failure 
in the sheet. Moreover, the thickness distribution may also indicate the wrong locus 
of failure since this parameter is operation dependant and there is no material 
dependant critical sheet thickness reduction. 

Also there is a need in the simulation process to achieve better localization of the 
onset of failure. This can be expected by the coupled approach where the damage 
process is incorporated into the constitutive relations and necking criterion. Many 
investigations have shown that ductile fracture involves four successive damage 
processes which are the nucleation of voids from inclusions, void growth, void 
coalescence and cracking propagation. One constitutive equation to account for 
these processes is the Gurson's mode! [GUR 77], which was derived in an attempt to 
mode! a porous isotropie plastic material containing randomly disposed voids. As 
suggested by Doege and co-workers [DOE 93], we have already extended the 
Gurson mode! to anisotropie matrix behaviour and implemented with dur shell 
finite-elements suitable for simulating sheet-metal forming processes [BRU 96,97]. 
In these papers, the onset of necking may be found numerically by mathematical 
considerations due to the fact that the strain state gradually drifts to plane strain after 
the onset of Joad instability [BRU 97 ,98]. 

In this paper where a titanium alloy sheet is tested, a refined approach is 
presented due to the fact that failure occurs just after a very small necking. If the 
Gurson's damage mode! demonstrates the softening effect of the material, the mode! 
itself does not constitute a fracture criterion. Therefore, a criterion of void 
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coalescence which determines a critical porosity has to be used to simulate the 
initiation of material failure. Tvergaard and Needleman [TVE 84] have introduced 
the so-called critical void volume fraction at which voids coalesce, which in the 
present study is tïrst determined by fitting numerically the load-displacement or 
engineering strain curve of the tensile test. However, the critical void volume is not 
unique. 1t depends on the choice of void nucleation mode! and the corresponding 
parameters. Moreover, at the authors knowledge there is no sound theory or method 
at present available in the literature for the choosing of void nucleation mode!. As 
suggested by Zhang and Niemi [ZHA 94,95], a second method to determine the 
critical porosity is tested by using the modified Thomason's plastic limit-load mode! 
of internai necking [THO 85,90]. Fully compatible with the Gurson's damage 
mode!, the main feature of the Thomason's void coalescence mode! is that the 
material failure initiation is a natural process where the void coalescence is not 
needed to be fitted beforehand. The finite element analysis of necking-failure of our 
Nakazima's tests on a titanium sheet-alloy for different strain-paths will show the 
potential ad van tage of this criterion. 

2. Damage model 

The coupled approach where the damage process is incorporated into the 
constitutive relations and necking criteria is expected to achieve better localization 
of the onset of necking and failure. For example, it is frequent! y observed in actual 
production processes that steel and aluminium sheets exhibit different forming limit 
curves even if both have the similar n-hardening coefficients. 

2.1. Extension ofGurson-Tvergaard damage mode[ 

Failure in metal forming is mainly due to the development of ductile damage. 
Needleman and Triantafyllidis [NEE 78] found that the predictions of forming limit 
for voided sheets based on the Gurson damage mode! are qualitatively in accord with 
experimental results. By Finite Element analysis using a membrane theory, Chu 
[CHU 80a] examined the effects of void growth on forming limit under punch 
stretching, also Chu and Needleman [CHU 80b] examined the influence of void 
nucleation on the forming curves. A primary extension of the Gurson-Tvergaard's 
mode! has been used in the context of plane-stress and orthotropic materials 
implemented in shell finite elements in order to simulate our Marciniack's tests by 
Brunet, Sabourin and Mguil-Touchal [BRU 96]. The mode! of Gurson is based on the 
observation that the nucleation and growth of voids in a ductile metal may 
macroscopically be described by extending classical plasticity to cover effects of 
plastic dilatancy and pressure sensitivity of plastic flow. Tvergaard [TVE 81,82] have 
proposed a first modified form of the original Gurson's yield criterion by introducing 
three coefficients q1,q 2 ,q 3 in order to better fit the corresponding three-dimensional 
fini te element solutions: 
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[ 1] 

