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ABSTRACT. This paper addresses the conceptual problem of whether there exist measurable 
quantities which are highly sensitive ta small changes in the physical parameters ofvibrating 
systems? We present an astonishing analytical example, showing that a small change in one 
of the springs of a large multi-degree-of-freedom mass-spring system can be identified by a 
special dynamic test. We then argue that despite this analytical example, which can be easily 
reproduced by ali interested readers, the longstanding controversy whether a small damage 
in a realistic structure can be identified by a dynamic test is still open. 

RÉSUMÉ. Ce papier s'intéresse à la question fondamentale qui est de savoir s'il existe des 
quantités mesurables hautement sensibles à de petites variations des paramètres 
caractéristiques de vibration d'un système. On présente un exemple analytique montrant 
qu'une petite variation dans la rigidité de l'un des ressons d'un système masse-ressorts à 
grand nombre de degrés de liberté peut être révélée par un essai dynamique spécifique. On 
en conclu que, malgré cet exemple analytique simple, aisément vérifiable par le lecteur, le 
problème de mesure d'un faible endommagement dans une structure mécanique par des 
essais dynamiques demeure bien ouvert. 

KEYWORD: Defects, damage characterization, vibrating systems, dynamic test, stiffness 
reduction, frequency response, crack identification. 

MOTS-CLts : défauts, caractérisation du dommage, système vibrant, essais dynamiques, 
réduction de rigidité, réponse fréquencielle, identification de fissures 
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1. Introduction 

There is a wealth of literature associated with diagnostic criteria, procedures, and 
methods for damage detection in structures and systems. With technological 
progress, high-speed machinery and transport carriers are prone to fatigue and 
catastrophic failure. There is thus an increasing interest in developing reliable 
diagnostic methods allowing the detection of structural defects at an early stage. 
Following the early work of Cawley and Adams [CA W 79], a variety of methods for 
identifying the existence of damage have been proposed, see e.g. [GAS 98], [HEA 
91], [LIA 92], [RAT 00], [REY 96], and [REY 00]. 

If the damage exceeds a certain significant leve! then it can be detected by 
changes in the spectral properties. It is a matter of debate, however, whether a 
damage can be identified at an early stage, at which the physical parameters of the 
system are only slightly altered from their nominal undamaged values. An inherent 
difficulty associated with repeatability of modal testing results conducted in 
independent laboratories prevents easy confirmation or rejection of published results 
and procedures associated with damage detection. It appears that the fundamental 
problem of determining whether there exist measurable quantities that are highly 
sensitive to small changes in the physical parameters, has not been appropriately 
addressed yet. In this context an analytical example demonstrating the possibility of 
identifying small damages in the theoretical mode! framework of vibrating systems 
may be of much significant importance than merely displaying experimental results. 
In this paper we furnished such an analytical example, and through it address the 
fundamental problem of identifying small defects in structures by means of vibration 
tests. 

For simplicity consider a conservative vibrating system modelled by: 

Mx+Kx =o, [ 1] 

with symmetric positive definite mass matrix M , and non-negative definite stiffness 
matrix K. It is weil known that the eigenvalues of the system [2] are continuous 
functions of the elements in the system matrices, see e.g. [PAR 80]. If the 
eigenvalues are distinct then the mode-shapes are continuous functions of the 
physical parameters as weil. Changes in the physical parameters of the system are 
related by bounds to changes in the orientation of the eigenvectors, as shown in 
[RAM 93]. Renee small changes in the physical parameters may produce only small 
variation in the spectral data. The measurable data in modal test however are rational 
functions, e.g., 

H( . )- P(jw) ._ G1 
JW - Q(jw )' 1 --v-1, 
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where H (Jw) is the frequency response function and P(jw) and Q(Jw) are 

functions depending on the physical properties of the system. Hence continuity of w 
with respect to the coefficients of P(jw) and Q(Jw) does no necessarily imply 

continuity of w with respect to the elements of H (Jw). 

