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ABSTRACT
IsoGeometric Analysis (IGA) has proved to be a reliable numerical
tool for the simulation of structural behaviour and fluid
mechanics. The main reasons for this popularity are essentially
due to: (i) the possibility of using higher order polynomials for
the basis functions; (ii) the high convergence rates possible to
achieve; (iii) the possibility to operate directly on CAD geometry
without the need to resort to a mesh of elements. The major
drawback of IGA is the non-interpolatory characteristic of the
basis functions, which adds a difficulty in handling essential
boundary conditions and makes it particularly challenging for
contact analysis. In this work, the IGA is expanded to include
frictionless contact procedures for sheet metal forming analyses.
Non-Uniform Rational B-Splines (NURBS) are going to be used
for the modelling of rigid tools as well as for the modelling of
the deformable blank sheet. The contact methods developed are
based on a two-step contact search scheme, where during the
first step a global search algorithm is used for the allocation of
contact knots into potential contact faces and a second (local)
contact search scheme where point inversion techniques are
used for the calculation of the contact penetration gap. For
completeness, elastoplastic procedures are also included for a
proper description of the entire IGA of sheet metal forming
processes.
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1. Introduction

The constant drive for more efficient and accurate numerical simulations creates
the need for more effective and accurate computational methods. Examples of
such methods are meshless methods and, more recently, Isogeometric Analysis
(IGA) based on Non-Uniform Rational B-Splines (NURBS). IGA is a powerful
numerical tool for structural and fluid analyses because it allows the numeri-
cal simulations to be conducted directly on the geometric model without the
necessity of resorting to a mesh of elements for the interpolation of the field
variables.
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IGA was introduced successfully in the work of Hughes, Cottrel, and Bazilevs
(2005). The isogeometric concept means that the same approximation basis
functions are used for the representation of the geometry and for the approxi-
mation of the field variables. The main differences between IGA and the Finite
Element Method (FEM) are as follows: (i) the basis functions in IGA are always
positive; (ii) a higher degree for the polynomial of the basis functions can be
used; (iii) the basis functions can be Cp−1 continuous, where p is the degree
of the polynomial used; (iv) smoother contact analysis. There is however some
difficulties in handling essential boundary conditions and local constraints for
contact because the basis functions are not interpolatory. Some important works
on isogeometric analysis were already published and we can distinguish the
work by Cottrell, Hughes, and Reali (2007) on the refinement and continuity
in isogeometric structural analysis, the work by Cottrell, Reali, Bazilevs, and
Hughes (2006) and Hughes, Reali, and Sangalli (2008) on the isogeometric
analysis for structural dynamics and vibrations, the work by Hughes, Reali,
and Sangalli (2010) on the study of numerical quadrature rules for a NURBS-
based isogeometric analysis, the work by Benson, Bazilevs, Hsu, and Hughes
(2010) who extended the isogeometric analysis to the Reissner–Mindlin shell
type formulations and Echter and the work by Echter and Bischoff (2010) who
studied the numerical efficiency of NURBS together with the Discrete Shear Gap
formulation to overcome the transverse shear locking. Taylor (2010) performed a
studyon themodelling of nearly incompressiblematerials under the IGAcontext.
Recently, Cardoso and Cesar de Sa (2012) applied the Enhanced Assumed Strain
(EAS) formulation, very typical from thefinite elementmethod, into the subspace
analysis of incompressible deformations, such as the ones present in elastoplas-
tic simulations, and within the IGA framework. In the work, the subspace of
incompressible deformation of a 3D IsoGeometric ‘element’ was firstly analysed
for different degrees of the polynomial basis functions and, thereafter, additional
enhancing variables were introduced to enlarge that subspace of incompressible
deformations. The enhancing variables could be eliminated at an IGA ‘element’
level and it was then verified that the subspace of incompressible deformations
was effectively augmented providing additional deformation flexibility to the
IsoGeometric formulation. Later, Cardoso and Cesar de Sa (2014) developed a
new numerical technique to alleviate different kind of locking pathologies in
IGA. The projection scheme developed in Cardoso and Cesar de Sa (2014) was
based on theMoving Least Square (MLS) techniquewhich allowed the projection
procedure to be general and easily adapted to any degree of the NURBS basis
functions. Using this procedure, the reduced strain–displacement matrices were
extrapolated or projected into the full quadrature space by means of a moving
least square minimisation of the assumed strain field. The method was then
applied to alleviate the volumetric locking (equivalent to the B-bar approach
Cesar de Sa & Natal Jorge, 1999; Cesar de Sa & Owen, 1986; Hughes, 2000;
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Hughes, Cohen, & Haroun, 1978) as well as onto alleviate the transverse shear
locking for thin-walled structures (shell or solid-shell formulations).

The basic steps/procedures for the numerical treatment of elastoplasticity in
the context of sheet metal forming processes are also presented in this work.
The numerical simulation of elastoplasticity under the IGA framework follows
exactly the same procedures as the simulation of elastoplasticity in the context
of the classical finite element method. The decision to include a section on this
subject in this paper is simply for the completeness of the paper rather than a
notion of providing any new contribution on this area. For the interested reader
on the numerical simulation of elastoplastic effects, the works by Yoon, Yang,
and Chung (1999), Cardoso and Yoon (2005) and Ortiz and Simo (1986) are
recommended.