In Eq. (1) for micro-voided material, f*(f) is the damage function of the micro­
void volume fraction or porosity f and the Tvergaard's constants q 1=1.5, q2=1 and 

q 3 = q ~ as coefficients of the void volume fraction and pressure terms, instead of 

q1 = q2 = q3 = 1 in the original Gurson's model. crY describes the hardening of the 

fully dense matrix material by crY = h("fP) and p is the macroscopic hydrostatic 

stress. q is the effective Von-Mises stress of the macroscopic Cauchy stress tensor cr 
which is expected to be replaced here by the quadratic orthotropic such as Hill 
[HIL 48] effective stress or non quadratic as: Hill [HIL 79,90] or Barlat and Lian 
[BAR 89]. The 3/2 factor in the 'cosh' term stands for isotropie material, it must be 
slightly modify here in order to be consistent with the original paper of Gurson 
[GUR 77]. Liao, Pan and Tang [LIA 97] have established the modified yield 
criterion for porous sheet metals containing spherical voids based on Hill's quadratic 
yield criterion to describe the matrix normal anisotropy and planar isotropy. The 
closed-form yield criterion is a function of the anisotropy parameter r which 
represents the mean ratio of the transverse plastic strain rate to the through thickness 
plastic strain rate under in-plane uniaxial loading conditions. For ali possible plane­
stress conditions, the anisotropie yield function is expressed as: 

q 
2 

[ 1 + 2r 3p l z CZ, = - 2 + 2q/ * cosh - --_- -- - (1 + ql * ) = 0 
cry 6(l+r)cry 

[2] 

As anisotropie yield criterion is approximate in nature, it is possible to maintain 
the Tvergaard's coefficients in Eq. [2] but in the following it is assumed that 
q1 = 1.45. In this case, it is worth noticing that the modified Gurson's model only 
differs from the original one Eq. (1] by: 

[3] 

In sheet metal forming applications, we are generally concerned with plane stress 
conditions. Consider x,y to be the « rolling » and « cross » directions in the plane of 
the sheet, z is the thickness direction. Based on Hill quadratic yield function, the 
yield function q is defined in the orthotropic axes x,y as: 

[4a] 

where: 



{ }T - J } and 
(J - l(J xx • (J yy • (J xy 
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-h 

f+h 

0 

[4b] 

The parameters f,g,h and n are the dimensionless Hill' s ma teri al coefficients 
which are defined in terms of the Lankford's coefficients r0 , r45 , r90 as: 

h=___:g___ g=t-h f= ra n=(r90+raX2r4s+1) r=ra+2r4s+r90 lSJ 
1 +r0 r90 (1 +r0 ) 2r90 (1 +r0 ) 4 

The Lankford parameters are determined by three experiments in the various 
directions as pointed out by their different indices. If f = g = h = l/2 and n = 3/2, the 
Von Mises isotropie yield function is recovered. The equivalent stress function q 
gives the current size of the yield surface but due to the anisotropy, the direct 
Eulerian constitutive law based on this criterion is not objective. In arder to assure 
the objectivity, the rotating frame formalism is applied. The axes of orthotropy of 
the Hill criterion can be updated by a rotation which can be chosen as the material 
spin rate w (co-rotational stress-rate) or from the polar decomposition F = RU 
(Green-Nagdi stress-rate). Since the elastic strain are assumed to be small and from 
practical sheet forming applications, the differences between these different 
rotations are very small. 

