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ABSTRACT. Necking is a phenomenon limiting sheet metal-forming processes. The linearised 
perturbation technique is presented and adapted to various cases of yield criteria, damage 
models and 2D/3D stress states. Sorne aspects about calculations are given. Final/y two 
applications of these works are shawn. The first one validates the theory by establishing 
Forming Limit Diagrams. The second one is the implementation in a FE code and presents 
the necking predictions obtained on industrial cases ofmetal-forming. 

RÉSUMÉ. La striction est lill phénomène qui limite les opérations d'emboutissage. La 
technique des perturbations linéarisées est présentée et adaptée à des cas très variés de 
critères de plasticité, de modèles d'endommagement et d'états de contraintes 2DI3D. 
Quelques aspects calculatoires sont donnés. Enfin deux applications de ces travaux sont 
présentées. La première application valide la théorie par construction de Courbes Limites de 
Formage. La seconde est l'implémentation dans lill code éléments finis et présellle les 
prédictions de striction localisée obtenues dans des cas industriels d'emboutissage. 
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1. Introduction 

Necking in sheet metal forming arises quite naturally due to loading conditions, 
boundary conditions or material inhomogeneities that develop when plastic straining 
increases. In that field the pioneer works have been done in the early stage of the 
development of mathematical plasticity [HIL 52). Lots of experimental works have 
been made to characterize the forming ability of the sheet with the introduction of the 
Forming Limit Diagrams (FLD) [KEE 65] [GOO 68]. Unfortunately, these curves are 
not intrinsic and depend strongly on the strain path that can be very complex in 
industrial forming processes, especially in case of multi-stage forming processes. 
Arrieux introduced then the Stress Limit Curves (SLC) [ARR 89). These curves seems 
not to dependent on the strain path. 

Concurrently, theoretical works were developed and numerous models were 
proposed. These models can be divided into two classes: models based on 
homogeneous continuum and models based on heterogeneous continuum. 

The development of numerical methods to simulate the forming processes creates 
the necessity to predict necking phenomenon from FE results. The commercial codes as 
Pamstamp® and Optris® propose to plot the principal strain state calculated during the 
FE simulation on the experimental or calculated FLD without taking into account the 
fact that the necking state depends strongly upon the strain path. The early works done 
in the proposition of a criterion independent from the strain path and able to predict 
necking from FE results are due to two of the authors in [BOU 94]. Since these works 
severa) approaches have been proposed ([BRU 95], [BRU 97), [HOR 96), [KNO 00), 
[FRO 98)). 

After this short introduction, the paper will continue with the second section 
devoted to the presentation of the Iinear perturbation and the numerous possibilities of 
this approach. Finally section 3 will present the results obtained in two cases: FLD 
computations and necking prediction during FE simulations. 

2. The perturbation technique: theory and applications 

2.1. Theory 

Necking phenomenon is considered as an instability of the local equilibrium. To 
study this instability, the perturbations technique and its first order Taylor's 
development are employed [MOL 85). Because necking occurs only in regions where 
plastic strains are quite important the local problem is strongly non-Iinear. Moreover 
the hypothesis of a rigid-plastic material is done. 

The local equilibrium is defined by: 

- the plastic yield locus, 

- the hardening law, 
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-the constitutive law, 

-the local equilibrium relationship, 

- the compatibility of the deformation, 

-the plastic incompressibility. 

The hardening law is the Hollomon one with strain rate dependence: 

but other hardening laws can be used. 

é 0 is defined as a y = a 0 (0, E) with a y the initial yield stress. 

The local equilibrium conditions are the following: 

Where l corresponds to the wideness of the necking band (Figure 1). 
The strain rate compatibility conditions and the plastic incompressibility are: 

DiJ,kl +Dkl,iJ = D;k,jl +DJI,ik 

traceQ = D;; = 0 

The local equilibrium can take the following form: 

A (U) = 0 

where A is a non linear operator and U a vector. 
Vector U describes the strain and stress state for the mechanical equilibrium: 

U = {:r,, ,O'zz,O'tz•O", Dll, Dzz, Dtz• D33,Ey 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

A perturbation vector 8 U is introduced to provide a way to detect plastic 

instabi li ty: 