The numerical simulation of contact procedures is already well established
for the finite element method, where the reference works by Laursen and Simo
(1993), Laursen (2002) andWriggers (2002) are all representative of the state-of-
the-art in this area. The developments for contact analysis in IGA are still very
few and so it can be said that this represents the innovative contribution of this
paper. We developed a global and local contact search procedures for IGA as
well as the weak formulation to include contact as local constraints under the
IGA framework. The rigid tools are modelled as rigid NURBS surfaces and the
deformable blank sheet is alsomodelled byusing an IsoGeometric approximation
from theuse ofNURBSbasis functions. Therefore, themainobjective of thiswork
is to demonstrate the benefits and challenges of contact modelling in the context
of IsoGeometric analysis.

2. Non-Uniform Rational B-Splines (NURBS)

B-Splines, rational B-Splines and Non-Uniform Rational B-Splines (NURBS)
have been extensively used by the computer-aided design community for geo-
metric modelling of structures and parts. Detailed overview of B-Spline curves,
B-Splines surfaces and NURBS can be found in Piegl and Tiller (1996) and
Cottrell, Hughes, and Bazilevs (2009). Some properties, definitions and features
on NURBS are very briefly reviewed in this section.

2.1. Knot vectors

In this work only open knot vectors are going to be used. An open knot vector
is a set of non-negative parametric coordinates which are repeated p + 1 times
at the beginning and at the end of the vector (p is the degree of the polynomial
basis functions). For one-dimensional basis functions of degree p, the following
generic open knot vector can be defined:

� = {
ξ1, . . . , ξp+1, . . . , ξm+1, . . . , ξm+p+1,

}
(1)
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wherem is the number of control points or basis functions. The basis functions of
degree phave p−1 continuous derivatives.More than one knot can be considered
at the same parametric coordinate and it is thus referred as a repeated knot. An
important property of repeated knots is that the continuous derivative of their
basis functions is decreased by the number of times the knot is repeated. Also,
the basis functions are interpolatory only if the knot’s multiplicity is the same as
the polynomial’s degree p (Piegl & Tiller, 1996).

2.2. Control points and basis functions

For a specific local parametric coordinate ξ from an open knot vector and for a
degree p of the polynomial, the basis functions are obtained recursively from the
following recursive formulae (Cottrell et al., 2009; Hughes et al., 2005; Piegl &
Tiller, 1996):

Np
I = ξ − ξI

ξI+p − ξI
Np−1
I

(
ξ
) + ξI+p+1 − ξ

ξI+p+1 − ξI
Np−1
I+1

(
ξ
)
, (2)

where I is the index for the basis functions. The formula for the basis functions
at Equation (2) must be initialised from piecewise basis functions corresponding
to the polynomial order p = 0, i.e.:

N0
I

(
ξ
) =

{
1 if ξI ≤ ξ < ξI+1
0 otherwise

(3)

Hughes et al. (2005) and Bazilevs et al. (2010) addressed the most fundamental
properties of the basis functions, which make them suitable for isogeometric
analysis:

(1) They form a partition of unity, i.e.:

m∑
J=1

Np
J

(
ξ
) = 1, ξ ∈ � = [

ξ1, ξm+p+1
] ; (4)

(2) The support of each Np
J

(
ξ
)
is compact and contained in

[
ξJ , ξJ+p+1

]
;

(3) The basis functions are non-negative, that is, ∀ξ → Np
J

(
ξ
) ≥ 0;

(4) Control of continuitywith repeated knots. This property allows for smooth
basis functions for higher degree polynomials but it also allows controlling
the interpolatory characteristic of the basis functions by adjusting the
multiplicity of the repeated knots to be equal to the degree p of the
polynomial.

A B-spline surface can be constructed from a net of control points AIJ and
from a two-dimensional knot set � × H , with H = {

η1, η2, . . . , ηn+q+1
}
and

q and n being the degree and the number of control points or basis functions
along the η direction, respectively. A B-spline surface is thus obtained from the
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following linear combination:

Sp,q
(
ξ , η

) =
n∑

I=1

m∑
J=1

Nq
I

(
η
)
Np
J

(
ξ
)
AIJ . (5)

For a solid B-Spline constructed from a net of control points AIJK and from a
three-dimensional set � × H × Z, with Z = {

ζ1, ζ2, . . . , ζl+r+1
}
and r and l

being the degree and the number of control points or basis functions along the ζ
direction, respectively, the following linear combination can be defined for local
approximations:

Tp,q,r (
ξ , η, ζ

) =
l,n,m∑
k,I ,J=1

Nr
K

(
ζ
)
Nq
I

(
η
)
Np
J

(
ξ
)
AIJK . (6)

The Non-Uniform Rational B-Splines (NURBS) are rational polynomials ob-
tained from a weighted linear combination of the basis functions with their
control points as coefficients. In this way, a NURBS surface can be constructed
from a two-dimensional knot set � × H and from a net of control points AIJ
and weightsWIJ as follows:

wSp,q
(
ξ , η

) =
∑n

I=1
∑m

J=1 N
q
I

(
η
)
Np
J

(
ξ
)
WIJAIJ

W
(7)

while the NURBS solid is constructed from a three-dimensional knot set � ×
H × Z and a net of control points AIJK and weightsWIJK :

wTp,q,r (
ξ , η, ζ

) =
∑l,n,m

k,I ,J=1 N
r
K

(
ζ
)
Nq
I

(
η
)
Np
J

(
ξ
)
WIJKAIJK

W
. (8)

with

W =
n∑

I=1

m∑
J=1

Nq
I

(
η
)
Np
J

(
ξ
)
WIJ (9)

for the NURBS surface and:

W =
l∑

k=1

n∑
I=1

m∑
J=1

Nr
K

(
ζ
)
Nq
I

(
η
)
Np
J

(
ξ
)
WIJK (10)

for a NURBS solid.