We present in Section 2 an example demonstrating that a certain measured 
function is highly sensitive to changes in the physical parameters of the system. 
Physical interpretation of this result is given in Section 3. In Section 4, while 
applying the result to groove identification in a vibrating rod, we find that the 
frequency of excitation required determining the location of the groove is extremely 
high. We therefore conclude that the problem of whether a small damage in a 
realistic structure can be identified by a dynamic test is still subject to debate. 

2. Damage in a discrete model of a uniform vibra ting rod 

Figure 1. Mass-spring system 

Consider the n-degree-of-freedom system shown in Figure 1, which consists of 
masses m; and springs of constants k;, i = l,2, ... ,n. Such a system represents a 
discrete lumped-parameter-model, or finite difference mode!, of an axially vibrating 
rod. Suppose th at the harmonie excitation f V)= sin {wt) is applied to the j-th degree 
of freedom. Then, the motion of the system is described by the set of ordinary 
differentiai equations 

Mx + Kx = e i sin wt , [2] 

where: 
[3] 

k1 +k2 -k2 

-k2 k2 +k3 -k3 

K= [4] 

- kn-1 kn-1 + kn - kn 

-kn kn 
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and e j is the }-th unit vector of dimension n . The system [2] has a particular 
solution of the form 

x j(t) = h j sinwt, j = l,2, ... ,n, [5] 

where h j is a constant vector. Substituting [5] in [2] gives 

(K -w 2M~ j = e j, j = l,2, ... ,n. [6] 

The n-equations defined by [6] can be assembled as follows 

[7] 

where 1 is the identity matrix and 

[8] 

We thus have 

[9] 

The matrix H(w) is called the Frequency Response Function (FRF) matrix. Its 
element h;j tw) represents the steady state amplitude of the harmonie response at the 
i-th degree-of-freedom due to a unit sinusoïdal excitation applied to the }-th degree-of
freedom. Hence, the elements of H(w) can be determined by simple vibration tests. 

sinwt 

~Lll~ ••• ~ 
~ï~,~ 1 1 

(a) Pure system 

sinwt 

~ ••• ~_ITlo.uL ... ~ 
~1 1 

(b) Damaged system 

Figure 2. Systems description: (a) pure system, and (b) damaged system 
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Consider now the uniforrn system of unit parameters mi =ki = 1, 1 = 1,2, ... ,100 

of dimension n = 100, shown in Figure 2(a). A harmonie exciting force with 
frequency w = 2 is applied to the system at the }-th degree-of-freedom. Suppose that 
the constant of the p-th spring is reduced due to a damage to k P = 0.99 , as shown in 

Figure 2(b ). Let hu (2) and hu (2) be the collocated frequency-response-functions at 

i = 1,2, ... ,n of the pure system and the damaged system, respectively. These 

functions are plotted in Figure 3(a) for the case where p = 25, i.e. the damage is 

applied to the 25-th spring. Similar graphs for the cases that the damage is applied to 
the 50-th and 75-th degrees of freedom are shown in Figures 3(b) and 3(c), 
respectively. It is apparent that the damage and its location is clearly observable by 

discontinuity in slope of hu (2). In contrast, damaged applied to the 5-th spring 

cannat be unambiguously identified as shown in Figure 3(d). Such a result can be 
grasp by intuition. The fifth spring is too close to the support and hence cannat be 
excited easily by the harmonie force. 

0 0 

-10 

-20 

-30 -30 

0 20 40 60 80 100 0 20 40 60 80 100 i_. i_. 
(a) Damage at k2~ (b) Damage at k~o 

0 0 

-10 -10 hu(2) 

-20 -20 

hu(2) 

-30 -30 
0 20 40 60 80 100 0 20 40 60 80 100 i_. i_. 

(c) Damage at k1~ (d) Damage at k~ 

Figure 3. Damage identification 
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It should be note that other harmonie forces, of different frequencies, may not 
provide clear identification of the damage and its location. For example, Figures 4(a) 

and 4(b) display the functions hu (1.5) and hu (1.5) for the case where the damaged is 

located at the p =50 spring and the exciting frequency is w = 1.5 . The two 

functions associated with the pure and damaged systems look almost identical. 
Figures 4(c) and 4(d) display these frequency-response-functions for the case where 
the exciting frequency is w = 2.5 . Here a variation between the two functions at the 
damage location p =50 is observed. This variation is small, however, and cannot be 

considered as a reliable criterion for damage detection for realistic systems. These 
intriguing results deserve further considerations. 

