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ABSTRACT. An imbricated fini te element technique is further developed in the context of mul­
tiscale ine/astic analysis of composite structures. The constitutive equations in the classical 
ove rail inelastic analysis are replaced by a lower leve/ fini te element analysis within the pe­
riodic homogenisation framework. Ali the physics of the problem, included in the local elas­
toviscoplastic and damage equations, is written for constituents at the microscale. Contrarily 
ta more classical approaches, the two sca/es are coupled, the local behaviour being integrated 
in-situ and in real time. This method is illustrated, for viscoplasticity in the matrix and damage 
at the fibre/mat rix interface, by the treatment of a particular bling dise made of titanium alloy 
and containing a reinforced composite part made in SiC/Ti. 

A specifie relocalisation technique for FE2 is then proposed for situations where the mi­
crostructure is composed of "coarse grains" (he re fibres of a significant size). The method uses 
an interpolated mapping technique, that allows ta obtain very correct and continuous strain 
and stress fields at the lower leve/ of the whole composite part. 

RÉSUMÉ. Une technique d'éléments finis imbriqués est développée dans le contexte de 1 'analyse 
inélastique multiéchelle des structures composites. Les lois de comportement de l'analyse in­
élastique classique sont remplacées par une analyse éléments finis à une échelle inférieure 
traitée dans le cadre de l'homogénéisation périodique. Toute la physique du problème, incor­
porée dans les équations locales d'élasto-viscoplasticité et d'endommagement, est introduite 
pour les constituants de l'échelle microstructurale. Contrairement à des approches plus clas­
siques les deux échelles restent couplées, le comportement local étant intégré in situ et en temps 
réel. Cette méthode est illustrée en élasto-viscoplasticité dans la matrice avec endommagement 
à l'interface fibre/matrice par le traitement d'un anneau aubagé monobloc constitué d'un al­
liage de titane et contenant une partie renforcée en composite à matrice métallique SiC/Ti. Une 
technique spécifique de relocalisation (interpolation/mapping) est proposée pour la méthode 
EF2 dans les situations où la microstructure est composée de "gros grains". 

KEY WORDS: multiscale analysis, viscoplasticity, damage mechanics, metal matrix com­
posites 

MOTS-CLÉS: analyse multiéchelle, viscoplasticité, mécanique de 1 'endommagement, com­
posites à matrice métallique 

REEF- 10/2001. NUMEDAM'OO, pages 449 à 472 



450 REEF- 10/2001. NUMEDAM '00 

1. Introduction 

The inelastic analysis of structural components working un der complex and severe 
environments, especially under high temperature cyclic loading conditions, has now 
an increasing impact on structural design. Most often these computations of inelas­
tic response and stress redistributions serve to predict damage development and the 
component lifetime, either in uncoupled or in coup led damage simulations. 

The great reduction in computational costs and the considerable improvements 
made in parallelisation techniques and substructuring methods open new possibilities 
for improved numerical simulations. Severa! directions for enlarged representative­
ness of non linear structural analyses can be considered. Let us summarise them into 
three words : time, size and scale : 

- in the "time" direction, we have the capability to compute the component on 
its who le !ife, incorporating coup led inelastic and damage effects, real! y important for 
taking into account non-stationary material evolutions, especially under cyclic load­
ing conditions. The "cycle jump technique" for instance [SAY 78, LES 89, DUN 94, 
NES 00] has proved to be particularly efficient in order to integrate non linear evolu­
tions incrementally at two time scales : the real time increments within each computed 
cycle, and increments in number of cycles (extemal "time") to treat large numbers of 
cycles. We have also the possibility to introduce "multiphysics" coupled analyses; 

- in the "size" direction, we can perform the non linear anal y sis of large size 
three-dimensional fini te element models , with very large numbers of degrees of free­
dom (we expect quite soon lMDoF for components treated in viscoplasticity), in or­
der to improve the geometrical complexities of the structure as weil as its complicated 
loading conditions. In this domain the progress of fini te element codes in terms of par­
alle! treatments is exceptionnally powerful and promis;ng [QUI 96, ROU 94, FAR 91, 
DUR 97, BJ0 86]. 

-for the "scale" direction, we can consider the "multiscale structural analyses", 
in which the material constitutive behaviour itself is built up from in-situ numerical 
computations. The present paper considers developments in this third class of meth­
ods. 

