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ABSTRACT. This work is devoted to the study of an efficient numerical algorithm for evaluating 
damaged-plastic response of a material submitted to large plastic deformations. Fully 
coupled constitutive equations accounting for bath combined isotropie and kinematic 
hardening as weil as the ductile damage are formulated in the framework of Continuum 
Damage Mechanics (CDM). The associated numerical aspects conceming bath the local 
integration of the coupled constitutive equations and the (global) equilibrium integration 
schemes are presented and implemented into a general purpose Finite Element code 
(ABAQUS). For the local integration of the Jully coupled constitutive equations an efficient 
implicit and asymptotic scheme is used. Special care is given to the consistent tangent 
stiffness mat rix derivation as weil as to the reduction of the number of constitutive equations. 
Sorne numerical results are presented to show the numerical performance of the proposed 
stress calculation algorithm and the capability of the approach to predict the damage 
initiation and growth during a given metalforming process. 

RÉSUMÉ. Ce travail est dévolu à l'étude d'un schéma incrémentai pour l'évaluation de la 
réponse plastique-endommagée d'un matériau soumis à des incréments de déplacement en 
transformations finies. Des équations de comportement élastoplastique avec écrouissage 
mixte et endommagement ductile sont présentées dans le cadre de la thermodynamique des 
processus irréversibles avec variables d'état incluant l'endommagement continu. Les aspects 
numériques concernant l'intégration locale des équations constitutives ainsi que le schéma 
global de résolution du problème d'équilibre avec implémentation dans la platejorme 
ABAQUS sont discutés. Pour l'intégration locale du modèle couplé un schéma asymptotique 
implicite est utilisé. Une attention particulière est accordée au calcul de la matrice tangente 
consistante et à la réduction du nombre des équations à résoudre. Quelques résultats 
numériques sont présentés pour montrer les performances numériques du schéma de calcul 
des contraintes proposé et pour illustrer la capacité de la modélisation à prédire l'amorçage 
et la croissance de l'endommagement ductile dans un procédé de mise en forme. 

KEYWORDS: Finite elastoplasticity, ductile damage, stress computation, consistent tangent 
operator, finite elements, numerical simulation, metal forming. 

MOTS-CLÉS: élastoplasticité, endommagement ductile, grandes déformations, calcul des 
contraintes, operateur tangent, éléments finis, simulation numérique, mise en forme. 

REEF -10/2001. NUMEDAM'OO, pages 327 to 351 



328 REEF- 10/2001. NUMEDAM'OO 

1. Introduction 

Displacement-based finite element codes that are industrially utilized for the 
static or dynamic analysis of mechanical structures require accurate and efficient 
constitutive equations subroutines. This accuracy concems both the description of 
the physical phenomena taken into account by those constitutive equations, as weil 
as their numerical discretization with respect to time and space. This leads, in 
general, to highly non linear algebraic systems to be solved on both local and global 
levels. 

For the global leve!, the spatial discretization of the princip le of virtual work (or 
power) leads to a non-linear system for displacement (or velocity) field under the 
form of partial differentiai equations (PDE). This algebraic system is usually 
linearized to be solved for each Joad increment by either an implicit iterative 
Newton-type strategy, or a dynamic explicit or implicit one. Through linearization, 
many terms arise which can be classified into two classes : the first contains the 
material non linearity related to the material behavior (stress, internai variables) or 
the friction behavior; and the second contains the geometrical non linearities related 
to the finite deformations and rotations as weil the evolving contact conditions. 
Particularly, the derivative of the stress tensor with respect to the total deformation 
tensor is needed. Generally, this "incrementai" stress differentiai differs from the 
"continuous" differentiai given directly by the constitutive equations of rate type. It 
has been shown (see [NAG 82], [SIM 85]) that the use of the incrementai stress 
differentiai consistent with the time discretization scheme of the stress tensor leads to 
quadratic convergence. For the explicit strategy to solve the system of PDE, on! y the 
stress increment at each time step is needed. 

The calculation of the stress increment at each time step needs the local 
integration of the overall constitutive equations representing the coupled physical 
phenomena. There exist various explicit or implicit integration schemes for ordinary 
differentiai equations (ODE). Experience has shown that implicit time integration 
schemes have the advantage of stability and are suitable for application to those 
constitutive equation involving yield and loading-unloading conditions. These 
conditions are generally modeled by constructing a special procedure as the elastic 
predictor and plastic corrector scheme. 