3. IsoGeometric Analysis of 3D solid structures

In this section the kinematics is detailed together with the derivation of the
incremental equations of motion for IGA. The formulation is based on the 3D
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continuum description for the thin-walled blank sheet, which includes transla-
tional degrees of freedom only at the control points. In this section, the local
constraints for IGA are also included into the equations for the virtual work.

3.1. Kinematics

The physical spatial region of a IsoGeometric (IG) ‘element’ is mapped from the
parametric knot coordinates (ξ , η, ζ ) and is defined between two consecutive
knots along ξ , η and ζ parametric directions. By considering one IG ‘element’,
the coordinates of a point can be obtained from the interpolation of the NURBS
basis functions as follows:

x
(
ξ , η, ζ

) =
n∑

I=1

m∑
J=1

l∑
K=1

RIJK
(
ξ , η, ζ

)
x̄IJK (11)

where

RIJK
(
ξ , η, ζ

) = Nr
K

(
ζ
)
Nq
I

(
η
)
Np
J

(
ξ
)
WIJK

W
(12)

The displacement u of a generic point in the solid-shell is the difference between
its current t+�tx

(
ξ , η, ζ

)
and reference tx

(
ξ , η, ζ

)
positions (Cardoso & Yoon,

2007):

u
(
ξ , η, ζ

) = t+�tx
(
ξ , η, ζ

) − tx
(
ξ , η, ζ

) =
n∑

I=1

m∑
J=1

l∑
K=1

RIJK
(
ξ , η, ζ

)
ūIJK

(13)
where ūIJK represents the degrees of freedom at the control points IJK . The
Cartesian linear strain tensor at any point can be described from the gradients of
the displacement vector as follows:

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(14)

The gradients of the displacement components are easily obtained by applying
the chain rule to the NURBS approximations functions:

∂ui
∂xj

= ∂RIJK · ūIJK
∂ξa

∂ξa

∂xj

(
ξ1 = ξ , ξ2 = η, ξ3 = ζ

)
(15)

where the expressions for the derivatives ∂RIJK/∂ξa and ∂ξa/∂xj are detailed in
Appendix 1. Note that for the derivative ∂ξa/∂xj the chain rule is applied between
the derivatives of the physical coordinate system, the knot parametric space and
the natural parametric space for Gaussian numerical integration (Cardoso &
Cesar de Sa, 2012, 2014).
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3.2. Virtual work and Incremental equations ofmotion

The equilibrium equations described in the current configuration, also known
as the strong form, are described as follows:

∂σij

∂xj
+ f Bi = 0 (16)

where σij are the Cauchy stress tensor components and f Bi are the volumetric
body forces. The natural (force) boundary conditions are expressed as:

σijnj = Ti on surface 
 (17)

Considering an arbitrarily chosen continuous virtual displacement δui we can
define the virtual work as follows:

(
∂σij

∂xj
+ f Bi

)
δui = 0 (18)

and after integrating it by parts (weak form) over the entire domain of the body
we get: ∫

v
σijδeij dv =

∫
v
f Bi δui dv +

∫



Tiδui d
 (19)

If we add the contribution of inertia terms to the virtual work from Equation
(19) we obtain Newton’s second law:

∫
v
mijüjδui dv +

∫
v
σijδeij dv =

∫
v
f Bi δui dv +

∫



Tiδui d
 (20)

or, after invoking the arbitrariness of the virtual displacement δui:

m · ü = Fext. − Fint. (21)

The internal force vector Fint. is obtained from the following virtual work term:

Fint.IJK · δuIJK = δuTIJK ·
∫
v
BT
IJK · σ dv (22)

or

Fint.IJK =
∫
v
BT
IJK · σ dv (23)

where the integral is performed for a volume domain between two consecutive
knots along the parametric ξ , η and ζ directions. The strain–displacement
matrix BIJK is calculated from the derivatives of the NURBS basis functions
as for example in Cardoso and Cesar de Sa (2012, 2014). Following the same
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methodology described by Cardoso and Cesar de Sa (2014), the following strain–
displacement matrix can be formulated for a particular integration point:

BIJK =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂RIJK/∂x 0 0
0 ∂RIJK/∂y 0
0 0 ∂RIJK/∂z

∂RIJK/∂y ∂RIJK/∂x 0
∂RIJK/∂z 0 ∂RIJK/∂x

0 ∂RIJK/∂z ∂RIJK/∂y

⎤
⎥⎥⎥⎥⎥⎥⎦

(24)

where the derivatives of the NURBS basis functions RIJK are defined as in
Equation (15) over the domain of influence (compact support) defined as 1 ≤
I ≤ p+ 1, 1 ≤ J ≤ q+ 1 and 1 ≤ K ≤ r + 1, with p, q and r defining the degree
of the NURBS basis functions along ξ , η and ζ , respectively.

In this work the 3D formulation uses the B-bar approach for the treatment
of the volumetric locking that might be present during the simulation of sheet
metal forming processes. In this paper, the reduced integrated scheme according
to Cardoso and Cesar de Sa (2014) is initially used at the IG ‘element’ for the
calculation of the deviatoric strain components. This reduced integrated strain
field is then projected into the full integration points by using the moving least
square method. This technique has proved to deliver a deviatoric strain field that
is free (or at least alleviated) from volumetric locking constraints.