Multiscale modelling of structural components can be considered at two different 
levels: 

(i)- the "sequential multiscale analyses", successive! y using micromechanics mod­
els, analytical or numerical, to deliver the material constitutive responses on which 
more or Jess macroscopic models are identified and the finite element structural anal­
ysis itself, still based on these macroscopic constitutive equations. 

(ii)- the "integrated multiscale analyses", in which the micromechanicallocal be­
haviors and criteria are incorporated direct! y into the fini te element structural analysis. 
There is no more need for a macroscopic constitutive mode! that reproduces the typical 
responses of the micromechanics analysis. ln fact, the numerical analysis of the lower 
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scale delivers, in situ and in real time, the appropriate material response to its specifie 
overall loading, ie the overall strain for each local material Representative Volume 
Element in the structure, at each Gauss Point. 

Two such numerical approaches of the structural inelastic analyses were developed 
and exploited recently: 

-for polycristalline metallic components, treated in 3D, the polycristalline ag­
gregate models, with uniform stress within each grain and crystal plasticity constitu­
tive laws at the leve! of average slip systems inside each grain. With between 40 and 
1000 grains for each local RYE, it leads to 1000 to 10000 state variables at each Gauss 
Point of the overall fini te element model. Examples of such applications are given in 
[FEY 97b], but there are also other attempts in the literature [PIL 90, CAl 94]. Im­
proved such models as "multicrystalline aggregates", with 3D third order stress fields 
redistributions within the grains, are present! y studied, but on! y at the leve) of a single 
RYE [QUI 99, BAR OOa, BAR OOb], not at the component level. A similar method 
was proposed independently in a different context, by Smit et al. [SMI 98]. 

- for composite structures a two-level imbricated finite element methodology, 
called FE2 [FEY 98, FEY 00], was proposed and applied to MMC's. This method 
solves the local stress equilibrium and constitutive equations, inside each RYE treated 
at the microstructurallevel by periodic homogenization and a unit-cell finite element 
mode!, as weil as the overall stress equilibrium at the structurallevel. In that case the 
number of internai state variables for each macroscopic Gauss Point can be increased 
by one or two orders of magnitude compared to the previous case. 

The present paper discusses the conditions of application of this second class of 
methods for problems related with long fiber SiCffi MMC's used in the context of 
"bling" components (or "bladed rings"), as candidates to replace turbine and/or com­
presser dises in future aircraft turboengines. In that case the approach is exploited as 
a 2D or 2D~ problem (generalised plane strain). We first recall the main !ines of the 
FE2 multiscale approach (section 2), including sorne details about its implementation 
and use. In section 3 sorne recent improvements made about "relocalization" tech­
niques are discussed, that take into account the "materiallengthscale" effect induced 
by the presence of a "coarse grain" microstructure. Section 4 presents sorne results on 
a schematic bling, treated in cyclic elasto-viscoplasticity, the same constitutive equa­
tion being used at the macroscopic leve! for the pure Titanium alloy part and for the 
matrix inside the unit ce li of the microstructurallevel. Moreover, additional recent ex­
ploitations of the FE2 method include damaging effects through cohesive zone models 
used at the lower scale, at the fibre-matrix interface. Sorne examples are also given 
on the use of the specifie relocalisation technique in order to obtain stress, strain and 
plastic strain local fields in the extreme cases where the microstructure (fibre size) is 
ex tremel y large (significantly larger than the wavelength of the overall homogenised 
solution. 
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2. The FE2 method 

2.1. Some recalls about periodic homogenization theory 

As other homogenization theories, the main objective of the periodic homogeniza­
tion theory is to access the mechanical properties of an homogenous medium which 
exhibits the same mechanical response as a given heterogenous medium. 

This theory is based on sorne hypothesis to simplify the analysis: 

- the macroscopic and microscopie scales are supposed to be separated. In other 
words, the characteristic size of ali heterogeneities l is supposed to be small enough 
relative to the macroscopic length L : TJ = l / L < < 1, 

- the spatial distribution of ali heterogeneities is supposed to be periodic. 

