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ABSTRACT. The goal of this contribution is the formulation and algorithmic treatment of 

anisotropie continuum damage mechanics at large strains. Based on the concept of an isotropie, 
fictitious and undamaged configuration a Finger-type damage metric tensor in terms of the fic­
titious linear tangent map is introduced. Referring to the principle of strain energy equivalence 
with respect to the fictitious, effective space and the standard reference configuration the free 

Helmholtz energy can be formulated within the standard reference configuration and treated 
in the spirit of standard dissipative mate rials. Thereby, the introduced damage potential sub­

stantially affects the anisotropie nature of the damage formulation. Final/y, sorne numerical 
examples demonstrate the applicability of the proposed framework. 

RÉSUMÉ. L'objectif de cette contribution est la formulation théorique ainsi que les aspects al­

gorithmiques d'un modèle d'endommagement anisotrope en transformations finies. Un tenseur 

métrique (tenseur de Finger) d'endommagement est introduit en terme d'application linéaire 
tangente fictive basée sur le concept de configuration fictive, anisotrope et non endommagée. 
En utilisant le principe de l'équivalence en énergie dans l'espace fictif des variables ef­

fectives et la configuration de référence, l'énergie libre de Helmholtz est formulée comme 
potentiel d'état dans le cadre des milieux dissipatifs standards généralisés. Le potentiel 
d'endommagement introduit est substantiellement sensible à la nature anisotrope de l'évolution 

de l'endommagement. Enfin, des examples numériques sont traités pour illustrer les perfor­
mances du modèle proposé. 
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1. Introduction 

The main objective of this work is the development of a phenomenological, 
geometrically nonlinear formulation of anisotropie tensorial second order continuum 
damage. 

In fact, it is the evolution of microscopie internai structure of materials by 
nucleation and growth of distributed microcracks or microvoids which in turn leads 
to the deterioration of the mechanical properties of the material. Especially the shape, 
orientation and evolution of these microdefects show a significant dependence on 
the direction of stress and strain. Obviously, the nature of damage is anisotropie and 
thus a continuum damage theory should provide sufficient freedom to capture these 
anisotropie damage effects. 

The appropriate choice of the physical nature of mechanical variables describing 
the damage state of a material and their tensorial representation is since long under 
discussion, for an overview see e.g. Lemaitre [LEM 96] or Krajcinovic and Lemaitre 
[KRA 87] and the literature cited therein. Following the attempts of Betten [BET 82] 
and Murakami [MUR 88], the well-known concept of deformed and reference, 
or rather undeformed, macroscopic configurations of a material body within the 
geometrically nonlinear continuum theory is supplemented by the concept of fic­
titious undamaged microscopie configuration. Nevertheless, in strong contrast to 
the classical approaches mentioned above, the present damage theory, fully outlined 
in Steinmann and Carol [STE 98] and further exploited in Menzel and Steinmann 
[MEN 00], is based on the notion of a second order damage metric tensor and its 
effects on the stored strain energy. Thereby, as the fundamental assumption, the 
storage of strain energy due to either nominal or effective strains is measured by 
either the damage or the energy metric based on the hypothesis of strain energy 
equivalence between microscopie and macroscopic configurations, see e.g. Sidoroff 
[SID 81]. The framework of standard dissipative materials, as proposed by Halphen 
and Nguyen [HAL 75] is strictly applied. Another approach to formulate anisotropie 
damage based on the introduction of an internai second order damage tensor similar 
to structural tensors has been given in Menzel and Steinmann [MEN 99]. 