8 U = 8 U 0 exp( 7J t ) exp( i Ç x.n) [7] 

where 8 U 0 is the amplitude of the perturbation, Ç is the spatial part of the 

perturbation and 7J the temporal part of the perturbation. x and n are vectors that 

correspond respectively to the spatial location where necking could occur and to the 
normal vector associated with the necking band which could develop at the material 
point corresponding to the endpoint of the n vector as shown in Figure 1. 
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Thus if U 0 is the solution of [5] the perturbed vector: 

[8] 

has also to satisfy equation [5]. In the small perturbations case, the Taylor's 
development to the first order gives: 

A (U 0 ,cp,8,1]).8U 0 = 0 [9] 

A non trivial solution for 8U 0 is needed meaning that: 

det A (U
0 

,cp,8,1]) = P<p.e.u" (17) = 0 [10] 

where P<p.e.u" (1]) is a polynomial of 17. 

Finally instability or necking occurs when: 

Re (11)> 0 [ 11] 

Generally, the condition [11] is too severe and a positive value for the threshold Ç 
is used. So the necking criterion becomes: 

[12] 

The expression of equations [2] and [3] are different for 2D- or 3D-stress states. For 
3D stress state under consideration, the stress tensor and the strain rate tensors are: 

[ 13] 

0 

Equation [4] remains the same as in 2D case. 
The vector position and normal vector to the localised band are given in Figure 1: 

n = (sin cp. cose' sin cp. sine' cos cp) 
The local equilibrium is governed by equation [2] with: 

1=-h
sin cp 

where l corresponds to the thickness of the nec king band as shown in Figure 1. 

[ 14] 

[15] 
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The case qJ = 0 is ignored because it corresponds to the case where the band is 

parallel to the sheet plane. 

The perturbation of equation [2] taking into account equation [ 15] followed by a 
first order series expansion is given in appendix 1. 

In case of 3D-stress state, there are six equations of compatibility. Only three 
equations are linearly independent. These three independent equations have been 
determined with the formai computation software Mathematica®. The perturbation 
followed by a Taylor' s development of these equations is also given in appendix 1. 

n/2-<p 

Figure 1. Orientation of the necking band compared to the position vector in the 
reference frame. Mode/ for necking in the case of 3D-stress state 

2.2. Applications 

The aim of this section is to demonstrate the high flexibility of the linearized 
perturbations technique. The application of the method to severa! plastic yield loci and 
to damaged material is presented. The numerical results will be presented in the 
following paragraphs. 

2.2.1. Plastic yield locus 

There is a large variety of plastic yield loci that can be used to represent the sheet 
metal behaviour during stamping or deep drawing. They have been developed to give a 
better representation of the material flow in the case of large plastic deformation. The 
first anisotropie mode! is due to Hill [HIL 48] who proposed a quadratic mode! suitable 
for the behaviour of standard steel. It allows to mode! isotropie, transverse isotropie 
and orthotropic material that is weil dedicated to describe the behaviour in sheet metal 
forming. The use of aluminium alloys in sheet metal-forming to decrease the weight of 
automotive parts revealed a Jack of the Hill 48 criterion to describe the so called 
anomaly of aluminium and severa] others criteria were developed ([BAS 77], [BAN 
99], [BAR 91], [GOT 77], [HIL 79], [HIL 93], [HOS 79], [KAR 93]). 
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Banabic's model is a yield criterion for orthotropic sheet metals under plane stress 
conditions. lt has been developed to take into account the particularity of the 
aluminium alloys which are BCC materials whereas is FCC one [BAN 00]. 

The yield stress is expressed as following: 

a = [a.(bT + c.'I') Zk + a.(bT- c.'I') Zk + (1- a ).(2.c.'I') lk f [16] 

where r and 'l' are functions of the stress tensor components defined below: 

f=M.a 11 +N.a 22 

'l'= ~(P.all +Q.azz)z + R.a122 

The coefficients M, N, P, Q and R are defined as following: 

d-e e-J 2 
M =d +e,N =e+ f,P =-

2
-,Q =-

2
-,R = g 

[ 17] 

[18] 

[19] 

The above equations show that the shape of the yield locus is defined by eight 
material parameters: a, b, c, d, e, f, g and k . 