A point in the heterogenous structure can then be located using two spatial coor­
dinates : a macroscopic coordinate x (which is also the coordinate of that point in 
the homogeneous structure) and a microscopie coordinate y which is the location of 
that point around the heterogeneity (whose size goes to zero). As TJ = l/ L < < 1, it 
is possible to perform an asymptotic expansion of the stress and displacement fields 
with respect to TJ : 

Œo(x,y) +TJŒt(x,y) + ···TJ;Œ;(x,y) + ··· 
uo(x,y) + TJUt(x,y) + · · ·ryiu;(x,y) + · · · 

The smaller the heterogeneities are, the smaller TJ is and the smaller the higher order 
terrns in the previous developments are. Writing the micromechanical equilibrium 
divŒ = 0 and using the Hill-Mandel macrohomogeneity ]emma leads to the definition 
of the macroscopic stress and strain tensors : 

{~ = 
~ = 

< f. >cell 
< !Z: >cell 

where < À > denotes the spatial average of A(y) over the microscopie unit cell. 
This also induces the definition of elastic stress and strain localization tensors (in the 
absence of interface discontinuities) : 

{

f_(x,y) 

q;(x,y) 

~(y)~(x) 

= IJ(y)~(x) 

Another important result of the theory is that the dis placement field!! can be split­
ted into a periodic part y and a macroscopic contribution : 

[1] 
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Figure 1. Principle of FE2 models 

2.2. FE2 principle 
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Macropic scale 
stress ~ = ( q') 

Homogenisation 

Micro 
scale q: 

The "FE2 method" refers to a class of models which belongs to the more general 
multiscale mode! class. We suppose in this paper that a "displacement f.e. formula­
tion" is used, ie that (from a macroscopic point of view) the mode! gives the stresses 
at time t knowing the strain and the strain rate at that time. As soon as relevant me­
chanical scales are chosen, FE2 models are constructed using three main ingredients : 

1. a modeling of the mechanical behavior at the lower scale (the RVE), 

2. a localization rule which determines the local solutions inside the unit cell, for 
any given overall strain, 

3. a homogenization rule giving the macroscopic stress tensor, knowing the mi­
cromechanical stress state. 

In the case of FE2 models (see figure l) , a finite element computation is used 
to mode! the microscopie behavior of the RVE. Any localization 1 homogenization 
schemes can be used, but we focus in this paper on the use of the periodic homog­
enization because one of the current application of FE2 models is to access the me­
chanical behavior of long fiber SiC/Ti metal matrix composites. Using that theory, 
the homogenization rule is nothing but a spatial averaging of the microscopie stress 
distribution : ~ = ( Ç!) cell· The localization rule is obtained using relation (l) which 
leads to a set of linear equations to be imposed on each pair of nodes on the si des of 
the RVE. 

This class of models is called "FE2
" (or also "imbricated finite element") because 

is requires the simultaneous computation of the mechanical response at two different 
scales : the macroscopic scale (which is the scale of the whole structure) and the un­
derlying microscopie representative volume element at each macroscopic integration 
point. 

Macroscopic phenomenological relations are completely useless, even in non lin­
ear cases. The mechanical behavior arises directly from what happens at the micro­
scopie sc ale, phenomenological constitutive equations being written only at that scale. 
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Loop over ali macroscopic 
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Figure 2. Finite elements : evaluation of material response in the case of a phe­
nomenological mode[ (left) and in the case of an Fë mode/ (right) combining two 
finite elements scales 

3. Implementation 

3.1. General algorithm 

From an implementation point of view, FE2 models follow the classical frame­
work of internai variables models, and are very easy to implementas soon as modem 
programming techniques are used [FOE 96, BES 97]. 

At each macroscopic Gauss Point, such models allow to compute the stress tensor 
at time t knowing : (i) the strain and strain rate at that time and (ii) the mechanical 
history since t = O. In classical phenomenological models, mechanical history is 
taken into account by the use of sorne internai variables. In the case of FE2 models, 
the internai variable set is constructed by assembling ali microscopie datas required by 
the lower finite element computation. This includes, of course, microscopie internai 
variables used to describe dissipative phenomena, but also ali other useful quantities 
required by the fini te element procedure. 
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Figure 2 compares the integration of the macroscopic constitutive equations in the 
case of a phenomenological mode! and in the case of an FE2 mode!. The integration 
of the phenomenological relations (using, for instance Runge-Kutta or Theta-method) 
is replaced by a fini te element evaluation of the microscopie mechanic ce li response. 

3.2. Computation of the tangent stiffness matrix 

F E 2 models are used in classical finite element codes, based upon a Newton­
Raphson algorithm to handle ali non linearities. For optimum performances, one has to 
compute the tangent stiffness matrix for ali material models, and not only to compute 
the stress response. This matrix can be written as : 

âD.a 
K(t + D.t) = âD.~ 

where ali !). in the right member denotes the increment of the quantity between time t 
and time t + D.t. 