3.3. Local constraints in IGA

The kinematic constraints in IGA can be imposed through the use of Lagrange
multipliers in implicit time integration or through the use of a penalty parameter
for explicit time integration schemes. For explicit time integration, the virtual
work fromEquation (20) ismodified for the inclusion of generic local constraints
through the use of a penalty multiplier as follows:
∫
v
mijüjδui dv+

∫
v
σijδeij dv =

∫
v
f Bi δui dv+

∫



Tiδui d
+
∫

c

βδ
(
ui − up

)
d
c

(25)
with β and up being the penalty multiplier and the prescribed displacement,
respectively. Equation (25) is generic for local constraints in IGA and it can be
used for the imposition of boundary conditions as well as for the zero penetration
gap constraint for contact analysis in IGA.

4. Elastoplasticity and returnmapping procedures

From a phenomenological point of view, the plastic flow can be interpreted
as an irreversible process in a material body, typically a metal, characterised
in terms of the history of the strain tensor ε and two additional variables: the
plastic strain εp and a suitable set of internal variables generically denoted by
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α and often referred to as hardening parameters. Conventional constitutive
laws which represent plastic deformation of metals are typically described by
considering three parts: yield functions, stress–strain (or hardening) functions
and the associative normality flow rule.

The yield function describes yield stresses in general deformation states, which
are relative values measured with respect to a reference yield stress. A typical
expression of the yield function is:

φ = φ(σ ,α) = σ̄m, (26)

where φ, σ̄ and σ are the yield function, the effective stress and the Cauchy stress
tensor, respectively. The exponentm is a real number.

The stress–strain function represents the work-hardening behaviour of the
reference stress, which is usually a uniaxial or balanced biaxial tension stress.

The notion of irreversibility of plastic flow is expressed by the following
equations of evolution for the set of internal variables {εp,α}, called flow rule
and hardening law:

�tεp = γ r(σ ,α)
�tα = γH(σ ,α), (27)

where r(σ ,α) and H(σ ,α) are prescribed functions which define the direction
of plastic flow and the type of hardening. The parameter γ is a nonnegative func-
tion, called the consistency parameter, which is assumed to obey the following
Kuhn–Tucker complementary conditions:

γ ≥ 0
f (σ ,α) ≤ 0
γ f (σ ,α) = 0, (28)

where f (σ ,α) = φ(σ ,α) − σ̄m. In addition to conditions (28), there exists the
consistency requirement:

γ ḟ (σ ,α) = 0. (29)

The Kuhn–Tucker conditions can be interpreted as follows:

• suppose a specific state of stress and internal variables such that f (σ ,α) < 0
(elastic domain). Then, from the complementary condition γ f (σ ,α) = 0,
γ is zero and consequently, �tεp = 0 and �tα = 0;

• now, suppose that the state of stress lays on the yield surface, that is,
f (σ ,α) = 0. From the consistency requirement:
◦ if ḟ (σ ,α) < 0, then γ = 0 and, consequently, unloading from a plastic
state occurs;
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Figure 1. Loading/Unloading conditions and associative flow rule.

◦ if ḟ (σ ,α) = 0, then the consistency requirement is automatically
satisfied. If γ > 0, then �tεp �= 0 and �tα �= 0, which gives plastic
loading. If γ = 0, then a neutral loading state is obtained.

In the case of associative flow rule, the prescribed function r(σ ,α) is obtained
from the yield function φ:

r(σ ,α) = ∂φ

∂σ
. (30)

Figure 1 depicts theKuhn–Tucker complementary conditions and the associative
flow rule.

4.1. Stress update algorithms

The increment of the Cauchy stresses is obtained from the strain tensor as
follows:

�tσ = D
(
�tε − �tεp

)
, (31)

where �tσ is the incremental Cauchy stress tensor, D is the elastic matrix, �tε

and �tεp are the increments of the total and plastic deformations, respectively.
The additive decomposition of the deformation gradient (Simo &Hughes, 1998)
is used together with the co-rotational coordinate system so that incremental
objectivity is ensured for large deformations. The co-rotational approach has
been used extensively in the past (Cardoso, 2002; Cardoso&Yoon, 2005; Yoon et
al., 1999) and it is very common for the modelling of large deformations in shell-
like structures such as the ones used in sheet metal forming applications. Other
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Figure 2. Predictor-corrector algorithm for elastoplastic materials.

worth considering research for large deformations is the use of themultiplicative
decomposition of the deformation gradient, with the pioneer work of Simo and
Hughes (1998) and, more recently, with the works of Deseri and Owen (2002,
2016).

Figure 2 illustrate the incremental application of elastoplasticity. The proce-
dure described in Figure 2 follows two steps:

• elastic predictor step; Equation (31) is used to obtain the incremental
components of the Cauchy stresses and to define the elastic trial state as
trialσ = tσ +�t σ ;

• plastic corrector step; Considering Equation (27) and associative flow rule,
the final state corresponding to t+�tσ is obtained from the trial state:

t+�tσ = trialσ − D�tεp = trialσ − γD
∂σ̄

(t+α�tσ
)

∂σ

= trialσ − γD
(t+α�tm

)
, (32)

where t+α�tm represents the normal to the yield surface at a representative
point t + α�t, with 0 ≤ α ≤ 1. From work plastic equivalence and
proportional loading:

�t ε̄p =
t+α�tσ : �tεp

σ̄
(t+α�t

σ
) =

t+α�tσ : γ ∂σ̄
(t+α�t

σ
)

∂σ

σ̄
(t+α�t

σ
) = γ σ̄

(t+α�t
σ
)

σ̄
(t+α�t

σ
) = γ (33)

where �t ε̄p is the equivalent plastic strain increment.