2. Anisotropie hyper--elasticity based on a fictitious configuration 

The reference and spatial configuration of the body of interest are denoted by 
Bo c JE3 and Bt c JE3 . Let cp(X, t) : B0 x 114 -+ Bt represent the non-linear 
map of material points X E 8 0 onto spatial points x = cp(X, t) E Bt. In terms of 
convected coordinates Bi(x) and ei(X) the natural and dual base vectors are given 
by the derivatives 9; = â9;x E TBt, 9; = â"'Bi E T*Bt, G; = Ôe;X E TBo 
and Gi = âx ei E T* 80 . Now, the spatial and material metric tensors follow 
straightforward- g' = 9ii 9i ® 9i, 9ü = gii 9; ® 9j• Gb = G;j Gi ® Gi, 

GÜ = Gii G; ® Gi- and in addition we introduce the mixed-variant identity-tensors 
9Q = 9; ® gi and GQ = G; ® Gi. On this basis, the linear tangent map of the direct 
motion reads FQ = âxcp = â9;cp ® âxBi = 9; ® G' E GL+ and, for notational 
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simplicity, the gradient of the inverse motion c)(x, t) = c.p- 1 
: Bt x !14 -+ B0 reads 

f 0 = â..,c) = â8 ,c) 0 â..,Gi = G; 0 gi E CL+. Severa! kinematic tensors can be 
introduced, e.g. the Finger tensors bü = P 0 · Gü · (F0]t = Gii 9; 0 g1 or the right 

Cauchy-Green tensor c" = [P0]t · g" · P 0 = gii G; 0 Qi which enters the definition 
of the Green-Lagrange strain tensor E" = [C" - G"J/2. A graphical representation 
is given in Figure 1 and in view of a detailed outline on non-linear kinematics we 
re fer to the work of Marsden and Hughes [MAR 94]. 

2.1. The fictitious configuration 

Now, in addition to the physical and material space we introduce a fictitious 
isotropie configuration with natural tangent space TBo and corresponding dual space 
T* !30 . In analogy to the intermediate configuration within the multiplicative de­
composition of elasto-plasticity, the fictitious configuration is generally incompati­
ble. Mathematically speaking, we have a non-vanishing Riemann-Christoffel tensor 
which means that the conditions of compatibility are not fulfilled and the correspond­

ing direct fictitious linear tangent map - denoted by P0 - takes the interpretation as a 
non-holonomie Pfaffian, see e.g. Haupt [HAU 00]. Nevertheless, within the proposed 

multiplicative composition P0 allows the interpretation as pre-stretch and defines the 

fictitious base vectors G; E TBo and Gi E T*B0 which are obviously not derivable 
from position vectors. Next, the fictitious metric and identity-tensors follow as 

-~> - -; -1 -ü -;·- - -o - -; 
G = G;J G 0 G , G = G 3 G; 0 GJ and G = G; 0 G . (1) 

The linear tangent maps due to the direct and inverse fictitious motion read 

-o_ -; -o - ; 
P - G; 0 G and f = G; 0 G , (2) 

see Figure 1 for a graphical representation. Without Joss of generality usual push­
forward and pull-back operations in terms of the fictitious linear tangent map ho1d, 

-1> -o " -o -; -J e.g.E =[P]t·E ·P =[g;J-G;1]j2G 0G. 

2.2. Energy metric tensors 

In the sequel we incorporate a contra-variant energy metric tensor which reads 
within the fictitiuus and undeformed setting as follows 

Aü = _Aii G; 0 G1 and Aü =A ii G; 0 G 1 with (jii ::::: .Jii =A ii , (3) 

whereby the push-forward operation 

(4) 

is implied. As a key idea, the fictitious energy metric tensor is chosen equal to the 
fictitious contra-variant metric tensor and replaces this metric within the construction 
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Bo 

TËo 

rp(X, t) 

~ ~Bt 
FQ 

Figure 1. Non-linear point map rp and linear tangent maps FQ and FQ 

of the free Helmholtz energy function 'l/Jo. Consequently, due to the princip le of strain 
energy equivalence the relation 

- -b -tt b tt 'l/Jo ( E , A ) = 'l/Jo ( E , A ; X) (5) 

holds, which means that the free Helmholtz energy remains invariant under the action 
of FQ. 

Remark 2.1 Note that eq.(5) includes ali assumptions of the proposedframework. ln 
particular isotropy is included if the energy metric tensor Att is spherical whereas 

otherwise anisotropy is considered. Since the relation Att ='= t;tt is incorporated, the 
fictitious configuration is isotropie and thus standard isotropie constitutive equation 
can be applied to mode! anisotropie mate rial behaviour. 