When a metallic material is formed by large straining processes as forging, 
stamping, hydroforming and deep drawing, it experiences large irreversible 
deformations, leading to the formation of high strain localization zones caused by the 
nucleation and growth of micro defects (voids) generally referred to as ductile 
isotropie damage. Accordingly, to increase the efficiency and the predictive 
capabilities of the virtual forming tools, an accurate theoretical and numerical 
mode ling of the damage initiation and growth under fini te transformations should be 
taken into account. This can be achieved by using the coupled approach in the sense 
that the damage evolution equation is directly incorporated and fully coupled with 
the elastoplastic constitutive equations. This kind of approach has been employed by 
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many authors using damage models based either on Gurson's theory ([GEL 85], 
[ARA 86], [ONA 88], [BON 91], [BRU 96], among many others), or on Continuum 
Damage Mechanics (CDM) in the Kachanov's sense ([MAT 87], [ZHU 92], [SAA 
99], [HAM 00], [SAA 00] ... ). These fully coupled approaches allow the prediction 
of not only the large transformation of the processed workpiece as large 
deformations, rotations, and evolving boundary conditions, but also they can indicate 
where and when the damaged zones can appear inside the formed part during the 
process ([SAA 99], [HAM 00], [SAA 00]). 

In the present work, fully coupled constitutive equations accounting for both 
combined isotropie and kinematic hardening as weil as the ductile damage in the 
CDM framework are presented. The particular case of the fully isotropie and 
isothermal flow considering small elastic strains, large plastic strains, isotropie and 
kinematic hardening, isotropie damage and the evolving contact with friction is 
implemented into ABAQUS/STD. The associated numerical aspects concerning both 
the local integration of the coupled constitutive equations as weil as the (global) 
equilibrium integration schemes are presented. For fully implicit resolution strategy, 
special care is given to the consistent stiffness matrix calculation. The integration of 
the coupled constitutive equations is realized thanks to the backward Euler scheme 
together with the asymptotic integration procedure pioneered by Freed and Walker 
[FRE 86]. The efficiency of this integration procedure in the 3D isotropie case, is 
enhanced by reducing the number of the constitutive equations from 14 to 2 as 
proposed by Simo and Taylor [SIM 85] and widely used since that (see [HAR 93], 
[DOG 93], [CHA 96], [HAM 00] among many others). The numerical 
implementation of the damage is made in such a manner that calculations can be 
executed with or without damage effect, i.e. coupled or uncoupled calculations. 

2. Kinematical background 

The transformation gradient f between the initial (undeformed and undamaged) 
and the current (deformed and damaged) configuration is multiplicatively 
decomposed so that the following classical definitions are used: 

F=F'·Fp and B=F·FT 

L=F·F-' =D+W - -- -

and 
1 T 

W=-(L-L ) - 2--

[1] 

[2] 

[3] 

where !! is the total Eulerian left Cauchy-Green deformation tensor associated with 
the Cauchy stress tensor Q; ~ is the spatial velocity gradient in the current 
configuration, !2 and W are respectively the pure strain rate and the material spin 
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tensors. The superimposed dot (·)denotes the usual ti me derivative. 

To satisfy the objectivity requirement, the so-called Rotated Frame Formulation 
(RFF) is used. This leads to express the constitutive equations in a rotated 
configuration obtained from the current one by an orthogonal rotation tensor Q 
defined by [DOG 89]: 

g T · g = W 0 with Q(t=O) =! [4] 

Accordingly, for any symmetric second order tensor I. the objective rotational 
derivative with respect to the rotating frame is given by: 

DQ! . 
--=T+T·W -W ·T D t - - -Q -Q -

Q 

[5] 

from which the classical Jaumann and Green-Nagdhi rotational derivatives can be 
easily obtained. On the other hand the objective rotated tensor !Q by the rotation g 
is given by: 

T =QT ·T·Q 
-Q - --

lts time and rotational derivatives are related by: 

• T DQT 
T =Q ·---=·Q 
_Q - D t -

Q 

[6] 

[7] 

Consequently, the constitutive equations are formulated in the same way as under 
small strain hypothesis and their generalization to the large strain case is simply 
achieved by replacing ali the tensorial variables by their rotated corresponding 
quantities by using the Eq. [6]. 

The second main question posed by the finite transformation aspect is how the 
total strain rate can be decomposed into elastic (reversible) and plastic (irreversible) 
parts. For the metallic materials, dealing with large plastic strain but small elastic 
strain, the total Eulerian strain rate tensor decomposition can be approximated by: 

[8] 

where ËJ is the Jaumann derivative (rotational objective derivative) of the elastic strain _, 

tensor (for simplicity the subscript J will be removed), and _QP is the plastic strain rate 
tensor defined by the constitutive equations as will be shown in the next section. 
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3. Coupled constitutive equations for metal forming 

3.1. State variables versus effective state variables 

The finite thermo-elastoplastic constitutive equations coupled with the 
continuous damage is developed in the framework of the classical thermodynamics 
of irreversible processes with state variables. For the sake of simplicity, this will be 
presented hereafter using the classical small strain notations keeping in mind that the 
generalization to the finite strain hypothesis is made according to the RFF 
formulation presented above. This formulation uses a unified yield surface for both 
plasticity and damage as in [SAA 94]. A more general formulation using two 
different (but coupled) yield surfaces can be found in [HAM 00]. 