In the case of FE2 models, this computation depends of course on the homogenei­
sation theory used, and on its finite element implementation. In this subsection we 
want to present this computation in the case of the periodic homogenization theory, in 
the particular framework of the ZéBuLoN fini te element code. 

Periodic homogenization theory is implemented in ZéBuLoN through the use of 
specifie elements named "periodic elements". These elements are classical ones, ex­
cept that sorne degrees of freedom are added corresponding to the ~ (average or 
macroscopic strain) components. The unknown displacements are the non-periodic 
part y of the total dis placement!! on the ce li : !! = y + ~ x ~· 

The deformation tensor f is computed by derivation of the previous expression : 

cy· is the symmetric gradient operator) 

The B matrix (symmetric gradient of the shape functions after discretization) is 
roughly the same as usual, except that a new part cornes from degrees of freedom 
associated with ~ (we suppose that these degrees of freedom are at the end of the 
whole degrees of freedom list) : 

Bstd denotes the "classical" symmetric gradient of the shape functions. 

Let us recall that the previous finite element discretization is at the microscopie 
leve! (ie at the cell scale). The macroscopic stiffness matrix to be computed is then : 
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&_macro = :~i (remember that .tf has associated degrees of freedom, and thus as­

sociated reactio-n give ~ to be multiplied by the volume of the cell). The assembled 
tangent stiffness matrix at the cell scale can be written as (D represents the tangent 
matrix given by ali microscopie phenomenological constitutive equations) : 

leading to 

&_macro is then nothing but a condensation of the previous matrix onto the degrees 
Of freedom associated to .tf (at most 6 degrees of freedom shared across the whole 
microscopie mesh) inserted at the end of the list. That is 

whith: 

j(macro = 1 (H _ Gk-ltG) 
= Volume = = = 

{ ~ = 
H = 

This condensed matrix is then very easy to compute, and avoid the use of other 
approximative methods, such as the perturbation method. 

3.3. Parallel computing 

Let us suppose that one has to compute a macroscopic structure whose finite ele­
ment discretization involves K integration points in the region where FE2 modelling is 
used. If the microscopie discretization of the representative volume element requires k 
integration points, the cost in terms of global internai variables is equivalent to K x k, 
and increases very fast with the size of the structure to be studied. It is then neces­
sary to use a powerful technique to solve such a big problem which is usually strongly 
non-linear. 

Parallel computing is of great interest in this area. It has been shown that the use 
of parallel computing can be associated with any sophisticated non-linear behavior 
provided that this behavior relies on the local state assumption [FEY 98, FEY 97a, 
FEY 97b]. Parallel computing is also used to compute structures using FE2 behavior 
models. The attention of the reader is focused on the fact that parallel computing pro­
cedures are full y independent of the ki nd of constitutive equations, and therefore that 
the use of FE2 models with parallel computing do not require any extra development. 
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FE2 models have been implemented in the finite element code ZéBuLoN, jointly 
developed at Onera and Ecole des Mines de Paris. This finite element code uses the 
FETI method [FAR 91] to split the computation of a structure into a number of sub­
domains. In FE2 modelings, the main bottleneck is the local stage, ie the computa­
tion for each macroscopic integration point of the corresponding microscopie finite 
element step. Parallel computing allows to distribute these computations on severa! 
processors. 

4. Relocalization 

The classical first order treatment using periodic homogenization relies on a strong 
assumption : it is supposed that the heterogeneities in the structure to be computed are 
small enough ( compared to the size of the structure and to the mechanicalloadings to 
be applied on that structure) so that macroscopic and microscopie scales are separated. 

From a practical point ofview it is however difficult to de fine precisely what "small 
enough" means. From our experience it seems that fibers (ie heterogeneities) may 
be relatively big, as soon as appropriate relocalisation technics are used in order to 
compute actual mechanical fields from the homogeneous solution given (at the macro­
scopic scale) by the FE2 computation. The purpose of this section is to explicit this 
technics applied to the FE2 models. Nothing is new from a theoretical point of view, 
but it seems that others authors never used this technics (usually because they are in­
terested only by the homogenous result), although it can be done to obtain also the 
actual mechanical fields. 

The goal is to compute f( x), for any x, without any reference toy (ce li coordinate) 
because ali cells have to be mapped at their real locations. 