4.1.1. Numerical implementation
In the numerical procedure, the unknown �t ε̄p (equivalent plastic strain in-
crement) is obtained from the non-linear equations, which are derived in the
formulation. Using �t ε̄p obtained from the non-linear equation, all variables
on kinematics and stresses are updated at the end of every step. The non-linear
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Figure 3. Schematic representation of the iterative solving procedure for return mapping.

equation to solve for �t ε̄p, which enables the resulting stresses to stay on the
hardening curve is:

φ
(tσ + �tσ

) 1
m = ρ

(t ε̄p + �t ε̄p
)
. (34)

The semi-implicit multi-stage returnmapping procedure fromYoon et al. (1999)
is employed. Note that in the incremental deformation theory �t ε̄p = γ and
φ

1
m

(
σ
) = σ̄

(
σ
)
.

In the semi-implicit multi-stage return mapping procedure the following
residual is present for each stage I :

R = σ̄
(
tσ + �tσ (

I
)) − ρ

(
t ε̄p + γ(

I
)) = RI , (35)

or

ψ = σ̄
(
tσ + �tσ (

I
)) − ρ

(
t ε̄p + γ(

I
)) − RI = 0. (36)

In order to solve Equation (36), the following definitions are summarised:

(i) �tσ = D
(
�tε − �tεp

) = D�tε − γD
∂σ̄

∂σ

(ii) trialσ = tσ + D�tε = tσ + D�tε. (37)

The linearisation of Equation (36) leads to:

ψ0 + ∂ψ

∂ t+�tσ (
I−1

) d �tσ (
I
) + ∂ψ

∂ρ
dρ = 0, (38)
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where

ψ0 = σ̄
(
tσ + �tσ (

I−1
)) − ρ

(
t ε̄p + γ(

I−1
)) − RI = 0. (39)

Considering the relations
∂ψ

∂ t+�tσ (
I−1

) = ∂σ̄

∂ t+�tσ (
I−1

) and also
∂ψ

∂ρ
= −1,

Equation (38) becomes:

ψ0 + ∂σ̄

∂ t+�tσ (
I−1

) d �tσ (
I
) − dρ = 0. (40)

From Equation (37):

(i) d �tσ (
I
) = −dγ(

I
)D ∂σ̄

∂ t+�tσ (
I−1

)
(ii) dρ = dγ(

I
)H. (41)

In the semi-implicit algorithm the evaluation of the second-order derivatives,
∂
∂σ

(
∂σ̄
∂σ

)
is not necessary because the normal to the yield surface, ∂σ̄

∂σ
is assumed

from the previous stage
(
I − 1

)
.

In Equation (41), H ≡ dσ̄
dε̄p comes directly from the uniaxial stress–strain

curve. Substituting Equation (41) into Equation (40) gives:

ψ0 − dγ(
I
) ∂σ̄

∂ t+�tσ (
I−1

)D
∂σ̄

∂ t+�tσ (
I−1

) − dγ(
I
)H = 0. (42)

By considering the normal to the yield surface for stage
(
I − 1

)
:

t+�tm(
I−1

) = ∂σ̄

∂ t+�tσ (
I−1

) , (43)

the following result for dγ(
I
) is obtained:

dγ(
I
) = ψ0(

t+�tm(
I−1

))D
(
t+�tm(

I−1
)) + H

. (44)

The update of the variables is next performed:

γ(
I
) = γ(

I−1
) + dγ(

I
)

�tσ (
I
) = �tσ (

I−1
) − dγ(

I
)D ∂σ̄

∂ t+�tσ (
I−1

)
t+�tσ (

I
) = tσ + �tσ (

I
). (45)

Note that �tσ (
0
) = D�tε. In Figure 3, a schematic representation of the return

mapping procedure for the semi-implicit algorithm is presented. It is possible
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to see that the normal to the yield surface is calculated on the previous stage(
I − 1

)
, and, consequently its direction is known on the current stage

(
I
)
. The

return mapping procedure in Figure 3 is described in Box 1.
In the semi-implicit scheme, the normal to the yield surface is evaluated

explicitly (its direction is calculated on previous stage) while the consistency
parameter dγ is evaluated implicitly at current stage

(
I
)
. It is possible to usemore

sophisticated scheme like Euler-backward method. In this case, both normal to
the yield surface and consistency parameter are evaluated implicitly at current
stage

(
I
)
. Yoon et al. (1999) developed an iterative solving scheme based on the

fully implicit stress update algorithm. The algorithm was successfully applied to
a non-quadratic yield function and a general hardening law.

Box1-Multi-stage return mapping procedure.

0. I = 1 ; γ(0) = 0 ; t+�tσ (0) =trial σ ; n = number of stages

1. Cycle on n:

– ψ
(
γ(I−1)

) = σ̄
(t+�tσ (I−1)

) − ρ
(t ε̄p) = ψ(I−1)

– t+�tm(I−1) = ∂σ̄

∂ t+�tσ (
I−1

)

– dγ(
I
) = ψ(I−1)(

t+�tm(
I−1

))D
(
t+�tm(

I−1
)) + H

– γ(
I
) = γ(

I−1
) + dγ(

I
)

– �tσ (
I
) = �tσ (

I−1
) − dγ(

I
)D ∂σ̄

∂ t+�tσ (
I−1

)

– t+�tσ (
I
) = tσ + �tσ (

I
)

– I = I + 1

5. Contact procedures in IGA

The consideration of contact procedures is fundamental for the numerical sim-
ulation for manufacturing processes such as sheet metal forming. In order to
achieve a reliable and efficient numerical simulationwith contact infinite element
analysis, three major steps need to be considered: (1) the global search phase,
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where a first search is performed such that potential contact nodes are associated
with a target contact face; (2) the local search step, where the exact location of
the contact point on the target face is determined; (3) the imposition of the zero-
penetration gap (local constraint) in the weak formulation. Contact analysis
in IGA also has to include these three major steps but additional challenges
are encountered due to the non-interpolatory characteristic of the method.
Nevertheless, there are however some important benefits of contact in IGA
such as the higher degree of the polynomials in the NURBS basis functions,
which enables the contact to be smoother leading to higher convergence rates,
and the fact that it does not use element subdivisions, which in turn does
not introduce inter-element discontinuity when a contact node travels between
adjacent elements as in the finite element method. An outline of the major steps
that are considered for the implementation of contact procedures in IGA are
detailed in the following sections.