Limiting ourselves to the simple first displacement gradient theory, two couples 
of ex tema! state variables are used, namely: ( 1) the total strain associated with the 
Cauchy stress tensors ~,.Q) and (2) the absolute temperature associated with the 
specifie entropy (T,s). Five couples of internai variables are taken into account: (1) 
the (small) elastic strain representing the inelastic flow associated with the Cauchy 
stress tensor ~·,.Q); (2) the normalized heat flux vector associated with the gradient 
of the absolute temperature ( q rr, g = grad(T) ); (3) the isotropie hardening 
variables (r, R) representing the size of the yield surface in strain space (r) and stress 
space (R); (4) the tensorial (deviatoric) kinematic hardening variables (g, _K) 
representing the displacement of the center of the yield surface in strain space (g) 
and stress space (X), (5) the isotropie damage variables (D, Y), in Chaboche's sense 
[CHA 78]. 

Suppose that the current configuration contains sorne isotropie ductile damage 
distribution i.e. a given homogeneous distribution of micro-defects such as voids 
and/or micro-cracks ; the concept of the effective stress ([CHA 78], [LEM 85]) 
together with the hypothesis of total energy equivalence [SAA 94] are used to define 
the effective state variables by: 

- cr cr=----
- ../1-D 

and [9] 

- x x=--=--
- ../1-D 

and [10] 

- R 
R=--

../1-D 
and [ 11] 

where, for simplicity, it has been assumed that the damage effect on the elastic 
behavior is the same than on the hardening variables (both isotropie and kinematic). 
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These effective state variables are used in the state and dissipation potentials to 
derive the complete set of fully coupled constitutive equations for metal forming 
processes (see [CHA 78], [LEM 85], [LEM 92], [SAA 94] among others). 

3.2. State potential: state relations 

The Helmoltz free energy \jf(~e. g,r,D,T) is taken as a state potential. It is 
supposed to be a convex function of ali the deformation-like state variables defined 
above and additively decomposed into thermo-elastic/damage and plastic/damage 
contributions: 

P'lf(~', ~. r, D, T) = p\jf t<d Œ', T) + p\j/ pd(~, r ; T) [12] 

where p is the material density in the current undamaged configuration and the 
variable T in the last term 'l'"" acts as a simple parameter. In this work, only isotropie 
phenomena are considered, and have the following state potential: 

1 - - 1 _, 
Plj!pd =-Ca:a+-Qr-

3 - - 2 

[ 13] 

[14] 

where K and J..l are the classical Lame's constants of elasticity, ais the coefficient of 
thermal expansion, C is the kinematic hardening modulus, Q is the scalar isotropie 
hardening modulus, T 0 is the reference absolu te temperature, Cv is the classical 
specifie heat parameter and 1 being the second order unit tensor. 

By using the Clausius-Duhem Inequality (CDI) one can easily derive, after sorne 
algebraic manipulations, both the state relations (Eq. [15 to 19]) and the residual 
inequality (Eq. [20]) defining the volumetrie dissipation: 

- State relations: 

à\jf 1 - ' cv s=--=-(3K+2J.,l)CJ.(E :1)+-(T-T) 
àT -- T o p 0 

àlj! 2-
X=p-=-Ca 
- àa 3 -

à\jf -
R=p-=Qr 

àr 

[15] 

[ 16] 

[17] 

[18] 
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Y=-pél'JI =Y +Y +Y [19] 
élD ' k ' 

Y =.!.ca: a [19b] 
k 3 - -

Y = .!_Qr' [19e] 
' 2 

- Residual inequality: 

p • • • - q 0 <1> =cr: D -X: a-Rr+ YD- g.- ~ -- -- T 
[20] 

Note that in the state relations above, the main material properties are affeeted by 
the damage aeeording to: 

- elastieity properties of damaged material: K: = (1- D)K and il= (1- D)).l [21] 

- kinematie hardening modulus of damaged material: C = (1- D)C [22] 

-isotropie hardening modulus of damaged material: Q = (1- D ~ 

- thermal expansion of the damaged ma teri al: a = .J 1- Da 

3.3. Dissipation potentials: complementary relations 

[23] 

[24] 

The volumetrie total dissipation given above (Eq. [20]) should be identieally 
verified for any seleeted dissipative phenomenon. In this equation the foree-like 
variables namely: Q, X, R,Y are given by the state relations (Eq. [15 to 19]), and the 
flux variables should be defined by using the generalized standard materials 
[HAL 75]. This is aehieved by introdueing both yield funetions and dissipation 
potentials for eaeh class of dissipative phenomena. As a first approximation, the total 
dissipation is additively deeomposed into two terms, namely: meehanieal dissipation 
<l>m (plastieity, hardening and damage) and thermal dissipation <1>'\ eaeh of them 
being supposed independently positive or zero: 

[25] 
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Each of these dissipations will be analyzed to derive the flux variables associated 
with each selected dissipative phenomenon. 