An "interpolated-mapping" of the results obtained by FE2 methods is used to com­
pute actual fields (figure 3). Let us suppose that ali heterogeneities remain elastic and 
that the surrounding medium is also elastic. For each macroscopic integration point 
whose spatial coordinate is x;, and for each position inside the underlying unit cell, 
the instantaneous strain tensor (for instance) is equal to 

f(X;, y) = ~(y)~(x;) 

The "interpolated-mapping" relocalization technique is nothing but a macroscopic in­
terpolation of results coming from ali microscopie computations. Let -y(x) be a me­
chanical component to be interpolated inside a macroscopic element; -y(x) can be 
computed using the shape functions of the fini te element containing x : 

-y(x) = 2:: -y(x;)N;(x) 
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1. Mapping 
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2. Extraction 

: __________________ . 

Figure 3. Principle of the "interpolated-mapping" relocalization technique 

N;(x) are the shape function of the current element, r(x;) are the values of 1 at 
the nodes surrounding the point x. This relation can also be applied to microscopie 
quantities as soon as that the unit cell, resized and translated to its real location and 
size, is mapped onto the macroscopic mesh. For instance : 

€_(X, y) €_(X, X/TJ) 
L; €,(X;, X/TJ)N;(x) 

L; -1-(x/TJ)~(x;)N;(x) 
-1-(x/TJm(x) 

[2] 

This kind of relations can be generalized and extended in non-linear cases like in 
plasticity or viscoplasticity. 

One major advantages of using FE2 techniques is that the required estimations 
of -1- (which are very difficult to estimate in non-linear cases) to compute relocated 
components have already been implicitly computed during the FE2 computation. An­
other ad van tage is that the computation of relocalized values can be made a posteriori 
in a post-processor, since it only requires already computed informations. lt is then 
possible to restrict this extra-computation to critical zones of the structure. 

Note that we restrict ourselves (for practical reasons) to the average on a single 
macroscopic element : in a more general framework it would be necessary, for a given 
macroscopic node, to take into account the contribution of ali elements connected to 
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this node. Results presented at the end of this paper will show however that this restric­
tion is not limitating. From a practical and programing point of view, the relocalisation 
is performed by three steps : 

1. map the unit celi onto the global mesh at its real location, 

2. extract the microstructural informations from ali integration points near x, 
compute nodal values, 

3. compute the relocalized component using equation (2). 

It is relatively easy to understand why this technique leads to continuous macro­
scopic fields. Let us consider the situation shown on figure 4 : the goal is to compute 
relocalized fields for two near points A and B. This computation will involve micro­
scopie datas extracted from the macroscopic integration points (plain circles). Due to 
the periodic homogenization theory, values extracted from microscopie results con­
ceming point A (right side of the microscopie cell) and point B (left side) are equal. 
Because A and B have the same spatial coordinates, the macroscopic reinterpolation 
leads to equal values for ali mechanical fields. 

-----------------------------------
' ' ' 

• • • • 

• 0 O· -------~~ 8 _______ _ 

• o o· 
• • • • 

' ' -----------------------------------

Zoom f(A) 

A 
1(8) 

8 

Figure 4. Illustration of the continuity of ali mechanical fields computed using the 
"interpolated-mapping" technique : thanks to the periodic homogenization theory 
f(A) = f(B) for ali couples of point A and B 

S. Application to the computation of a bling disk 

Ali cri ti cal aeronautical components are subjected to specifie weight optimization : 
new materials are studied in order to increase the performance-to-weight ratio. Long 
fiber SiCffi composites have been developed on this principle. SiC fibres are ordered 
periodicaliy inside a titanium matrix (see figure 5). 

Engine manufacturers are currently considering the possible replacement of sorne 
metallic turbine disks by rings whose central part are reinforced by such composites 
(see figure 6). This part is a "bling" or bladed ring. A major problem is to be able to 
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Figure 5. Typical microstructure of a long fibre SiC!Ii composite. General layout 
(left) and detail of a single fibre (right) 

compute such structures. FE2 models are especially interested for that purpose. The 
RYE of the microstructure consists in a fi ber surrounded by a matrix part with a fibre 
volume fraction of 22 %. lt is assumed that the average radius of the part is large 
enough so that the curvature of the fibres can be neglected. Generalized plane strain is 
then assumed as the conditions applied to the unit cel!. 