The flow rule is derived from the yield potential Eq. [1] or [2], the presence of 
the hydrostatic pressure in the yield function results in non-deviatoric plastic strains: 

[6] 

The hardening of the full y dense matrix material is described through cr = h(EP). 
The evolution of €P is assumed to be governed by the equivalent pl~stic work 
relation: 

[7] 

2.2. Damage evolution 

The damage mode! takes into account the three main phases of damage 
evolution: nucleation, growth and coalescence: 

[8] 
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The micro-void volume fraction increment due to nucleation may be expressed 
by the normal distribution mode! of Chu and Needleman [CHU 80b]: 

[9] 

In this strain controlled nucleation mode!, the normal distribution of the 

nucleation strain has a mean value EN , a standard deviation sN and f N is the 

volume fraction of voids which could nucleate if sufficiently high strains are 
reached. With the normal distribution, the major part of voids nucleates between the 

effective plastic strain values: €P =EN -SN and [P =EN +SN. However, a 

continuous nucleation mode! with one constant can also be chosen in place or 
combined with Eq. [9]. 

[10] 

Growth of existing voids is based on the apparent volume change and law of 
conservation of mass and is expressed as: 

[ 11] 

Finally, the modification of the yield condition to account for coalescence and 
final material failure is introduced trough the function f*(t) specified by Tvergaard 
and Needleman [TVE 84]: 

{

f* = f 

f*=fc+8(f-fJ 

With the accelerator ratio: 

[ 12] 

[ 13] 

( = 1/ q 
1 

is the ultimate value off* at ductile rupture, fe is a cri ti cal value of the void 
volume fraction when the coalescence of micro-voids occurs and the stress-carrying 
capability of the ma teri al sharply drops and finally, fris the void volume fraction for 
which the stress-capability totally vanishes (final failure). 

The analysis of equations [8] to [13] shows that the material damage behaviour 
depends at !east on the values assumed by four to six damage parameters, depending 
on the choice of the nucleation mode!. Consequent! y, the predictive capability of the 
damage mechanics mode! depends on the goodness of the finding of these 
parameters. A optimisation procedure is needed to match the experimental and 
numerical finite element results as regards the loads vs. displacement curve in a 
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tensile test. In this paper, such a first choice has been carried out by means of an 
inverse identification approach which will be described in paragraph 4. However, 
whether the critical porosity is a material constant, or whether the critical porosity is 
independent of the stress state, is questionable. Moreover, we have found that the 

value of f c is dependent of the choice of the nucleation model, then the set of 

damage parameters must be considered as a whole in this case and not as a set of 
independent material parameters. 

3. Computational aspects 

3.1. Explicit solution procedure 

The four node quadrilateral shell element with five degrees of freedom per node 
and plane-stress state is adopted for the spatial discretization of the sheet. The 
through thickness shearing stresses are also taken account and in order to avoid the 
well known shear loc king of this ki nd of element, the assumed strain field method of 
Dvorkin and Bathe is used [DVO 84]. A large numbers of analysis have shown that 
sheet forming processes can be analysed successfully by both the implicit static 
method and explicit dynamic procedure if the latter is run at a relatively low speed 
(<10 m/s). With the use of Jumped mass matrix, the advantages of the explicit 
dynamic algorithm is that the stiffness matrix does not need to be formed and the 
contact conditions are modelled accurately in a simple manner because of the 
requirements of small time steps. Moreover the material behaviour can be complex 
which is the case with internai damage variable Jeading to softening of the material. 

3.2. Integration of constitutive equations 

1t is known that one of the best algorithm for integrating constitutive equations is 
the Backward Euler or implicit scheme. However, in case of plane-stress condition, 
the out of plane component of strain is not defined cinematically and must be added 
as an extra unknown in the local Newton iteration scheme. This fact and the 
presence of 'cosh' terms in the yield function and flow rule may lead to numerical 
difficulties when the damage variable increases rapidly. The authors have chosen a 
sub-stepping scheme on the modified Euler algorithm which incorporates error 
control. This approach is suitable with explicit dynamic analysis since it takes 
advantage of the small time step required by the overall stability Ji mit. 