3.3.1. Thermal dissipation: Jully coupled heat equation 

Classically, the heat equation is derived from Fourier's dissipation potential 
which is a quadratic scalar function of the force gi. For thermoelastoplastic medium 
with mixed hardening and damage (strong coupling) the final form of the generalized 
heat equation can be written as follows [SAA 94]: 

k~T=-Q:!Y+K:~+Rr-[Y+(3K+2J.l) ~ T(~' :!)JÎ> 
2 1-D 

[ 
T ~' , ÎT 

+ pC, To +(3K+2J.lhtl-Da T(~ :!) r 
+ (C3K' + 2J.l')ii(~' :!) + (3K + 2).l)iiT(f : D ~ 

[26] 

where ~(T) stands for the Laplacian of the temperature and the prime (X') indicates 
the derivative of X with respect to temperature. The weak form of the partial 
differentiai equation Eq. [26] can be discretized with respect to time (Finite 
Difference Method) and space (Finite Elements Method) and solved together with 
the discretized weak form of the equilibrium problem thanks to a sequential methods. 

3.3.2. Mechanical dissipation: Jully coupled constitutive equations 

In the present case of time independent flow, a yield function in the stress space 
f(Q, X. R; D, T) and a plastic potential (non associative theory [LEM 85]) F(Q, X. R; 
D, T) are introduced to derive the constitutive equations for plasticity with damage 
effect: 

f = IIQ-Rll- R -cr r < 0 [27] 

F=f+--X:X+--R- +--3 a - - 1 b - , S [Y ]>+
1 

1 
4 C- - 2 Q s + 1 S (1- D)~ 

[28] 

where the temperature dependent material constants a and b are the non linearity 
parameters for kinematic (a) and isotropie (b) hardening respectively; while S, sand 
13 characterize the ductile damage evolution and the parameter cry represents the 

initial size of the plastic yield surface. The notation IIQ- Rll defi nes the norm of the 

effective stress according to: 
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IIQ- ~1 = ~% (q" - ~): (q" - ~) [291 

where cr" is the deviatoric part of the stress tensor. 

The generalized normality rule allows the derivation of the complementary 
relations for plasticity, with hardening including the damage effect: 

. . aF p • 

a=-À-=D -aÀa ax -

. 1 aF À ( b-) r =-r..-=--- 1- r 
dR .JI-D 

D=À-=À- =ÀY 
. . dF . [y]' 1 . A 

dY S (1-D)~ 

[30] 

[31] 

[32] 

[33] 

The tensor TI represents the outward normal to the yield surface in the stress space 
given by: 

df aF 3 1 (crd -X) 
n=-=-=----- -
- dQ dQ 2 .J1-D IIQ-~11 

[34] 

The accumulated plastic strain rate p can be calculated from Eq. [30] using the 
following norm: 

[35] 

which indicates that the isotropie hardening strain r is not equal to the accumulated 
plastic strain p unless the hardening is linear (b = 0) as clearly indicated by the Eq. 
[32]. The plastic multiplier À is given by the classical consistency condition applied 
to the yield function f: f > 0, À > 0 , Àf = 0 . This gi v es for the full y isotropie flow: 

[36] 

giving 

[37] 
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where <(.)> stands for the positive part of (.) and HH > 0 is the tangent plastic 
modulus given by : 

_ 1 ar A [ - 3 (qd - 2Ç). -] 
HH- 3fl+Q+C+--Y- bR +-a Il Il .lÇ 2 1-D 2 cr-X [38] 

and HT represents the thermal effect given by: 

[39a] 

If the variation of the Poisson's ration v with the temperature is neglected, the 
Eq. [39.a] writes under the following simpler form: 

[39b] 

Note that, in this unified formulation, a single yield function is taken for both 
plasticity and damage, leading to a single plastic multiplier. This restrictive choice is 
justified in the case of metal forming where the damage develops only on material 
points with large plastic deformation. However, for sorne other materials as concrete 
or composite structures, damage can develops without plasticity and vice versa. In 
that cases the use of multisurface formulation should be preferred : one yield 
function for plasticity with damage effect (coupling) and another one for the damage 
yielding [HAM 00]. 

Finally, the direct time derivative of the stress tensor (Eq. [ 15]) gives with the 
help of the Eq. [37] 

[40] 

with: 

l 
À if À= 0 

L <;Xl = - r 3 d d y d • [411 
= A-~[ Il fa -x)f!/cr -x)+-fa -x)®cr] if 1..>0 

= H H ljQ- 2ÇII2 12 - 12 - 1- D 12 - -

and: 

[42] 
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where use has been made of the following notations (! being the fourth order unit 
tensor): -

A= (1- D)A = (1- D)l21ll + K! ® !J= 2jll + î<! ®! 
= = = = 

[43] 

is the classical fourth order symmetric operator of the isotropie elastic properties 
affected by the damage, and: 

is the thermoelastic contribution in the tangent operator. 

It is clear from the equations [ 40] and [ 41] that the continuous tangent 
elastoplastic-damage operator is non symmetric for the coupled problem i.e. if Y is 
non zero. 