5.1. Mesh and boundary conditions 

Figure 7 shows macroscopic and microscopie meshes as weil as macroscopic bound­
ary conditions. Mechanical loading consists in imposing an increasing centrifugai 
force. The homogeneous partis made of titanium and the reinforced kemel is made of 
SiC!fi composite (the titanium in the composite is supposed to be the same as the one 
used in the homogeneous part). 

Figure 6. An experimental "bling" 
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Figure 7. Macroscopic mesh, boundary conditions and domain decomposition (left); 
microscopie mesh (right) 

Figure 8. Macroscopic stress 1:11 (top). Microscopie deformation (displacements 
x 10) € 11 at point 1 (bottom,left) and 2 (bottom,right) 
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This computation was calibrated to fit in the memory of our cluster (the cluster is 
made of four PC Linux PIII with 512Mb ofRAM in each machine). The computation 
was distributed on these 4 processors and lasted about 2 hours. 

5.2. Results 

As explained in section 2, FE2 modeling works by computing in real time the 
macroscopic and the microscopie scales. lt is then possible to analyze mechanical 
results at these two scales simultaneously. Figure 8 shows for instance the macroscopic 
stress distribution in the 12 direction (1: 12 ) at the end of the loading. On the same 
figure microscopie results are presented for two macroscopic points ( denoted ( 1) and 
(2) at the macroscopic scale) at the same time. lt is then possible to make a link 
between a macroscopic shear (1: 12 :j: 0) and the specifie shape of the corresponding 
unit cell (point 1 ). 

5.3. Case of a coarse grain structure 

5.3.1. Undamageable disk 

The relocalization technique presented in section 4 has been applied to this exam­
ple. lt is here supposed that the fibre are not so small. Figure 9 shows the complete 
mesh of the disk (ie a mesh of the actual structure, including ali heterogeneities). 1t 
will serve to obtain a complete reference solution with "coarse grains", from which 
the FE2 method and the associated relocalization procedure will be validated. The 
line plotted horizontaly on that mesh highlights the points where results are plotted 
and compared. 

Figure Il shows the stresses ~ 11 and ~22 at time t = 7.5s. Figure 10 shows 
the corresponding cumulated viscoplastic strain to emphasize that non-linearities are 
strong at that time. The plain curves on figure Il are obtained using a computation on 
the real structure whereas the dashed curves are obtained via the FE2 modelling fol­
lowed by the relocalization operations exposed before in this paper. The comparison 
is fair! y good, except on the edge of the structure where sorne side effects appear due 
to the Joss of periodicity (nothing is currently done at present to handle this effect). 
Figure 12 shows the same comparison for the inelastic strain in the Il direction (Eu), 
whereas figure 13 shows the contour of this field. 

5.3.2. Damageable disk 

The main damage mechanism in such long fiber composite is a debounding be­
tween each fiber and the surrounding matrix. The computation presented in the pre­
vious section has been ran again, taking into account damage at each fiber/matrix 
interface using a Needleman-Tvergaard debounding mode! ([NEE 87]). 
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Figure 9. Complete mesh of the actual structure to serve as a reference to the FE2 

validation 

O. % 1.26 

Figure 10. Cumulated viscoplastic strain at time t = 7.5s 
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Figure 11. Comparisons between the reference stresses (plain) and the relocalized 
stressed ( dashed) at time t = 5s ( a 11 top, a22 bottom) 
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EF2 reloc -­
reference ------

6 7 8 9 

Figure 12. Comparisons between the reference inelastic strain (plain) and the relo­
calized inelastic strain (dashed) at time t = 5s in the 11 direction (cr1J 

The presence of potential discontinuity surfaces modify the homogeneization ru les 
into a slightly different form : 

{E~ (q_)RVE +fr fr{[(~!!)~ 0~}dS 
- (€) RVE +fr fr{[!!~ 0 !!}dS 

in the previous equation, [a~ denotes the jump of the quantity a across the interfacer 
and !! the interface normal at a given position ~ along both si des of the interface. { g} 
denotes the symmetric part of tensor g. 

The second term in the homogenization rule of ~ tums out to be zero, because in 
the debounding case normal stresses along both sides of ali interfaces are nul!. The 
homogenization rule for~ is then not modified by the presence of a debounding mech­
anism at fiber/matrix interface. It is then still possible to use the implicitely computed 
localization tensor ~. and therefore to use the relocalization technic presented before 

in this paper. 