Remark 2.2 For conceptual simplicity we foc us he re on the composition FQ · FQ and 
do not consider the spatial fictitious tangent space T Ët. 

2.3. Hyper-elasticity 

Since the fictitious configuration is isotropie three (basic) invariants in terms of 

il and Att enter the formulation. Application of the standard pull-back operations 
Ëb = [FQ]t . Eb . FQ and Att = JQ · Att · [JQ]t renders two corresponding sets of 
invariants 

Ëb,..p In= GQ: [Ëb · Att]n and EbA~ In= GQ: [Eb · Attt, (6) 

with n = 1, 2, 3. Thus the usual hyper--elastic framework yields e.g the second Piola­
Kirchhoff stress tensor 

3 
stt = aEb'l/JO = Ln=l na EbA~ In 'l/Jo Att. [Eb. Att][n-l] (7) 
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and the Hessian E'Eb c} = ô~b0Eb 1/Jo takes a similar format compared to standard 
isotropy. 

2.4. Representation of the energy metric tensor 

In order to demonstrate the nature of the energy metric tensor we choose the 
following ansatz for the fictitious contra-variant vectors ti with respect to the 
anisotropie reference configuration Bo (with AN~, AN~ E S2) 

(8) 

With this representation in hand the two-field tensor .FQ = G; Q9 ti reads 

-Q • Q ""
2 AQ . AQ AN# ANI> F = a 0 G + L..,(=l a< < w1th < = < Q9 < . (9) 

Now, straightforward computations due to eq.(4) with A# = t;# render the symmetric 
energy metric tensor 

A# = /3o ctt + /31 A~ + /32 A~ + 2/33 [A~ · G 11 
• A~]sym, (10) 

whereby the abbreviated notations f3o = aô, /31 = 2 ao a1 + aî, /32 = 2 ao a2 +a~. 
/33 = a1 a 2 have been applied. 

Remark 2.3 The rank one tensors A~ 2 allow similar interpretation as structural 
tensors. Jndeed, the incorporation of eq.(/0) into eq.(6) yields a set of invariants 
which can be expressed as afunction of the set of invariants for general orthotropy as 
given e.g. by Spencer [SPE 84]. 

Remark 2.4 Within geometrically linear orthotropic hyper-elasticity based on struc­
tural tensors up to nine independent material parameters are included, see e.g. 
Spencer [SPE 84 ]. Contrary, the formulation based on the fictitious configuration in­
corporates four independent parameters (thereby the two Lamé constants are taken 
into account, and thus the additional isotropie parameter a 0 is not independent.) 
This underlines that we deal with a reduced formulation. For the sake of clar­
ity, we consider the constant tangent operator of a material of linear St.-Venant 
Kirchhoff type EbEb .ctt = ô~b 0Eb 1/Jo :::::: À A# Q9 A# + J.L [A# Q9 A# + A# Q9 A#]. 
Now, referring to a Cartesian frame e;, we choose without loss of generality A = 
f3o I + /31 e1 Q9 e1 + /32 e2 Q9 e2. Then, the relevant coefficients of the Hessian read 

.Cuu =[À+ 2J.L](77o + 771]2 L1122 = À[77o + 77d L1133 = À77o[77o + 77d 

+2J.L(77o + 772] 

L2222 =[À + 2J.L](77o + 772] 2 L2233 = À77o[77o + 772] L3333 =[À+ 2J.L]775 
(11) 

.C1212 =J.L[77o + 771][77o + 772] L2323 =J.L77o[77o + 772] L1313 =J.L77o[77o + 771] 
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Obviously, we deal with a sub-class of rhombic symmetry. 