4. Numerical implementation 

In metal forming, the large deformation and damage behavior experienced by 
metallic materials are described by nonlinear equilibrium, the above presented 
coupled thermo-elastoplastic-damage constitutive equations and the contact 
conditions with frictional constitutive equations. For the sake of simplicity, in this 
paper we limit ourselves to solving the equilibrium problem associated with 
elastoplastic-damaged solids without thermal effect nor the contact/friction 
conditions (see [HAM 00] for more details). 

4.1. Finite element formulation 

The velocity (displacement) based finite element formulation starts with the 
principle of virtual power (work) which states that, among ali the kinematically 
admissible velocity ( displacement) fields il' ( u' ), the solution of the equilibrium 
problem minimizes the functional G (weak form) given here in continuous form 
Iimited to the quasi-static case using the classical updated Lagrangian formulation: 

G(ü',ia)=_!_ J.~:Q'dV- Jr.u'dV- JF.ü'dS 
2 v v 1', 

[45] 

where V is the volume of the current configuration, rF is the boundary of the solid 
where extemal forces F (including the contact forces) are prescribed, f represents the 
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vector of volumetrie applied forces, .Q* is the virtual strain rate tensor and Q is the 
stress tensor given by the coupled constitutive equations discussed above. 

By applying the minimization principle to the spatially discretized form of Eq. 
[45], one can obtain for the overall structure: 

{9\} = {F'"' }- {F"' } = {0} [46] 

where 9\ is called the equilibrium residual vector; En, and Fw are the internai and 
external force vectors written here using the natural coordinates as: 

{F,",}= f [B f {cr }J ,dV0 [47] 
vo 

[48] 

where Vo and rFo are the volume and its boundary of the reference solid element, J, is 
the Jacobian determinant of the isotropie transformation between global and natural 
coordinates for the solid element, J, is the Jacobian determinant for the surface 
element, N is the matrix of interpolation functions and B is the matrix of strain (rate) 
interpolation. Note that the matrices B, N and the Jacobians, 1, and J, are functions of 
the displacements (geometrical non linearities). 

The most widely used implicit iterative method to solve the system [46] is the 
Newton-Raphson method, which consists in linearizing Eq. [46], for the (n+ l)'h Joad 
increment and at the iteration (p+ 1 ), as follows : 

{9\~:: }= f.Jt~., }-{K~., X{u~::}-{u~., })+ ... = {o} [49] 

where {u~., }is the approximation of the solution at the iteration (p). The current 
tangent stiffness matrix K~., is defined by: 

{KP }=~~ =(aF'"' _ aF,") ={KP }'"' -{KP }"' 
n+l aDl ' au au n+t n+l 

[u •. ,} {u:.,} 

[50] 

The second term, {K~., }"' describes the dependence of the external loads on the 

geometry and will not be discussed herein. The first, {K~., J"' represents the variation 

of the internai forces with displacements. As shown by Eq. [ 4 7], this variation is due 
to the stress Q (material non linearities) given by the fully coupled constitutive 
equations, and the fact that the matrix B as weil as the Jacobien determinant lv are 
displacement dependent (geometrical non linearities). For the sake of simplicity, 
only the term related to the material non linearities will be discussed hereafter. 
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4.2. Time integration procedure 

In order to calculate the internai forces {F;+, }"' and the tangent stiffness 

matrix {K~+' }'"', we must first compute updated stresses at the end of the current Joad 

increment. This can be achieved by integrating the overall set of coupled constitutive 
equations discussed above. The implicit Euler integration scheme (Backward 
method) is used since it contains the property of absolute stability and the possibility 
of appending further equations to the existing system of nonlinear equations. Let us 
consider the system of ordinary differentiai equations given above (Eq. [30-35]) 
formally represented by y= f(y, t). The implicit method is defined by (for clarity 

the iteration subscript (p) is omitted): 

[51] 

with the abbreviations y n+l = y(t" + ~t) and y" = y(t"). When applied to the stress 

tensor for example, the Eq. [51) reads: 

crn+, =crn +cr(crn+l,Xn+l'Rn+l'Dn+l~t [52a] 

Using the elasticity relation (Eq. [15]) and the decomposition of the strain tensor 
we get: 

[52b] 

where we have incorporated the fact that the plastic strain rate and damage rate only 
occur if the field condition is satisfied, i.e. during the time interval ~tr ~ ~t. ln the 

following, the subscript (n+ 1) will be omitted and the variables, which do not 
contain the subscript (n+1), are computed at t" +~t. 

For the calculations of hardening variables g and r; the AI 'Asymptotic 
Integration' procedure proposed by Freed and Walker [FRE 86], for a better 
integration of first-order ordinary equations is used. The AI procedure is mainly 
based on the fact that the above discussed constitutive equations have the following 
form: 

Y = cJ>(Y)[A(Y)- Y] [53] 

Where Y denotes here a set of state variables to be considered and A(Y) and 
cJ>(Y) are given functions depending on the concerned constitutive equation. One can 
integrate Eq. [53] exactly over the time step and obtain the following recursive 
integral equation: 
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where Ç is the parameter of time integration. Freed and Walker [FRE 92] have 
considered severa! discretization schemes of this exact solution. We retain here, the 
asymptotic integration scheme at time t + ilt : 

[55] 

Applied to the kinematic and isotropie hardening evolution equations this gives: 

r = r. exp(- bM)+ ~ [1-exp(- bM)] 
b 1-D 

[56] 

[57] 

where M = Àilt is related to the accumulated plastic strain increment according to 
the Eq. [35]. 