The extra term in the ~ relation does not vanish, but it can be proved that it is still 
possible to define a localization tensor linking ~and €· The relocalization technique 
presented before in this paper is then still valid. 

The FE2 computation shown in section 5.3.1 has been run again taking into account 
debounding at fibre/matrix interface. Mechanical fields were then relocalized. Figure 
14 shows the u11 component at the end of the computation. One can observe that 
stresses are relaxed in fibers due to the partial failure of sorne interfaces. In these , 
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-0.76 % 0.55 

Figure 13. Relocalized En at time t = 7.5s in the reinforced region 
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-13. MPa 56. 

Figure 14. Relocalized all at time t = 6.76s in the reinforced region, taking into 
account damage at fiberlmatrix interface 
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O. D 0.15 

Figure 15. Relocalized spatial distribution of damage D at time t = 6. 76s in the 
reinforced region 
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regions, stresses are transfered to the surrounding matrix. This contour map can be 
correlated with figure 15 showing the damage values D along ali interfaces at the same 
time (this last map has been obtained the same way, although it is not clear wether or 
not it is possible to use this relocalization scheme for an interfacial field; but this gives 
a good idea of the spatial damage distribution). 

6. Concluding remarks 

The FE2 methodology presently developed offers severa! interesting capabilities 
for the inelastic and damage analysis of structural components, especially for com­
posite systems that can be considered as quasi- periodic at the microstructurallevel : 

- the usual macroscopic constitutive and damage equations, that serve to redis­
tribute the overall stress fields is no more needed. Ali the physics of the processes is 
contained in the microscale constituents and in their finite element discretisation and 
the material response to any overall strain control (at each Gauss point) is delivered in 
"real time", taking into account the whole history of local state variables. 

- for applications to bling components made in SiCffi MMC's, the local consti­
tutive equations were involving the cyclic thermo-elasto-viscoplasticity of the matrix 
and the damage at the fibre-matrix interface, using debonding models. The mate­
rial parameters of the matrix constitutive equations were deduced from tests made on 
pure matrix [BAR 95] and the debonding models by combining micromechanical tests 
(push-out) and tension-compression transverse tests. 

- efficiency of the method is great! y improved by the massive parallel computa­
tional capabilities (independently of the parai! el solution strategies used for the macro­
seo pic structural analysis; 

- in order to deliver correct stress and strain fields at the lower scale, applica­
tion of a specifie relocalisation procedure was presented in the extreme case of a very 
"coarse grain" microstructure, in comparison with the structural size and the macro­
scopic solution wavelength. Such a method was designed consistent! y with FE2 , based 
on the classical finite element solution interpolating techniques, considering alllocal 
stresses, strains and displacement components in the unit cel! as the internai state vari­
ables associated with each Gauss Point. 

- This technique was shown to give adequate results in several examples, espe­
cially for the bling analysis. The fibre size has been greatly enlarged over the actual 
size, in order to be able to compare to the exact reference solution in which ali the 
microstructure has been meshed in the component. The comparisons are extremely 
good except near the boundary of the composite region in the bling. 

Sorne problems or difficulties have still to be treated, with the final objective of 
a really powerful numerical methodology. The following axes of improvements are 
currently under examination : 
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- this relocalisation method must also be generalised in cases where edge effects 
play role, due to the abrupt Joss of periodicity near structural boundaries or in the 
region near the (fictitious) interface between the composite substructure and the pure 
matrix part. Such a situation is specifie of our present application to the SiCffi MMC's 
reinforced bling component; A method used recently in a similar context [KRU 98], 
but from taking overall constitutive equations for the homogeneous equivalent medium 
(in place of FE2 ), is assumed to offer good potentialities; 

- another way to treat the coarse grain microstructure could be to enrich the unit 
cell periodic homogenisation, building an overall constitutive equation in the frame­
work of Generalised Continuum Media (with material couples or higher order gradi­
ents). Recent researches in this area could also give interesting procedures [FOR 98]; 

- after solving these various problems it is expected to have a method with the 
potential capability to predict the crack initiation at both the local (micro) leve! and 
at the macroscopic leve!. This capability will have to be checked by the treatment of 
sorne specifie examples; 

- moreover, the generalisation of FE2 method should also be examined for mi­
crostructures with a lower degree of organisation and periodicity. A first attempt could 
be studied by introducing a more or Jess pronounced distorsion in the fibre spatial ar­
rangement. This is a long term objective for multiscale numerical methods. 
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