In Figure 4 (b) it can be clearly seen the non-interpolatory nature of NURBS in
such that the control points (represented by thewhite circles in the figure) are not
in the curve. Instead, the dark squares in the figure represent the coordinates of a
point in the curve after being approximated by the basis functions fromEquation
(7) from a knot value defined in the parametric space of the knot vectors.

For contact search/detection it is fundamental that the algorithmgoes through
the physical coordinates on the curve rather than through the control net. For
example, the calculation of the gap (see Figure 5) needs to be done from the
detection of penetration between points in the curves/surfaces rather than the
control points on their control nets. Due to the non-interpolatory character of
NURBS, special methods, such as point inversion (Piegl & Tiller, 1996) for the
determination of the parametric knot coordinates corresponding to a minimum
distance to a contacting point, need to be used.

In this work, the Master–Slave contact scheme was implemented with the
rigid contact surfaces for the dies being the master surfaces, while the contact
surfaces for the deformable blank sheet being the slave contact surfaces.

5.1. Global search

Global contact search is the phase in contact mechanics where hitting nodes
(knots in IGA) are searched within the vicinity of a target contact surface. A
target contact face in IGA is defined as a face between two consecutive knots,
ξi and ξi+1 along the ξ direction and ηi and ηI+1 along the η direction. Global
search does a first selection of the potential hitting nodes in the territory domain
of a target contact face and thereafter the local search accurately determines
the point at the target surface that corresponds to the minimum distance to the
hitting node.

The first stage in the global search procedure for IGA is the use of the
position code algorithm Oldenburg and Nilsson (1994) and Cardoso (2002),
where the domain is divided into three-dimensional cube boxes with each having
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Figure 5. Contact detection between amaster surface (rigid dies) and a slave surface (deformable
blank sheet).

an associated integer number. Whenever the coordinates of a knot, whether it is
a target or hitting knot in IGA, lies inside any of these three-dimensional boxes
then it is assigned a unique integer. The position code algorithm then performs
a binary search (Cardoso, 2002) and selects the knots inside the contact territory
of the target contact surface (red domain defined in Figure 6). Depending on the
size of the three-dimensional boxes used in the position code algorithm, there
could be the possibility of having knots that can be considered to be within the
contact territory domain of a target contact face but in fact they might not be. It
is therefore important to have a very precise selection of knots inside the contact
territory of each contact face otherwise the local contact search procedure for the
calculation of the precise location of the target contact coordinates can be very
time consuming. Figure 6 details a second filter that is used for a better selection
of knots inside the contact territory for IGA contact analysis. The hitting knots
inside the contact territory of a target NURBS contact face are given from the
intersection of the following sub-sets:

A = {
xA ∈ IR : (

Vi−j × Vi−h
) · Vni ≥ 0,

(
i = 1, 2, 3, 4 ; j = 2, 3, 4, 1

)}
B = {

xB ∈ IR : (
Vk−l × Vk−h

) · Vnk ≥ 0,
(
k = 1, 5, 8, 4 ; l = 5, 8, 4, 1

)}
(46)
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Figure 7. Geometry and dimensions for the lower-die tool.

i.e.
C = A ∩ B (47)

with C defining the set of hitting knots inside the contact territory of a target
NURBS contact face. Vi−j is the vector connecting two consecutive vertices on
the contact territory cube,Vni is the normal vector of the face on the cube contact
territory andVi−h is the vector connecting the hitting knot with the vertex of the
contact territory cube. With this second filter the resolution error that might be
existent during the construction of the three-dimensional boxes for the position
code algorithm is eliminated and thus a more accurate selection of knots in the
contact territory can be obtained.

5.2. Local search and penetration gap

The NURBS contact surfaces S
(
ξ , η

)
are defined from the NURBS approxima-

tion as defined inEquation (7). The aimof local search procedures is to determine
the exact location of the parametric NURBS coordinates ξ and η corresponding
to the minimum distance to the hitting point (hitting knot) located inside the
contact territory of a target contact face. Assuming an initial guess for the
parametric coordinates of the NURBS surface, ξ = ξ0 and η = η0, the following
position vector can be defined:

r
(
ξ , η

) = xh − S
(
ξ , η

)
(48)

where xh are the coordinates of the hitting knot. The parametric coordinates ξ
and η that minimise the distance to the hitting knot are obtained from imposing
the following dot product equal to zero:

f
(
ξ , η

) = Sξ
(
ξ , η

) · r (
ξ , η

) = 0
h

(
ξ , η

) = Sη
(
ξ , η

) · r (
ξ , η

) = 0 (49)

The Newton–Raphson iterative scheme is then used for the solution of the
nonlinear system from Equations (49) after their development into the following
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Figure 9. First plot for an intermediate time step for the refined tool set. 3D view with the
distribution of the equivalent plastic strain (EPS) and profile view for contact validation.