By using the complete set of constitutive equations we end up with a system of 
14 nonlinear scalar equations for 15 unknowns : six stresses, six back-stresses for 
kinematic hardening, one isotropie hardening stress, one isotropie damage variable 
and the plastic multiplier. The 14 first equations are: 

where: 

Q" = (1- D }Q: - 2J.tv'1- DLlÀ!! 

K = (1- D )K. exp(- aM)+ ~~ (1- exp(- aM )}Jï=D!! 

R = (1- D 1JR. exp(- bM)+ ~ (1-exp(- bM)}Jï=D 

D=D +[y]' M 
n S (1- DY 

Q: = 2J.1~.- ~~) = 2J.1~') 

[58] 

[59] 

[60] 

[61] 

[62] 

The remaining (15th) equation is given by the yield condition Eq. [27], which 
must be satisfied at the end of each time step. 

Before solving iteratively (Newton's method) the above system of 15 equations, 
it is very helpful to reduce the size of this system by eliminating sorne equations 
among them. Following an idea originally proposed by Simo and Taylor [SIM 85] 
and widely used since that, we derive from Eq. [58] and [59] the deviatoric tensorial 
quantity _qd-X between t and t+Llt: 
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Qd- X= (1- Dg"- v'1- n[ 2)-!~À + ~~ (1-exp(- aM))p [63] 

where the deviatoric tensor Z. at tn is given by : 

Z = o • -~Ca exp(- aM) -n -n 3 -n [64] 

The multiplication of the yield function (Eq. [27]) by ~-X gives 

[65] 

This implies: 

~ =ll~l!! [66] 

with the notation 

11~1=-( 1 
)(R+v'1-Doy)+ ~[3J.!~À+ C(1-exp(-aM))] [67] 

1-D v1-D a 

Hence, the unknown tensor!! is replaced by the tensor z_, which depends only on 
one scalar unknown, namely Mas shown by the Eq. [67]. 

Furthermore, the system of 15 equations is now restricted to two scalar equations, 
namely: 

[68] 

[69] 

where the expression of the damage release rate Y (scalar) is given by: 

,( • · 3(M)
2 

·) C [ ( ) 1 ( ( )L]2 

y= 21_ ~ :~ + 
2

(
1

- nf M!! :~ +3 g"exp -aM +; 1-exp -aM/!! 

'[70] 

+ Q [rn exp(- bM)+ b (1- exp(- bM))]-
2 b 1-D 

This small system (Eq. [68-69]) is solved iteratively thanks to the Newton-
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Raphson numerical integration procedure to compute the two unknowns : M and D 
(see [HAM 00] for details). Tables (1) and (2) summarize schematically the 
proposed stress calculation. 

REMARK-. For plane stress hypothesis the total strain component fJJ is not defined 
by the kinematics but by a new constraint namely : G, ~LlÀ, D, E33 ) = 0'33 = 0. This 
leads to an additional scalar equation with the new unknown E33 to be determined 
together with M and D by solving the three equations G~o Gz and GJ [HAM 00]. 

4.3. Consistent Elastoplastic-damage tangent operator 

As discussed in paragraph 4.1 the quasi-static tangent stiffness matrix for large 
deformation, is viewed as relating the rate of internai nodal forces to the nodal 
velocities. This gives rise to three main contributions: the stress contribution, the 
contact/friction contribution and geometry variation contribution. Only the first 
contribution is discussed here (see [HAM 00] for more details). The computation of 
this term needs the calculation of the tangent operator representing the stress 
variation with respect to the total strain for each Joad increment. The continuous 
form of this operator is given by Eq. [ 40] including thermal contribution. As reported 
by many authors, the equality of the global/local convergence of a Newton-Rahpson 
method is greatly improved when using a tangent stiffness matrix consistent with the 
discretized incrementation of the local constitutive equations ([NAG 82], [SIM 85]). 
This consistent operator is given here (thermal contribution being neglected) by 
differentiating with respect to the total strain, the time discretized expression of the 
stress as follows: 

[71] 

This needs the calculation of the derivatives of D and M with respect to the total 
strain f. These are obtained by solving equations [68-69] and the final expression of 
the consistent tangent opera tor is [HAM 00]: 

da - [ dÀ. dn) ( ~ )! . ) dD -==A-2,(1-D) n®-+ilÀ-= -Ks:1 +cr -2J.!LlÀn®-
dE = t" - dE dE - - - - dE - - - -

[72] 

The above discussed constitutive equations and the corresponding local time 
integration have been implemented in the general-purpose finite element code 
ABAQUS/STD thanks to the user's material subroutines UMAT for static implicit 
solving procedure. 
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(1) Calculate elastic predictor : 

2: '""
1 

= (1- D" )KC~:!)! + 2Jl(1- D" 'k_- ~: )d 

If F < 0 set 2: = 2:'""
1

, x= Xn, R =Rn, D = Dn and À= Àn 

Else if F ~ 0 continue with (II) otherwise EXIT 

(II) Calculate (~À, D) and hence .!! = Yll~ll, according to Table 2. 