2.5. Numerical examples 

For the following numerical examples a non-linear material of Kauderer-type is 
applied, see Kauderer [KAU 49]. Within the general representation 

1J;o = 7j; (E'p Ati. X)-"'""'()() c EbA~ [P EbA~ Iq EbA~ r 
0 ' ' - ~p,q,r=O pqr 1 2 3 ' 

(12) 

compare Ogden [OGD 97], the coefficients of the implemented constitutive equation 
re ad: 

co10 =G 
_ 4 G dev Czro- -9 "'z 

czoo =~K-t G 

-2 G dev Cozo- 3 "'z 
_ 16 G dev 

C600-- 729 K,4 

Co3o = - Czzo = ~~ G "'~ev 

_ 1 K vol 
C3oo- 9 "'r 

_ 16 G dev 
C410- 8ï "'4 

_ 2 G dev + 1 K vol 
C400 - 27 "'2 12 "'2 

(13) 

The subsequent material parameters are chosen: K = 8.333 x 104 , G = 3.8461 x 104 , 

K,)'01 = "'~ev = 0.5 and "'2°1 = "'~ev = 0.25. In view of the energy metric tensor 
the following spherical coordinates de fine the orthogonal unit-vectors AN 1,2 : 

'!9~ = 5/67r, '!9i = 1/67r, '!9~ = 1/37r and '!9~ = l/27r, see the Appendix, and the 

additional scalars to compute F~ read a 0 = 1.0, a 1 = 0.25 and a 2 = 0.5. 

2.5.1. Simple shear 

For the homogeneous simple shear deformation (F = I + 1e1 0 e 2 with I = 
J;j e; 0 ei) Figures 2 and 3 highlight the anisotropie behaviour of the applied ma teri al, 
compare Appendix. The anisotropy measure J shows a strong dependence on the shear 
number 1· Typically, the stereographie projection with respect to the stress and strain 
tensors underline their non-coaxiality. Finally, the plots of the determinant of the 
acoustic tensor show a different shape for the anisotropie and isotropie ( a 1 = a 2 = 0) 
setting. They are given at 1 = 0.25 in normalised form with respect to the linear 
isotropie case with det(q)lin,iso = G2 [3/4G + K]. 

2.5.2. Cook's problem 

A three--dimensional version of Cook's problem has been discretised with 16 x 
16 x 4 enhanced eight node bricks (Q1E9) as advocated by Simo and Armero 
[SIM 92]. Figure 4 shows the reference geometry (L = 48, H 1 = 44, Hz = 16, 
T = 4), boundary conditions and a deformed mesh at IIFII = 1.28 x 105 which 
is the amount of the conservative resultant force of a continuous shear stress in 
B0 . Furthermore, Figure 5 highlights the displacement of the mid point node at the 
top corner for the anisotropie meterial and in addition for an isotropie setting with 
iso A ti = [,86 + [,Bo + ,81]2 + [,Bo + ,82]2]112 Gti. Obviously the anisotropie case results 
in a non-vanishing component u3 which indicates the "out-off-plane" deformation. 
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• • 
0 0 0 

• 
• 

Î = 0.25 Î = 1.5 

Figure 2. Anisotropy measure 8 and stereo-graphie projection due to the principal 
directions of strain E : o and stress S : • with respect to a Carte sian frame 

0 0 f}2 0 0 

Figure 3. Determinant of the acoustic tensor for r = 0.25 within the anisotropie 
and the isotropie setting 

For more detailed background information on non-linear fini te elements we refer e.g. 
to Oden [ODE 72]. Note that the proposed framework results in an efficient numer­
ical setting. Practically, we end up with similar costs compared to isotropie hyper­
elasticity, since the metric tensor GU of the standard formulation is replaced by AU. 
Contrary the classical approach based on the incorporation of structural tensor yields 
numerous additional terms in the computation of the stress tensor and especially of 
the tangent operator which ends up with tremendous numerical costs. 