The k -parameter can take only two integer values: 3 or 4 depending on the 

crystallographic structure of the material. For steel and ali other FCC materials, k = 3 . 

ln the contrary for BCC materials as aluminium alloys, k = 4 . Then only seven 

material parameters defined the Banabic's yield criterion. 
The constitutive law is given for the first component: 

"k 1 P.all +Q.a22 
a(bT+c.'I')-- (b.M +c.P. 'l' )+ 

..:. 2k-t P.all + Q.a 22 
D11 = 2.E .k. a.(b.r- c.'I') (b.M - c.P. 'l' ) + [20] 

2.c.(1- a).(2.c.'I')2k-1 P. P.a 11 + Q.a 22 

'l' 

The perturbation and the Iinearization of equation [20] is given in appendix 2. 

2.2.2. Damaged material 

The damage model chosen in this study is an extension of the mode) proposed by 
Gelin and Predeleanu [GEL 92]. In that case the plastic flow is govemed by the 

following equation: 

[21] 



with: 

Ë 
À= z.-+A 

Œ 

Œ.Ë A 
Jl=Œ+A. 

A=J....f3.In(8d)Jrace(a).exp[ trace(a?] 
2 - 2.a0 (Ë,Ë) 

s=P:a 
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[22] 

[23] 

[24] 

[25] 

[26] 

The z- parameter can take on! y two values: z = ~ in case of isotropie material and 
2 

z = 1 in case of orthotropic material described with the Hill 48 plastic criterion. The 
combination of this damage mode! with Banabic' s yield locus has not been studied yet. 
! is a fourth order tensor and is a deviatoric operator. In case of isotropie material, 

! : ~ = dev~ and in case of orthotropic material described with the Hill's fourth order 

tensor, ! : ~ = H : ~ . 

e d is the volume change associated with damage evolution and a 0 is the strain 

rate-dependent hardening law [1]. ed is related to the void volume fraction f by: 

ed = 1- fo 
1- f 

[27] 

The material is then compressible and the mass conservation condition is expressed 
as below: 

(jd 
traceD=ed 

[28] 

The equations obtained by the perturbation of [21] followed by a first order 
Taylor's development can be found in [BOU 00]. 

2.2.3. Post-processing of FE results 

The necking criterion established with the linearized perturbation technique can be 
easily interfaced to FE programs for necking prediction from FE results. Figure 2 
resumes the method. 
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At each step of a FE calculation the program gives the stress and the strain state 
corresponding to the current mechanical equilibrium. The calculation of the T] -roots 

can be done very quickly and integration points where necking occurs can be 
determined very easily without complicated software developments. The necking zones 
can be revealed by post-processing the FE results. 

Solving the non Iinear system 
K(u).u = F(u) 

Calculations 
at the element leve! : 

strain 
stress 
'Yl-roots 

Figure 2./mplementation ofnecking criterion based on perturbations technique in a 
FEprogram 

3. Simulations and prediction of necking 

Two kinds of results will be presented in this section. 

In the first subsection local simulations are carried out to improve the different 
models used. The 3D- and the 2D-stress state approaches are compared. The classical 

FLD or the (l*, p) diagram will be used for the illustrations where E * is the effective 

strain at nec king and p = E 2 1 E 1 is the strain path. 

In the second subsection FE simulations of deep-drawing processes are performed 
and necking predictions are presented and compared to experimental observations. 

3.1. Local simulations 

3 .1.1. 3D modelling of nec king 

Figure 3 shows the necking strain calculated from 2D or 3D modelling. For the 3D 
modelling no pressure was imposed meaning that a 33 = 0 along the normal to the 

sheet metal. For the 2D case, an optimum threshold (different in the thinning domain 
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than in the expansion one) has been used and for the 3D case an unique threshold has 
been used. 

That explains the difference of shape between the 2D and the 3D FLD in the 
expansion domain first and second! y the too high leve! for the 3D FLD in the expansion 
domain. The strain leve! is superior in case of 3D modelling for negative strain path. 
This curve demonstrates that 2D and 3D-modelling are strongly different. The 
difference is due to the fact that necking is searched not only in plane but also in the 
thickness of the sheet. The increasing of the strain leve! at necking in the thinning 
domain are in agreement with [ITO 00]. The results in the expansion domain are 
somewhat different compared to results presented in [ITO 00]. 