(III) Calculate stresses with plastic corrector : 

2:d =(1-D"~· -2Jl(1-D)M.!! and 2:=(l-D)K(~:D!+2:d 
(IV) Calculate the hardening stresses :a Eq. [56] and r Eq.[57] 

Table 1. Computation of the Cauchy and internai stresses 

z<r> = cr. -~Ca exp(- af1.8P)) 
- - 3 n 

a:rl(fl.À<r> ,D<r> )= Eq. [68] 

Gi'(~À<rl ,D<r> )= Eq. [69] 

aa (pl . aa (p) a· <r> - 1 G (pl = __ 1 -
:.a <r> :.a <r> a· (p) = _u_,- a· (p) = _u_,-

]À - -;:n:- , ID an 
'

0 an · 'À at... 
ôD = 1a.<r>a·. <r>- G <r>a·, <r> yG. <rlG~. <r>- a·. <rlG~ <r> \- 1 

~ .:, IJ. 1 _). ~ ID .:.A. lA .:.D J 

oÀ = -(a;,<r> t(a;rl -G;o<r'oD) 

fl.À'•+ll = À'•' + ôÀ and D'•+li = D'•' + ôD 

if EXIT liGt" (ll.À tp+l>, D 1p+ 1> ~ :<:::: E
1 

IGi+I)(~À(p+l) ,D(p+l) ~ :<:::: E, 

Otherwise start form the beginning 

Table 2. Computation of M and D by Newton-Raphson method ((p) stands for 
iterations) 

S. Numerical examples 

5.1. Accuracy contemplation 

Let' s now investigate sorne effects of bath hardening and damage on the 
numerical accuracy of the proposed stress algorithm. The convergence properties of 
the algorithm will be studied on a large domain, covering ranges of relative errors 
between 1 and 10·7

• The selected loading conditions are a two-steps loading path 
under strain control: 
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- first step: uniaxial strain path with E11 = 5% E., = 0 

-the second step: multiaxial strain path with E
11 

= 5% E
12 

= 5% 

-This defines a non-proportional tensile-shear loading path making an angle of 
90° between the actual normal to the yield surface and the stress increment. 

The relative error measure is defined by 

E _IIYn- Y,.rll 
rror- IIY .. rll for n = 10,100,1 000,10 000 

where n is the number of increments and Y rer is the reference solution calculated with 
n = 100 000 Joad increments. These increments are constant for each path and 
equally distributed on the two loading steps. The Newton iterations are stopped for a 
maximum relative error of 10·10

• 

Figures 1 and 2 summarize the obtained results. First the equivalent stress error is 
plotted versus the equivalent (cumulated) plastic strain error (Figure 1) where it is 
clear that the error is Jess than 0.001 for n= 1 000 increments. Figure 2 shows the 
damage error versus the equivalent plastic strain error which is stilllower than 0.001 
for the same number of iterations. From this figure it's clear that the convergence 
rate is linear and better for accumulated plastic strain than for damage. 
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Figure 1. Equivalent stress versus cumulated plastic strain relative errors 
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Figure 4. Stress-strain response in the vicinity of the notch root du ring the first 4 
loading cycles 
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5.2. Notched bar under bending cyclic strain conditions 

The selected example is a notched bar subjected to a cyclic 4-points bending Joad, 
assuming plane strain state condition, already investigated by Doghri [DOG 93]. The 
calculation is achieved using the same mesh used by Doghri with the material 
parameters E = 210.0 GPa, v= 0.3, O"y = 200.0 MPa, Q = 520.0 MPa, b = 0.26, 
C = 25 500.0 MPa, a= 81.0, and the boundary conditions shown in Figure 3. 

Number of iterations Number of iterations 

Nb !nerem. Abaqus Umat Nb Joad !nerem. Abaqus Umat 
Joad Number step Number 
step 

1 1 1 1 2 21 1 1 
1 2 1 3 2 22 1 1 
1 3 3 3 2 21 2 2 
1 4 1 3 2 24 2 2 
1 5 2 _2_ 2 2'i 2 2 
1 ti 1 3 2 26 1 1 
1 7 3 3 2 27 1 1 
1 s 1 1 2 2S 2 2 
2 1 2 3 2 29 2 2 
2 2 1 1 2 10 2 2 
2 3 1 1 2 31 2 2 
2 4 1 1 2 12 1 1 
2 5 1 1 2 33 3 3 
2 ti 1 1 2 14 1 1 
2 7 1 1 2 35 1 1 
2 s 2 2 _2 36 _l 1 
2 9 2 2 2 37 2 2 
2 10 1 1 2 38 2 2 
2 11 1 1 2 39 2 2 
2 12 2 _2 2 40 2 2 
2 13 2 2 2 41 2 2 
2 14 2 2 2 42 1 1 