Taylor’s series:

Fi+1 (
ξ , η

) = Fi
(
ξ , η

) + dF
(
ξ , η

)
du

�u + H.O.T. (50)

with
F

(
ξ , η

) =
{
f
(
ξ , η

)
h

(
ξ , η

)
}

; u =
{
ξ

η

}
(51)

Because the aim is to have Fi+1 (
ξ , η

) = 0, the linear system of equations that
needs to be solved for is:[

fξ
(
ξ , η

)
fη

(
ξ , η

)
hξ

(
ξ , η

)
hη

(
ξ , η

)
] {

�ξ

�η

}
= −

{
f i

(
ξ , η

)
hi

(
ξ , η

)
}

(52)

After having the increment of the parametric knot coordinates, the current knot
coordinates can be updated as follows:

ξ i+1 = ξ i +�ξ

ηi+1 = ηi +�η (53)

After the convergence of the above Newton–Raphson scheme for the knot
coordinates of the point on the target NURBS face with the shortest distance
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Figure 10. Second plot for an intermediate time step for the refined tool set. 3D view with the
distribution of the equivalent plastic strain (EPS) and profile view for contact validation.

to the hitting knot, the penetration gap, g
(
ξ , η

)
, can thus be calculated from the

use of the NURBS basis functions as follows:

g
(
ξ i+1, ηi+1) = (

xh − S
(
ξ i+1, ηi+1)) · Vn

(
ξ i+1, ηi+1) (54)

where Vn
(
ξ i+1, ηi+1) is the unit normal vector at the contact knot in the target

NURBS surface and it is given by:

Vn
(
ξ i+1, ηi+1) =

dS
(
ξ i+1,ηi+1)
dξ i+1 × dS

(
ξ i+1,ηi+1)
dηi+1

‖dS
(
ξ i+1,ηi+1

)
dξ i+1 × dS

(
ξ i+1,ηi+1

)
dηi+1 ‖

(55)

As can be seen from the Newton–Raphson iterative scheme above, it is funda-
mental to have in the global search a narrow selection of potential hitting knots
inside the contact territory of a target IG contact face, otherwise the local search
in IGA can be very time consuming. Also, and even more critical, is the fact that
in the Newton–Raphson scheme defined above it is quite critical to have a very
good initial guess for ξ0 and η0 so that the iterative scheme converges quickly
and does not diverge. The initial guesses used in this work for ξ0 and η0 are the
knot parametric coordinates ξi and ηi from the contact target face in Figure 6
which defines the contact territory of the hitting knot.
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Figure 11. Third plot for an intermediate time step for the refined tool set. 3D view with the
distribution of the equivalent plastic strain (EPS) and profile view for contact validation.

Figure 12. Fourth plot for the final time step for the refined tool set. 3D viewwith the distribution
of the equivalent plastic strain (EPS) and profile view for contact validation.
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Figure 13. Two profile plots for the coarser tool set: (1) intermediate step; (2) final time step.

6. Numerical results

The numerical results presented here demonstrate the contact capabilities of
the IsoGeometric analysis in a sheet metal forming application. The simulation
includes two rigid dies based on NURBS surfaces: a lower die, with geometry
and dimensions described in Figure 7 and an upper die, which was offset by
5mm from the lower die. The lower die moves in the vertical upward direction
with a velocity of 18.75 m/s while the upper die moves in the vertical downward
direction with a velocity of −18.75m/s.

The blank sheet has 700mm length, 400mm width and 3.0mm thickness
and it was modelled with 3D IGA ‘elements’ (with each IGA ‘element’ defined
between two consecutive knots) with degree 2 in the NURBS basis functions.
The material elastic properties used for the simulation were Young’s modulus
equal to 210GPa and Poisson’s ratio equal to .3. The Voce hardening rule was
used with the following hardening parameters:

σ̄ = 500.0 − 250.0 × exp
(−6.0 × ε̄p

)

and the classical von-Mises yield function was used for the elastoplastic return
mapping procedure. It is worth pointing out that the main objective of this
simulation is to validate the IsoGeometric analysis with contact rather than
detailed elastoplasticity analysis.

Figure 8 depicts the two options used for the geometric description of the
NURBS rigid die tools. The figure at the top represents the refined die tool sets
where a higher number of knots were used to represent the geometry of the
NURBS surface, whilst the figure at the bottom shows a coarser representation
of the die tools by using a smaller number of knots in the NURBS surface. These
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Figure 14. Zoom-in for the final time step for both the refined and coarser tool sets.

two different geometric representations were used separately for the numerical
simulation of contact procedures in the IGA of sheet metal forming processes. In
Appendix 2, Tables B1–B3, give the distribution of the control points and knot
vectors used for both die tools.

Figures 9–12 describe the deformed configuration of the blank sheet for a
sequence of different time steps during the forming analysis and for the refined
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tool set. In these figures, the 3D perspective view with the distribution of the
equivalent plastic strain (EPS in the contour legend) is shown as well as a profile
view of the forming process.

In Figure 13, an intermediate step and the final forming step for the IGA sim-
ulation using the coarser die tool set are shown. The objective of this simulation
is to demonstrate that the same forming results can be obtained with a tool set
with a much smaller distribution of knots in the NURBS rigid surfaces. This
offers enormous computational efficiencies during global search and local search
procedures for IGA contact analysis and hence it demonstrates the advantages
of IGA in sheet metal forming simulations.

Figure 14(a) and (b) show a zoomed-in of the regions with higher curvature
for both the refined and coarse representation of the dies for the final time step.
As can be clearly seen, the same accurate final geometric deformed shape can be
obtained when the coarse distribution of knots in the rigid die sets is used.