-0.3 ·0.2 ·0.1 0.1 0.2 0.3 0.4 o.s 0.6 

epsilon(2) 

Figure 3. Comparison between the 2D and the 3D modelling ofnecking 

3.1.2. Influence of the yield surface 

Banabic yield criterion allows distinguishing materials with BCC or FCC structure. 
Necking predictions have been made with the 2D-stress state modelling working with 
Hill 48 criterion or Banabic criterion. 

First the relationship between the strain path and the stress path has been built in 

Figure 4 for a steel and an aluminium (table 1 ). Figure 4 shows that the (a, p) 
relationship obtained for a steel (FCC structure) in doser to the linear relationship 
obtained for Hill 48 than the one obtained for an aluminium (BCC structure). 
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a =a 2 1 a 1 is the stress ratio. That proves that the use of Banabic's plastic yield 

surface will allow nec king prediction for larger range of materials. 

1,5 

p ----4•.--- Banabic BCC 

_ _, ____ Banabic FCC 

• Hill48 
0,5 

0,6 0,7 0,8 0,9 

-0,5 

-1 ~----------------------------------------~ 

Figure 4. Illustration of the effect of the plasticity mode/ on the p = f (a) curves in 
comparison with the Hill quadratic mode/ (from {LES 00]) 

3 ~---------------------------------------------. 
-* E 

2,5 • Banabic 

2 

1,5 

0,5 

0 +---~----r----r--~----~---r--~----~--~-----1 

-0,44 -0,26 -0,12 -0,04 0,00 0,02 0,05 0,10 0,25 0,57 

Figure S. Comparison of necking predictions using the Hill quadratic plastic criterion 
and the Banabic 's one for an aluminium (from {LES 00]) 
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Second! y the diagram (E*, p) has been built for an aluminium with the Hill 48 

criterion and with Banabic's criterion (Figure 5). The strain leve! at necking for the 
extreme strain paths are very different and it is shown that Hill criterion underestimates 
the formability. In the contrary strain leve! at necking for strain path close to plane 
strain are diminished a little. 

This study shows clearly that the yield surface modelling is very important for 
necking evaluation. 

A b c M N p q R k 

Aluminium 0.6512 0.9521 0.0987 0.4881 0.5659 5.2209 -5.2598 98.672 4 

Steel 0.2115 0.9941 0.8390 0.5811 0.5571 0.5923 -0.5803 1.1548 3 

Table 1. Mate rial parameters for Banabic 's yield locus 

3.2. FE simulations and necking prediction 

The simulations presented in this section have been performed with Stampform®, 
the FE code developed in our laboratory and dedicated to the simulation of deep
drawing processes. Severa! hardening laws and yield criteria are available. In the 
present cases the material is considered isotropie and a Swift hardening law is chosen. 

3.2.1. Stamping of an industrial automotive part 

This part is obtained in two operations and necking is known to appear in the first 
stage. The part is a 200 x 250 mm2 sheet metal with 3 mm of thickness. The steel 
parameters are summarised in table 2. 

Necking zones predicted with the perturbations technique are shown in Figure 6 
and are in good agreement with experiments. Necking is detected for 28 mm punch 
displacement as ductile fracture is observed for 29 mm of displacement. The 
comparison of necking zones with critical thinning zones shows that necking criterion 
based only on geometrical aspects (critical thinning) are not efficient. For the present 
example, necking criterion based on the perturbations technique is in good agreement 
with experiments. 
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Automotive part Cross tool 

Young modulus E = 206 800 MPa E = 70000MPa 

Poisson coefficient v =0.3 v =0.3 

Yield stress O'y = 259MPa O'y = 259MPa 

Hardening law K =562.3MPa K =419MPa 

Il= 0.241 Il= 0.237 

E0 = 0.0256 E0 = 0.0001 

Damage fo = 0 (no damage) fo = 0 (no damage) 

Anisotropy H = 0.6154 

F = 0.3846 Isotropie 

p = 1.6153 

Table 2. Mate rial parameters for deep-drawing simulations 

Figure 6. Necking zones predicted in an industrial automotive part 

3.2.2. Deep-drawing with a cross-tao[ 

The geometry of both cross-tool and sheet metal is visible in Figure 7. The 
aluminium parameters are given in table 2. 
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260 mm 

r- --

Figure 7. Geometry of the sheet and of the cross-tao[ 

Figure 8 shows the necking zones predicted for a 50 mm punch displacement that 
are in good agreement with experiments. 