Then on each sub-step, the following set of incrementai forms of equations are 
used to compute the plane-stress increments: 

[14] 
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where ~cre} is the elastic stress increment vector and [D] the elastic (3 x 3) matrix 

satisfying the plane-stress assumption. From the normality of the flow rule of plastic 

strain increments, the plastic multiplier dÀ is eliminated with the following set of 
equations: 

M P = -dÀ o<l> and 
ap 

Eq. [ 1] and Eq. [3] are used to yield: 

with 

Defining the gradient vector {a} so that: 

k 3qof* . {-3qopl 
1 =---sm ----

2q 2crY 

where it is found that for plane-stress state: 

k
2 

=k, E(a(, +ar)+{aY[nRa} 
31-v 

The equivalent plastic work Eq. [7] gives the effective strain increment: 

[ 15] 

[16] 

[ 18] 

[ 19] 

Use ofh' the hardening modulus of the matrix in Eq. [18] and in Eq. [19]1eads to: 

where [20] 

The plastic out-of-plane strain increment can be now written as: 

[21] 

Notice that if the void volume fraction f = 0 then k 1 = 0 and the plastic 
incompressibility is recovered. 

For the first order Euler algorithm the stress at the end of a sub-step is given by: 

[22] 
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and it is the same for each internai state variable, the effective strain and porosity f 
where ali quantifies have been evaluated at the stress state {cr }k . A more accurate 

estimate of {cr }k+l and state variables may be obtained from the modified Euler­

scheme which gives: 

{ }
. -{} ({dcr}, +{dcr}2 ) 

cr k+I - cr k + 2 [23] 

where {dcr }2 , and ali quantities are evaluated at the stress state {cr }k+I. The global 

error in the solution may be controlled by ensuring that the relative error for each 
sub-step is Jess than sorne specified tolerance: 

1 ll({dcr }, - {dcr }1 ~~ - <TOL 
2 li{ cr }k+III -

[24] 

The size of each sub-step is continually updated during the integration procedure to 
satisfy Eq.[24] where TOL is a small positive number in the range l.E-03 to l.E-05. 

4. Damage parameters identification 

To determine the constitutive and damage material parameters of the proposed 
damage mode!, an identification technique must be used. First, the anisotropie 
coefficients are evaluated separately by our Digital Image Correlation method 
(D.I.C.) for strain measurements. These Lankford coefficients r

0
, r

45
, r

90 
are 

determined from uniaxial tension tests in the three directions 0, 45 and 90 degrees to 

the rolling direction of the sheet. ra is defined as the ratio of width to thickness 

strain at a stabilized state of strain measured by the D.l.C. and taking account of the 
plastic incompressibility: 

Ewidth 
fa= 

E thickness 

[25] 

ln this paper, a titanium alloy has been tested where the sheet thickness used was 
1.2 mm, the D.I.C. method gives the following anisotropie Lankford's values: 

r0 = 1.84 r45 =2.12 [90 = 1.75 

The stress-strain curve can only be described to the value of the homogeneous li mit 
strain and is expected to give cr Y = h(E) the hardening law of the pure matrix 

material. The tensile tests, carried out on a set of tensile specimens prepared according 
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to initial length 140 mm, initial width 20 mm, have allowed to obtain the flow stress 
expressions in terms of Swift's law: 

[26] 

where: B = 1 880, c = 0.1915 and n = 0.3729 

The material parameters (nucleation and coalescence) of the previous damage 
mode! are very difficult to quantify by direct experimental measurements. An 
inverse identification is needed by comparing sorne numerical and experimental 
results and searching for a suitable matching between them. This technique is based 
on the determination of the damage parameters minimising the cost function 
representative of the correlation between the Joad vs. displacement or engineering 
axial-strain during a tensile test and numerical tïnite element simulation. The 
previously described !ensile tests were performed until the ductile rupture of the 
specimens and as an example, the Joad vs engineering axial-strain curve of the 
titanium alloy is displayed on figure 1. The cost function expressed by the !east 
square approximation is: 

~ sim exp J f F (p)-F 
Q(p) = ~ 1 1 

i [r;exp J 
[27] 

where p are the damage parameters, Fsim and Fexp are the simulated and 
1 1 

experimental Joad responses and n is the number of points considered. Assuming 
that such response function in an assigned region of the input parameters has a 
regular behaviour, for instance it has a unique minimum and it is locally quadratic, it 
is possible to use known numerical techniques to search such a minimum. Then six 
or four coefficients remain to be determined depending on the nucleation mode! 
chosen. 