3. Anisotropie damage based on a fictitious configuration 

Here, as the key idea, the energy metric tensor is introduced as an internai variable 
and denoted as damage metric tensor in the sequel. Then the fictitious linear tangent 

map pb is no longer constant and allows the interpretation as damage deformation 
gradient. The fictitious configuration remains isotropie and un-damaged but the 
standard reference configuration 8 0 as weil as the spatial one 8 1 can be damaged and 
anisotropie. 
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L 

y y 

Zj_X Lx 
Figure 4. Three-dimensional Cook's problem and deformed mesh at 
IIFII = 1.2s x 105 

- 16 0'----4()~~-~80-~~120::::111 

force: F/1 000 

-16 o':----.w-:-:---~--::eo:--~---:-12=-'o 
force: F/1 000 

Figure 5. Load-displacement curve of the mid point node at the top corner for the 
anisotropie and isotropie setting 

3.1. Standard dissipative materials 

We adopt an additive decomposition of the free Helmholtz energy 

1/Jo = 1/Jgam(Eb, Att; X)+ 'fj;gar(~~:) (14) 

incorporating a scalar-valued hardening variable 11:. Based on the theory of stan­
dard dissipative materials, see Halphen and Nguyen [HAL 75], the local form of the 
Clausius-Duhem inequality for the isothermal case with respect to Bo reads 

V= [Stt- ÔEb'f/Jo] : Dtë -ô A~'f/Jo : DtAtt- âl<'f/Jo Dt~~: 2: 0. (15) 

Within the standard argumentation of rational thermodynamics the nominal stress, the 
damage stress and the hardening stress are obtained by 

(16) 
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Next, an admissible elastic cone is introduced 

whereby <1> is a convex function and Y= Y0 + H(K). Moreover, associated evolution 
equations Dt Au = >.ô ab <1>, DtK = - >. ÔH<I> = >.are applied. The underlying con­
strained optimisation problem yields the Kuhn-Tucker conditions and the Lagrange 
multiplier >. can be computed via the consistency condition. Nevertheless, for the 
sake of demonstration, in the sequel the hardening contributions are assumed to be 
constant. 

-tt -Q tt -Q -1> 
Remark 3.1 Standard pull-back operations yield e.g. S = f · S · [f ]t and a = 

[.FQ]t ·a" · .FQ which al/ow the interpretation as effective stress measures. 

3.2. Construction of the damage function 

The specifie form of the damage function significantly affects the evolution of 
anisotropie damage. Therefore, we will especially focus on the evolution of the 
eigendirections of the damage metric tensor. 

The most general form is of course based on the set of ten invariants in terms of 
the damage stress a" and the damage metric A tt itself 

(18) 

Nevertheless, two selected representations seem to be natural and will be highlighted 
in the sequel, compare Schreyer [SCH 95]. 

The direct formulation introduces the damage rate negative proportional to a sym­
metric, positive semi-definite second order tensor 28tt(Att). Obviously, the simplest 
choice 2 gtt =A tt results in 

(19) 

and the dissipation inequality reads V = >. Y 2: 0 . Indeed, the damage rate and the 
damage metric itself are coaxial but since the damage metric could be non-spherical 
we denote this type of damage as quasi isotropie. 

The formulation based on conjugate variables constructs the damage rate as a 
linear map of the damage stress via a symmetric, positive semi-definite fourth order 
tensor 4 8tt(Att). Again, a simple choice 4 gtt = A tt Q9 Attends up with the quadratic 
form 

and the reduced local form of the Clausius-Duhem inequality reads V = 2 >.Y 2: O. 
Obviously, the damage rate and the damage metric are no longer coaxial which moti­
vates the terminology anisotropie damage. 
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Remark 3.2 Eqs.( 19,20) can alternative/y be motivated via the following quadratic 
form 

whereby for the fourth order tensor 4 8 the structure of the tangent operator of linear 
elasticity has be en adopted. Now, due to the central ide a of the proposed framework, 
the contra-variant me tric tensor is replace by the damage metric 

Then the first term, incorporating the scalar T/l, re presents the quasi isotropie damage 
function cp 1 of eq.( 19) and the second term, incorporating the scalar T}2 , represents 
the anisotropie damagefunction cp2 of eq.(20). 