3. The interpretation 

Denote the stiffness matrix of the undamaged system shown in Figure 2(a) by K, 
and let K be the stiffness matrix of the damaged system (Figure 2(b)). Then the 
stiffness matrix of the undamaged system shown in Figure 2(a) is: 

2 -1 

-1 2 -1 

K= [10] 

-1 2 -1 

-1 

and the stiffness matrix of the damaged system (Figure 2(b)) is: 

p-th 

column 

j, 

2 -1 

-1 2 -1 

[ 11] 

K= 
-1 2-ô -1+8 

-1+8 2-ô -1 f- p-th row 

-1 2 -1 

-1 1 

Both systems share the same mass matrix M = 1. Define a diagonal matrix: 



1.2 

-0.20 

-0.22 

-0.24 

D= 

20 

-1 

60 80 100 
i~ 

(a) Excitation frequency fiF1.5 

-0.26IL h,,(z.s) 

o·L==2~o~~4o~=6~0~8~0~1~oo· 
i~ 

(c) Excitation frequency f1F2.5 

-0.20 

-0.22 

-0.24 

-0.26 

0 

Figure 4. Excitations by va rio us frequencies 

Small defects identification 441 

20 

[12] 

60 80 100 
i~ 

(b) Damage at k50 , fiF 1.5 

20 40 60 80 100 
i~ 

(d) Damage at k50 , f1F2.5 
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Then, since D =n-', we have by [6] 

D(K-w 2M:PDhj =Dej, 

which implies that 

- D(K -w2M:Ph j = -e j. 

For w = 2 equation [14] takes the following explicit form: 

2 -1 h,j 0 

-1 2 -1 h2j 0 

-1 2 -1 hii -1 

-1 2 -1 hn-l.j 0 

-1 3 hnj 0 

[13] 

[14] 

[15] 

The physical interpretation of equation [ 15] is that h ii is the static deflection of 
the j-th node due to a collocated unit static Joad applied to if, as shown in Figure 
5(a). Note that the spring configuration of the system of Figure 5(a) is similar to that 
of the undamaged system shown in Figure 2(a), but with an additional spring of 
constant k = 2 attached between the n-th node and the ground. 

Following a similar process we find that for the damaged system the equation 

holds, or explicitly: 

2 -1 

-1 2 -1 

-1 2 -1 

-1 2+8 -1+8 

0 

0 

-1 

-1+8 2+8 -1 

0 

0 

-1 2 -1 hn-l,j 0 

-1 3 0 

[16] 

[17] 
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The element h ii in equation [ 15] represents the static deflection of the j-th node 
due to a collocated unit static Joad applied to if, as shown in Figure 5(b). When the 
applied force is in the close neighbourhood of the damaged the two springs of 
constant 28 became dominant resulting with large change in the response. 

The systems of Figure 5 can be represented by using equivalent springs as shown 
in Figure 6, where 

j-th node 

~ 1 

···~ 

+---
e=1 

p-th node 

1 1 \ 1 

···~ 

(a) Pure system 

1 1 

···~ 
+---

e=1 

1-o 

(b) Damaged system 

Figure 5. Static models for (a) pure system, and ( b) damaged system 

It thus follows that 

In a similar manner, using: 

2 

2n -2j + 1 

j(2n -2j + 1) 
2n+1 

1 1 2 
kc =--:-, k0 =--.,and kE =----

1 p - J 2n - 2 p -1 ' 

2 

2 

[18] 

[19] 

[20] 
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we ob tain from Figure 6(b) that: 

j(2j -ô(p(Sn + 8j + 12- Sp )- Sjn -6n- 6j -5)-1- 2n) 

-8ôp2 + Spôn + 12ôp + 1- 6ôn -58+ 2n 

(-1- 2n + 2jX4jôp -4ôp2 +4ôp- 3ôj -d + j) 
-8ôp2 +8pôn+12ôp+1-6ôn-5ô +2n 

e=1 
.__ kB 

(a) Pure system 

2ô 

(b) Damaged system 

2ô 

j< p 

J~P 

Figure 6. Equivalent static models for (a) pure system, and ( b) damaged system 

[21] 

The response h jj (2) in Equation [ 19] describes a smooth function in j , while 

hjj (2) features derivative discontinuity at j = p , which allows identification of the 

damage and its location. ln fact, the plots in Figures 3 and 4 are precisely h jj (2) and 

hjj(2) given by equations [19] and [21]. 