In the present paper, the three-dimensional numerical analysis have been carried 
out for the simulation of the tensile tests with our specifie explicit finite element 
code where the modified Gurson's mode! Eq. [2] has been implemented. The 
explicit formulation permits a significant advantage in terms of CPU times for each 
cali by the statistical analysis, but this approach requires a particular attention in 
order to avoid the occurrence of unacceptable inertial effects when the velocity is 
artificialiy increased. Then we have followed the procedure presented by Fratini, 
Lombardo and Micari [FRA 96], where the response function has been calculated 
for 26 different sets of input damage parameters ali around a given starting point, the 
initial porosity being fixed. Two to three steps have been required to obtain the new 
starting point to develop the so calied Central Composite Design method with 
smalier incrementai values for the damage parameters. 
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Figure 1. Experimental and numerical points of load vs. engineering axial strain 
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Figure 2. F.E. mesh and void volume fraction distribution at coalescence 
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However, in this fast inverse method it is necessary to select the starting point 
not far from the absolute minimum. By this way the following sets of damage 
parameters have been obtained: 

Normal distribution mode!: f 0 = 0.0001 SN = 0.012 EN = 0.076 fN = 0.098 
fe = 0.044, 

Continuous mode!: [0 = 0.0001 A0 = 0.14, fe = 0.0274 

In figure 2 the void volume fraction distribution just at coalescence is reported 
on the mesh used, showing a clear shear band where one quarter of the specimen is 
analysed making use of the symmetry. Due to the assumed symmetries, figure 2 
represents two localised necks crossing each other at the centre of the strip but not 
observed experimentally since only one localised neck grows in reality [TVE 93]. 

5. Void coalescence criterion by plastic limit-load model 

In Iine with pure numerical convenience, using a constant critical void volume 
fraction is almost always been used in numerical analysis and practical applications 
using the Gurson's model. When void nucleation is taken into account, the critical 
value depends on the choice of the nucleation models and parameters as it has been 
observed in the previous paragraph. Figure 1 shows that the two set of parameters 
give virtually identical prediction of the load-displacement curve but different 
critical void volume fraction. It is interesting to find that the simple continuous 
nucleation mode! works equally as weil as the more complicated normal distribution 
mode! in this example. 

Therefore, a criterion of void coalescence which determines a critical void 
volume fraction would be useful. As suggested by Zhang and Niemi [ZHA 95], a 
modified version of the coalescence mode! by Thomason [THO 85,90] is tested. 
Thomason has developed a 3D micro-mechanical mode! of the internai necking of 
the inter-void matrix called plastic Iimit-load model. What is interesting in the 
plastic limit-load criterion is that void coalescence is not only related to void volume 
fraction but also to void-matrix geometry and stress triaxiality. 

Assuming that the material containing voids consists of a rigid-plastic non­
hardening and isotropie material and using the Rice-Tracey [RIC 69] void growth 
equations of spherical shape initial voids, the variation in the geometry of the inter­
void matrix is calculated using assumed velocity fields. Then the upper bound 
theorem is a pp lied to ob tain an overestimate of the ratio between the mean stress and 
the uni axial yield stress of the matrix. This ratio cr n 1 cr Y is called the plastic 
constraint factor by Thomason. If we note An the net area fraction of the inter-void 
matrix in the maximum principal stress direction such that: 

[28] 
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This gives the virtual maximum principal stress to initiate the localised necking of 
the inter-void matrix material, which represents the strong dilational plastic 
behaviour. If we note cr, the macroscopic maximum principal stress calculated by 
any numerical method, the critical condition to initiate the internai necking in a unit 
cell with a current ellipsoidal void can be postulated as: 