Remark 3.3 In contrast to isotropy the incorporation of an in-elastic potential to­
gether with the application of associated evolution equations within an anisotropie 
setting is an assumption since the obtained rate equations re present reduced forms 
of the most general tensor functions in terms of al! appropriate arguments, see e.g. 
Betten [BET 85]. 

Remark 3.4 The two introduced types of damage functions and the character of 
the initial damage metric tensor A~ define a general classification of the coupling 
of hyper-elasticity and damage. In particular; the following four categories are 
obtained: 

( 1) isotropie hyper-elasticity (A~ = (30 G~) & quasi isotropie damage ('Pl) 

(2) isotropie hyper-elasticity (A~ = (30 G~) & anisotropie damage (cpû 

( 3) anisotropie hyper-elasticity (A~ -:f (30 Gtt) & quasi isotropie damage ('Pl) 

(4) anisotropie hyper-elasticity (A~ -:f (30 a tt) & anisotropie damage (cp2J 

Assuming a mate rial of St. Venant-Kirchhoff type category ( 1) is direct/y related to 
the classical [1 - d] damage formulation via Att = (30 Gtt = [1 - d] 2 Gtt. In this 
case (30 represents three equal eigenvalues, which degrade for increasing damage, 
e.g. characterised by d. Moreover; note that especially formulations within category 
(2) become anisotropie within the pure/y elastic domain for unloading after damage 
evolution has taken place. 

3.3. Numerical examples 

In the sequel we apply a compressible Mooney-Rivlin material of the form 

'!/Jo C1 [ CbG~ J1 - 3] + C2 [ CbG~ h - 3] 

+ )..P ln2 ( cbG~ Ji/2) - 2[cl + 2 c2]1n ( CbG~ Ji/2) , 
(23) 

whereby the principal invariants cba~ J1,2,3 are expressed in terms of the basic invari-
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ants EbA~ h,2,3 , to be specifie 

CbG~ Jl 

CbG~ h 

CbG~ J3 

3+2 EbA~Il 

3 + 4 EbA~ h- 2 EbA' h + 2 EbA~ Ir 

1 + 2 EbA~ h- 2 EbAd h + 8/3 EbAd I3 

+ 2 EbA~ Ir- 4 EbAd h EbA~ h + 4/3 EbA~ I~. 

(24) 

In order to define the initial damage metric tensor we chose the specifie format 
A~ = ÎO ctt + :L~=l Î(, AN~ 0 AN~. compare Svendsen [SVE ]. Moreover, the 
following material parameter have been taken into account c1 = 10, c2 = 20, V = 5, 
ÎO = 1.0, Îl = 0.5, Î2 = 0.25, Y = 10 and the orthogonal unit-vectors AN~ 2 are 
definebysphericalcoordinatest9t = 2/37r,t9t = 1/37r,t9t = 4/37r,t9t = l/67r 
(compare Appendix). For quasi isotropie damage (<pl) an exponential integration 
scheme is available whereas for anisotropie damage evolution ( <p2 ) an implicit Euler 
backward scheme is applied. We do not focus on numerical aspects here since they 
are discussed in detail in Menzel and Steinmann [MEN 00]. Within the following 
finite element setting the tangent operator has been evaluated numerically as e.g. 
outlined in Miehe [MIE 96]. 

3.3.1 Simple shear 

We consider again the homogeneous deformation of simple shear (F = 1 + 
Î e 1 0 e2) and take anisotropie damage ( <p2) into account. Figure 6 shows the dif­
ferent degradations of the eigenvalues of the damage metric tensor and highlights the 
non-coaxiality of stress and strain, compare Appendix. In addition the stereographie 
projection of the principal damage directions are given which evolve during the defor­
mation process. 