4. Damage identification in an axially vibrating rod 

Consider an axially vibrating uniform rod of length L , modulus of elasticity E , 
density p and cross-sectional area A, which is fixed at one end, x= 0, and free to 
oscillate at the other end, x = L. The axial vibrations of this rod are govemed by the 
differentiai equation and boundary conditions 



EA azu = tA dzu 
dx2 p dt 2 

u(O,t)= du (L,t)=O. 
dx 
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[22] 

A discrete mass-spring system mode! of dimension n , with equal length elements 
of length h = L/ n , leads to the eigen value problem: 

(A-ÀB~=o 

where A= EA K, B = pAhln, and where K is given by [10]. 
h 

L 

a ... 1 

... .. 

------------------"'~"1 ~----------------~ 

x .. 

Figure 7. An axial/y vibrating uniform rod with groove at x= a 

[23] 

A corresponding damaged rod with groove at x = a is shown in Figure 7. Let 

a = (p -1 Yz for sorne integer 1 s; p s; n . Let the groove width be w , and let A1 < A 

be the cross-sectional of the rod at the groove position. Then the eigenvalue problem 
associated with the damaged rod takes the form 

- EA- -
where A=-K, with K givenby[l1], 

h 

[24] 

[25] 
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[

Ip-1 

B=pAh 
TJ ]· 

ln-p 

[26] 

and: 

[27] 

In order to identify the location of the groove in this system using the method 
presented in Section 2 it is required to excite the system with the frequency 

[28] 

For steel rod p = 7800 kg/m3
, E = 1.962 x 1011 N/m2

, of length L = 1 rn, with 

A= 0.01 m2
, A1 = 0.0095 w = 0.01m, n =50, and p = 25, we obtain: 8 = 0.0256, 

TJ = 0.9750, and w = 5.0154x 105 rad/s. The functions hjj (w) for the uniform rod, 

and 'h11 (w) associated with the damaged rod, are shown in Figure 8. Although the 

damaged position is observable, its effect is Jess drastic than that obtained in Section 
2 for the chain of mass-spring system. The reason is that the groove in the rod affects 
both the stiffness and the mass of the p-th element. In practice it may be difficult to 
excite the rod with the high frequency w required. With current progress in 
materials research, however, such excitations using piezoelectric materials are not 
entirely beyond futuristic expectation:;. 

-10 
x 

-0.4 

-0.8 

-1.2 

0 2 3 4 5 

Figure 8. Groove identification in an a.xially vibrating rod 
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5. Conclusions 

There are procedures in the literature for damage identification, accompanying 
with experimental results. The inherent difficulty associated with the repeatability of 
modal analysis testing forms a barrier in achieving a scientific consensus regarding 
the applicability of these procedures when slightly damaged systems are considered. 
In the theoretical arena the fundamental problem regarding the existence of 
measurable quantities, which are sensitive to small changes in the physical 
parameters of the system, is still open. In an effort to address this issue we have 
presented an analytical example showing that under certain circumstances small 
changes in the stiffness of a uniform chain of mass-spring system can be detected. 
The example was restricted by the need of imposing a special frequency of 
excitation. It is weil known that the frequency response of a damped system is 
smoother than that associated with its conservative counterpart. Hence damage in 
damped system may Jess identifiable. In the context of realistic components, such as 
identification of a small groove in an axially vibrating steel rod, the method requires 
excitation with very high frequencies. We may thus argue that the fundamental 
question whether small defects in structures can be detected by vibration tests is still 
subject to debate. 
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