__2 15 2 2 2 43 1 1 
2 In 3 3 2 44 2 2 

_2 17 5 5 2 4'i 2 2 
2 IR 1 1 2 46 2 2 
2 19 1 1 2 47 2 2 
2 20 1 1 2 48 3 3 

Table 3. Comparison of the iteration number for bath ABAQUS and V mat for the 
calculation shawn in Figures 4 & 5 

First we start with a comparison between our model (Umat) without damage and 
the standard nonlinear isotropic/kinematic hardening available in ABAQUS/STD. 
The Figure 4 shows th at the local ma teri al response (of element 166 located at the 
notch root) in term of the first component of the Cauchy stress versus the first 
component of plastic strain obtained by our Umat compares weil with the one 
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obtained by the ABAQUS/STD. The same remark applies to the variation of the 
three components of the back stress tensor (kinematic hardening) as shown in 
Figure 5. The careful examination of Table 3 shows that the consistent tangent 
operator proposed in this study gives the same numerical performance as the 
ABAQUS/STD one. Note that, in Table 3, the change between the first and the 
second Joad steps corresponds to the rotation of the outward normal to the actual 
yield surface. In that point the proposed Umat needs one additional iteration 
compared to ABAQUS/SDT (see the highlighted cells in Table 3). These results 
show that the proposed stress computation procedure based on a consistent tangent 
operator possess a good numerical properties compared to the similar mode! 
available in ABAQUS/STD. 

5.3. Fracture prediction during hydraulic deep drawing 

The last example concerns the hydraulic deep drawing of a spherical box. 
Starting from a circular thin sheet ( 3.0 mm Thickness and 245.0 mm radius) fixed 
along its boundary on a table containing a circular hole (77.0 mm diameter), an 
increasing hydrostatic pressure is applied on the top of the system table/sheet giving 
rise to a vertical displacement of the table (2 rnrnls) aiming to maintain the sheet to a 
fixed hemispherical punch of 72.25 mm of radius (Figure 7a). At the initial 
configuration the circular sheet is tangent to the top of the hemispherical punch as 
shown by Figure 7 a. The Aluminum allo y sheet is characterized by the following 
material parameters : E = 84.0 GPa, v = 0.3, cry= 120.0 MPa, Q = 600.0 MPa, 
b = 3.0 (kinematic hardening being neglected), S = 200.0 MPa, s = 13 = 1.0. The 
Figure 6 shows the material response of the used Aluminum in both coupled and 
uncoupled cases. The contact and friction between the sheet and the table is 
supposed of Coulomb type with friction coefficient of 0.3. Numerical simulation 
aims to predict where and when damaged zones can be initiated inside the formed 
sheet during the process. 

Jsor------------------

300 

250 

100 

50 

0.5 1.5 

Equiv•lent pa.stic .tr.ln 

Figure 6. Local res panse of the used mate rial in bath uncoupled and coup led cases 
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(a) Initial configuration (punch, sheet) (b) end of the process (uncoupled) 

(c) end of the process (coupled) ( d) end of the process (experimental) 

Figure 7. Damaged zones prediction during a hydraulic deep drawing process 

Figure 7 shows the comparison between the predicted (Figures 7 b,c) and the 
experimentally observed (Figure 7d) damaged zones at the end of the process. Figure 
7b gives the numerically predicted damaged zones with the uncoupled formulation 
(i.e. no coupling between the damage and the elastoplastic behavior); while Figure 
7c gives the same numerical result obtained with the fully coupled formulation. From 
these figures one can note that only the coupled formulation gives a result close to 
the experimentally observed one concerning the fully damaged zones at the end of 
the process. As expected, the uncoupled formulation is unable to predict correctly 
the location of the fully damaged zones. This shows the capability of the proposed 
coupled approach to predict the damage initiation location (in space and time) during 
metal forming processes. Many other results are available in [HAM 00]. 

6. Conclusion 

The main purpose of this paper is to derive a fully implicit stress algorithm and 
the associated consistent tangent operator for a finite elastoplastic constitutive 
equations accounting for nonlinear isotropic/kinematic hardening and ductile 
isotropie damage. A problem-optimized procedure, which reduces the fully nonlinear 
system to only two scalar equations (three equations for the plane stress hypothesis) 
has been proposed. It has been shawn that using an asymptotic integration procedure, 
in conjunction with the backward Euler method, leads to very good accuracy. The 
results obtained in the prediction of damaged zones for a 3D hydroforming process 
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have shown the capacity of this coupled approach to optimize metal forming 
processes with respect to damage initiation. 

It's worth noting that because the present formulation is local, the results of 
coupled calculations are mesh dependent. A generalization of the present model to a 
damage gradient formulation is under progress and will be published later. 
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