[29] 

By approximating the ellipsoidal void by the equivalent square-prismatic void 
and assuming two velocity fields parallel and triangular in the inter-void matrix of 
the unit cell, from the upper-bound theorem Thomason obtained the following type 
of empirical relation: 

( ~JN +(R~)M An=:: 
lX- Rx X 

[30) 

where F and Gare constants. N and Mare exponents, Rx,Rz are the radii of the 

ellipsoidal void and X denotes half the current length of the cell. For an isotropie 
non-hardening material with the following values, F = 0.1, G = 1.2, N = 2, M = 0.5, 
the empirical results have been found to represent a good approximation to the 
upper-bound constraint factor. 

The stress triaxiality used in the original model ranges from 0.5 to 3, which is 
greater than the range 0.33 to 1.0 currently observed in sheet-metal forming. Zhang 
and Niemi [ZHA 94] have found that the original Thomason's criterion gave too 
large predictions at low stress triaxiality and proposed a modification which uses the 
mean void radius R in Eq. [30). This modification greatly decreases the prediction at 
low stress triaxiality, while for the high stress triaxiality, the predictions are almost 
the sa me. As mentioned by Thomason [THO 90), it is interesting to note th at there is 
no theoretical basis for the validity of plane-stress models of ductile fracture. This is 
due to the fact that only very small void-growth strains would be needed to initiate 
localised plane-stress necking al a row of holes. In this paper where we are 
concerned with the location of a necking-failure forming limit, that is hardly 
preceded by necking, this location is assumed to depend on the critical void volume 
fraction given by the 3D modified coalescence mode) of Thomason. As originally 
suggested by Thomason [THO 85] and already tested by Zhang and Niemi 
[ZHA 94,95), but not in the context of anisotropie sheet-metals forming, the 
modified Gurson's mode) Eq. [2) is used to characterise the macroscopic behaviour 
assuming that the void grows spherically and to calculate the void and matrix 
geometry changes using the current strain and void volume fraction. 

During the F.E. analysis, the maximum principal stress is calculated and the 
normal strains in the directions of the principal stress-axes X,Y,Z are evaluated in 
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order to calculate the current void and matrix dimensions where the current void 
volume fraction fis an output of the modified Gurson's model. If the initial and 
current volumes of a unit void containing ce li are 1 and V, it is readily shown that: 

( 
3tv )

1
'
3 

Rx=Rz=4; 
[31] 

Denoting Z the direction of the maximum principal stress cr 
1 
and the current half 

intervoid distance X in the direction perpendicular to Z is calculated by: 

[32] 

The net area fraction of the intervoid matrix is evaluated according to the cell 
modelas: 

An =1-nR~e'z [33] 

Once the equality [30] is satisfied, the void coalescence starts to occur and the void 
volume fraction at this point is the cri ti cal value f c in the modified Gurson' s model 

and then in the combined necking-failure criterion as explained in the next section. 

6. Necking-failure criterion for anisotropie sheet-metals and example 

The strain ratio: ~ = !!E
2
j!!E 1 hasan evident influence on the internai damage of 

sheet metals. At the same leve) of deformation, it is generally noted that the damage 
increment is the greatest at plane strain such that ,:\E22 = 0 when the localised 

necking occurs. The formulation follows our previous works [BRU 97,98], the 
criterion is formulated in terms of the principal stresses and their orientation with 
respect to the orthotropic axes leading to an intrinsic formulation. At the onset of 
Joad instability (df

1 
s; o ), the plane stress assumption and plastic incompressibility 

give the maximum force criterion or diffuse necking: 

[34] 

For a given material, if damage starts just after load instability as it is generally 
observed, we assume the inequality in terms of the effective stresses: 

dq dq dcr Y dcr Y 
-=----<--<cr 
dE dcr y dE - dE - y 

[35] 