Figure 8. Necking zones in the cross-tao[ deep-drawing 

4. Conclusions 

This paper reveals severa! important tendencies conceming necking prediction. 
First the linear perturbations technique is a very flexible method that covers a very 
large domain of applications. The technique initially developed for 2D-stress has been 
extended to 3D-stress states. The adaptation to more accurate plasticity criterion as 
Banabic's yield locus can be done without problem. As the linear stability analysis 
analyses the current state, its implementation in a FE code does not need specifie and 
complex developments. Ail these possibilities have been demonstrated in the paper. 
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Moreover this approach can be integrated into quality functions to optimise the deep
drawing processes. 

An apparent inconvenience of the approach is the complexity of the analytical 
calculations as it is shown in appendices. But nowadays this is no more a major 

problem with ali the formai calculation software and the numerous interfaces existing 
between these software and the programming languages. 
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6. Appendix 

6.1. Appendix 1 

The perturbed equations for the local equilibrium in case of 3D-stress state are: 

11· sin ((J. cos 'lf.Ôcr 11 + 11· sin ((J. sin 'lf.Ôcr 12 + 11· cos qJ.ôcr 13 + y1 .ôD33 = 0 

11· sin (/J. sin l/f.ÔC122 + 11· sin (/J.COS 'lf.ÔC112 + 77-COS (/J.ÔC123 +Y 2 .ÔD33 = 0 

17-COS((J.ÔC1 33 +77.sinqJ.sin'lf.Ô0" 23 +77.SinqJ.COS'If.ÔC113 +y3.ÔD33 =0 
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With: Y;= sin <p.coslfl.eril +sin <p. sin lfl.er;2 +cos<p.er;3 

The perturbation of the compatibility equations in case of 3D-stress state gi v es: 

sin 2 lfi.ÔD11 +cos 2 lfi.ÔD22 -2.coslJI.sinlfi.ÔD12 = 0 

cos 2 lfi.ÔD22 +sin 2 <p.sin 2 lfi.ÔD33 -2.sin<p.cos<p.sinlfi.ÔD23 = 0 

sin 2 <p. cos lfl. sin lfi.ÔD33 +cos 2 <p.ÔD12 -sin <p. cos <p.cos lfi.ÔD23 

-sin <p. cos <p. sin lfi.ÔD13 = 0 

6.2. Appendix 2 

The perturbed equation for the Banabic's yield criterion is the 

D11 ..:.. ..:..( ] 8D11 =~& +2.k.E.y1.Ôer11 +y 2.ôer 22 +y3.ôer 12 
E 

f3 
P.(P.er 11 + Q.er 22) f3 f3 

Y1 =M. 1 + · 2 + 3 
'P 

f3 
Q.(P.er 11 + Q.er 22) f3 f3 

Y 2 = N. 1 + · 2 + 4 
'P 

R.erlz f3 
Y3 =--. 2 

'P 

2k-l 2k-I 2k-l 2cP {31 =a1.a.(bf+c'P) +a3.a.(bf-c'P) +a5 .(1-a).(2c'P) -
'P 

f3z =a2.a.(bf+c'P) 2k-l +a4 .a.(bf-c'P)2k-! 

p2 p2 2 p2 
{33 =a.(bf+c'P)2k-l_c __ a.(bf-c'P)2k-l_c -+(l-a).(2c'P)2k-I_c_ 

'P 'P 'P 

{34 =a.(bf+c'P)Zk-1 cPQ -a.(bf-c'P)2k-! cPQ +(l-a).(2c'P)2k-I 2cPQ 
'P 'P 'P 

a1 = 2
k-l b[bM+cP(Perll+Qerzz)] 

bf+c'P 'P 

2k -1 [ cP ] bM cP a 2 = c bM +-(Per11 +Qer 22 ) ----
2 

(Per 11 +Qer 22 ) 
bf+c'P 'P 'P 'P 

a 3 = 2
k-l b[bM-cP(Perll+Qerzz)] 

bf-c'P 'P 

2k -1 [ cP ] bM cP a4 =- c bM --(Per11 +Qer 22 ) --+-2 (Per 11 +Qer 22 ) 
bf-c'P 'P 'P 'P 

2(k -1) 
a5 = (Per 11 +Qer 22 ) 

'P 