1 ~ :""..l 

< 
0 ' 
"' ~ 08 

~ 
c: 06 
& 
ïD o.a 

02 

\ ,, . ' \ ... ______________________ _ 
1 
i 
i 
\ 
\ 
'· '· '· .......... ____________________ _ 

00~~0~.--~~.~.~;=~,.==d 
'Y 

Î = 0.1 Î = 1.0 

Figure 6. Degradation of the eigenvalues A À1,2 ,3 and stereo-graphie projection due 
to the principal directions of strain E : o, stress S : • and the damage me tric A : * 
with respect to a Cartesian frame 
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3.3.2 Strip with a hole 

To give a three-dimensional finite element example a strip with a ho le is discretised 
by 64 x 2 enhanced eight node bricks (Q1E9) as advocated by Simo and Armero 
[SIM 92]. The geometry of the specimen is defined by a length of 12, a width of 
4, a thickness of 0.5 and a radius of 1. One end is totally clamped while the other 
end is subject to displacement conditions in longitudinal direction. Figure 7 shows 
the deformed mesh and the anisotropy measure c5 for a maximal longitudinal stretch 
of À = 1.5 for the purely hyper-elastic solution (Y --+ oo ). In addition the load­
displacement curve of the mid node at the un-clamped end underlines the anisotropie 
behaviour since the displacement components u 1 and u3 would be identical to zero 
within an isotropie setting. Now, incorporating damage evolution the degradation is 
concentrated (un-symmetrically) at the boundary of the hole. In this context Figure 8 
highlights the smallest eigenvalue A À1 of the damage metric tensor and the anisotropy 
measure c5 within quasi isotropie damage ( cp1 ). Moreover, Figure 9 visualises the same 
contents for anisotropie damage ( cp2 ). 
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Figure 7. Anisotropy measure c5 and deformed meshfor a maxima/longitudinal 
stretch À = 1.5 and load-displacement curve of the un-clamped mid point node at 
the free end within pure hyper-elasticity (Y --+ oo) 

4. Outlook 

The proposed thermodynamically consistent framework for anisotropie materials 
at large strains results in a manageable numerical setting. Nevertheless, conceming 
future work, localisation has somehow to be taken into account. Furthermore, the 
coupling to finite strain plasticity is an outstanding issue and finally the construction 
of specifie damage functions for engineering material as weil as the corresponding 
identification of material parameters are important areas constituting future research. 

Appendix: Visualisation of Anisotropy 

Especially for three-dimensional examples it is not a trivial task to visualise 
anisotropy. In the sequel three different propositions are made. 



-~ 1 OOOOE+OO 

l
'' :EEi:~: 

9.3778E·01 
9.2222E·01 
9 0667E·01 
89111E·01 
8 7556E·01 
8 6000E·01 

Anisotropie damage at large strains 381 

~ 
1.0000E•01 
8.9000E•OO 
7 8000E+00 
6.7000E+00 
515000E+00 
4.5000E+OO 
34000E+00 
2 3000E+OO 
1 2000E+00 
1 OOOOE-01 

Figure 8. Smallest eigenvalue A À1 of the damage me tric and anisotropy me as ure o 
for quasi isotropie damage (<pl) at IIFII = 114 
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Figure 9. Smallest eigenvalue A .\1 of the damage me tric and anisotropy me as ure o 
for anisotropie isotropie damage ( <p2) at IIFII = 65. 

In case that stress and strain tensors are not coaxial we deal with an anisotropie 
material. This motivates the introduction of the anisotropy measure 

(25) 

Within the method of stereographie projection the eigenvectors of a symmetric 
second order tensor- which allow interpretation of being elements of the unit-sphere 
S 2 - are projected onto the equatorial plane by viewing from the south pole. Mathe­
matically speaking, this method represents the homomorphism S0(3) -+ SU(2), see 
e.g. Altmann [ALT 86]. 

Determinant of the acoustic tensor: Incorporating the common wave equation 
ansatz into the incrementai equation of motion for F~ = const yields (see e.g. Antman 
[ANT 95]) 

(26) 

with tc~ 
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the spatial unit-vector n° E S2 can be defined by two spherical coordinates 191 •2 . 

Referring to a Cartesian frame ei, one of three possible parametrisations to define 
n = ni ei E S 2 reads 

5. References 

[ALT 86] ALTMANN S. L. Rotation, Quaternions and Double Groups. Oxford Uni­
versity Press, 1986. 