If the major principal stress cr
1 

is calculated with internai damage coupled as 
previously explained, the inequality in the major principal stress-axis is: 
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[36] 

When a sheet is strained under a biaxial tension stress state, developing of 
damage will make the strain state gradually drift to plane strain. Similarly, when a 
sheet is deformed under tension-compression condition, in the centre of diffuse 
neck, the final strain state at the local necking also can approach the plane strain. 
These observations have been earlier mentioned by Hecker [HEC 72] and discussed 
by Graf and Hosford [GRA 93] in the context of a theoretical analysis. Since the 
state of strain evolves towards the plane strain state, due to the related stress state 
change, there is an additional hardening-softening effect. The major stress is a 
function of many variables and different possibilities may be considered m 
connection with instability. The induced stress rate may be expressed as: 

[37] 

where E1 is the normal strain on the major stress axis, 13 is the strain increment ratio, 
f: is the effective strain rate and 8 is the temperature. If we consider here only the 
effects of the normal strain E1 and of the strain ratio [3, according to Eq. [36], the 
localised necking condition coupled with damage is given by: 

[38] 

An analytical and intrinsic form of the left-hand side of Eq. [38] can be 
formulated with [HIL 48] quadratic yield surface and the Gurson's damage mode! 
and can be found in [BRU 98]. It is worth noticing that the stress state can be 
evaluated by any others quadratic or non-quadratic flow rules for the coupled 
plastic-damage F.E. analysis of the sheet forming process. 

As an example, the comparison between the proposed necking-failure criterion 
and our experiments has been obtained from the titanium alloy. Experimental 
Nakazima's tests (hemispherical punch) have been carried out on notched sheets 
with various radii and depths in order to obtain different strain ratios as it can be 
seen on figure 3. By a direct implementation into our F.E.-code where the principal 
stresses and their orientation with respect to the orthotropic axes are calculated at 
each time step, the calculation was stopped once Eq. [38] was satisfied. The F.E. 
analysis of the experiments have been done for the complete formed part as it can be 
seen on figure 4 where the meshes of the two blank-holders and the hemispherical 
punch are not represented. 
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Figure 3. Tested specimens by hemispherical punch for necking-failure analysis 

MAJOR-STRA!N. I!IÈI•OLXXl9.tS43l. mu:-0 U7133 

Figure 4. Example of major strain distribution at the ons et of necking-failure 

Unlike the yield stress and other material constants, the critical void volume 
fraction is an indirect material parameter which depends on the mathematical form 
of the constitutive equations and is not a material constant. It depends strongly on 
stress triaxiality and strain state as it can be seen on figure 5. 
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The predictions using the present criterion Eq. [38] with the modified Gurson's 
damage mode) Eq. [2] for anisotropie sheet-metals and the modified Thomason's 
coalescence model Eq. [30] are shown on figure 6 where reasonable agreement is 
observed. However, the agreement between experiments and theory is poorest for 
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plane straining where in this case the theoretical curves are above the experimental 
points which vary rapidly in a narrow range across the pure plane strain state. 

7. Conclusion 

A formability analysis of anisotropie sheet-metals presenting ductile-fracture 
forming limits has been carried out based on the anisotropically extended form of 
the Gurson's damage mode!. The modified mode! takes into account the anisotropie 

properties of the matrix material and has been implemented in our explicit F.E.­
code. For shell elements and plane-stress state, a second order explicit integration 
scheme with error control has been found to be accurate and robust. The load­
displacement curve of the tensile test has been used to identify the damage 
parameters by an inverse method. It is difficult to determine the critical void volume 
fraction which appears to be not a material constant. A more promising approach is 
to introduce more micromechanism in the damage analysis. To this end, a modified 
form of Thomason's coalescence mode! has been tested in conjunction with our 
necking-failure criterion. The results emphasise that the extension of the Gurson 's 
mode! combining the Thomason's coalescence mechanism by internai necking is a 
good method for failure assessment in the design of metal forming processes of 
metal sheets with ductile-fracture forming limits. 
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