[ANT 95] ANTMAN S. S. Nonlinear Problems of Elasticity. Number 107 in A pp lied 
Mathematical Sciences. Springer, 1995. 

[BET 82] BETTEN J. «Net-stress analysis in creep mechanics ». Ing. Arch., 52:405-
419, 1982. 

[BET 85] BETTEN J. «The classical plastic potential theory in comparison with the 
tensor function theory ». Eng. Fract. Mech., 21(4):641-652, 1985. 

[HAL 75) HALPHEN B. AND NGUYEN Q.S. «Sur les matériaux standards général­
isés». J. Mécanique, 14:39-62, 1975. 

[HAU 00] HAUPT P. Continuum Mechanics and Theory of Materials. Advanced 
Texts in Physics. Springer, 2000. 

[KAU 49] KAUDERER H. « Über ein nichtlineares Elastizitlitsgesetz ». lngenieur­
Archiv, XVII:450-480, 1949. 

[KRA 87) KRAJCINOVIC D. AND LEMAITRE J. Continuum Damage Mechanics. 
Number 295 in CISM Courses and Lectures. Springer, 1987. 

[LEM 96] LEMAITRE J. A Course on Damage Mechanics. Springer, 2nd edition, 
1996. 

[MAR 94) MARSDEN 1 .E. AND HUGHES T.J .R. Mathematical Foundations of Elas­
ticity. Dover, 1994. 

[MEN 99) MENZEL A. AND STEINMANN P. «A theoretical and computational set­
ting for geometrically nonlineardamage mechanics ».In WUNDERLICH W., Ed., 
Proceedings of the European Conference on Computational Mechanics, nu rober 
329. ECCM, Munich, 31.08.-03.09. 1999. 

[MEN 00) MENZEL A. AND STEINMANN P. «A theoretical and computational set­
ting for anisotropie continuum damage mechanics at large strains ». /nt. J. Solids 
& Structures, 2000. accepted for publication. 



Anisotropie damage at large strains 383 

[MIE 96] MIEHE C. « Numerical computation of algorithmic (consistent) tangent 
moduli in large-strain computational inelasticity ». Camp. Meth. Appl. Mech. 
Engrg., 134:223-240, 1996. 

[MUR 88] MURA KAMI S. « Mechanical modeling of material damage». ASME 1. 
Appt. Mech., 55, 1988. 

[ODE 72] ODEN 1. T. Fini te Elements of Nonlinear Continua. Advanced Engineering 
Series. McGraw-Hill, 1972. 

[OGD 97] OGDEN R.W. Non-Linear Elastic Deformations. Dover, 1997. 

[SCH 95] SCHREYER H.L. « Continuum damage based on elastic projection ten­
sors »./nt. 1. Damage Mechanics, 4:171-195, 1995. 

[SID 81] SIDOROFF F. «Description of anisotropie damage application to elastic­
ity ».In HULT J. AND LEMAITRE J., Eds, PhysicalNon-Linearities in Structural 
Analysis. IUTAM Symposium Senlis/France, Springer, 27.-30.05. 1981. 

[SIM 92] SIMO J.C. AND ARMERO F. « Geometrically non-linear enhanced strain 
mixed methods and the method of incompatible modes ». /nt. 1. Num. Meth. 
Eng., 33:1413-1449, 1992. 

[SPE 84] SPENCER A.J.M. «Constitutive theory of strongly anisotropie solids ». In 
SPENCER A.J.M., Ed., Continuum Theory of the Mechanics of Fibre-Reinforced 
Composites, number 282 in CISM Courses and Lectures. Springer, 1984. 

[STE 98] STEIN MANN P. AND CAROL 1. « A framework for geometrically nonlinear 
continuum damage mechanics ». /nt. 1. Engng. Sei., 36:1793-1814, 1998. 

[SYE] SVENDSEN B. On the modeling of anisotropie elastic and inelastic material 
behaviour at large deformation. Preprint. 