7. Concluding remarks

In this work contact procedures for IsoGeometric Analysis were developed for
the simulation of sheet metal forming processes. Both the rigid tools and the
deformable blank sheet were approximated with NURBS basis functions under
the framework of IGA.Global and local search procedureswere developed for the
detectionof potential contact knots between theNURBSdefined contact surfaces.
Some additional difficulties encountered for contact detection in IGA and, more
importantly the need for an accurate description (initial guess) of potential
contact knots during the global search phase so that the iterative Newton–
Raphson scheme for the exact locationof the target parametric coordinateswould
not encounter any convergence difficulties, were discussed in this paper. It was
however shown that the advantages of modelling the entire sheet metal forming
process with IGA largely overcome these minor difficulties. Such advantages
include: (1) the possibility of using very coarse distribution of knots in the rigid
NURBS surfaces, thereby allowing faster contact analysis; (2) the possibility
of using higher order polynomials to describe the NURBS geometry, thereby
allowing for an even smaller number of knots to be considered without the
disruption of the geometry of the contact surfaces; (3) smoother contact due to
the lack of inter-element discontinuity whenever a contact node travels between
adjacent knot spans; (4) the use of larger critical time steps in explicit analyses
due to the coarser distribution of knots.

The numerical sheet metal-forming example presented in this paper demon-
strates all the above-mentioned advantages of using IGA for the numerical
simulation of sheet metal-forming processes.
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Appendix 1. Derivatives of NURBS basis functions
The derivatives of RIJK

(
ξ , η, ζ

)
in order to the NURBS parametric coordinates are obtained

from:

∂RIJK
(
ξ , η, ζ

)
∂ξ

= Nr
K

(
ζ
)
Nq
I

(
η
)
Np
J ,ξ

(
ξ
)
WIJK

W
− Np

J
(
ξ
)
Nq
I

(
η
)
Nr
K

(
ζ
)
WIJK

W2 W,ξ

∂RIJK
(
ξ , η, ζ

)
∂η

= Nr
K

(
ζ
)
Nq
I ,η

(
η
)
Np
J

(
ξ
)
WIJK

W
− Np

J
(
ξ
)
Nq
I

(
η
)
Nr
K

(
ζ
)
WIJK

W2 W,η

∂RIJK
(
ξ , η, ζ

)
∂ζ

= Nr
K ,ζ

(
ζ
)
Nq
I

(
η
)
Np
J

(
ξ
)
WIJK

W
− Np

J
(
ξ
)
Nq
I

(
η
)
Nr
K

(
ζ
)
WIJK

W2 W,ζ (A1)

where the derivatives ofW can be easily obtained from the derivatives of the basis functions
in Equation (9) for 2D patches or Equation (10) for 3D patches:

W,ξ =
n∑

I=1

m∑
J=1

Nq
I

(
η
) dNp

J
(
ξ
)

dξ
WIJ

W,η =
n∑

I=1

m∑
J=1

dNq
I

(
η
)

dη
Np
J

(
ξ
)
WIJ (A2)
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for the 2D NURBS and:

W,ξ =
l∑

k=1

n∑
I=1

m∑
J=1

Nr
K

(
ζ
)
Nq
I

(
η
) dNp

J
(
ξ
)

dξ
WIJK

W,η =
l∑

k=1

n∑
I=1

m∑
J=1

Nr
K

(
ζ
) dNq

I
(
η
)

dη
Np
J

(
ξ
)
WIJK

W,ζ =
l∑

k=1

n∑
I=1

m∑
J=1

dNr
K

(
ζ
)

dζ
Nq
I

(
η
)
Np
J

(
ξ
)
WIJK (A3)

for the 3D NURBS.

Appendix 2. Control points and knot vectors for the rigid die tool
In Table B1, the distribution of the control points along the longitudinal direction of the lower
die tool for the coarser ‘mesh’ example (for z = .0) is presented. The depth of the lower die
tool is generated by extruding the control points from Table B1 along the z-direction.

Table B1. Control points for the lower die tool.

Coordinates and weight factor

CP number x y z w

1 −100.000000 −.500000 .000000 1.000000
2 −25.000000 −.500000 .000000 1.000000
3 125.000000 −.500000 .000000 1.000000
4 200.000000 −.500000 .000000 1.000000
5 220.710678 −.500000 .000000 .853553
6 250.000000 −29.789322 .000000 .853553
7 250.000000 −50.500000 .000000 1.000000
8 250.000000 −63.000000 .000000 1.000000
9 250.000000 −88.000000 .000000 1.000000
10 250.000000 −100.500000 .000000 1.000000
11 250.000000 −121.210678 .000000 .853553
12 279.289322 −150.500000 .000000 .853553
13 300.000000 −150.500000 .000000 1.000000
14 320.710678 −150.500000 .000000 .853553
15 350.000000 −121.210678 .000000 .853553
16 350.000000 −100.500000 .000000 1.000000
17 350.000000 −79.789322 .000000 .853553
18 379.289322 −50.500000 .000000 .853553
19 400.000000 −50.500000 .000000 1.000000
20 475.000000 −50.500000 .000000 1.000000
21 625.000000 −50.500000 .000000 1.000000
22 700.000000 −50.500000 .000000 1.000000
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In Table B2, the distribution of the control points for the upper die also along the
longitudinal direction (z = .0) and after the offset from the lower die tool is given.

Table B2. Control points for the upper die tool.

Coordinates and weight factor

CP number x y z w

265 −100.000000 154.500000 .000000 1.000000
266 −25.000000 154.500000 .000000 1.000000
267 125.000000 154.500000 .000000 1.000000
268 200.000000 154.500000 .000000 1.000000
269 222.624103 154.119394 .000000 .853553
270 254.614735 122.135314 .000000 .853553
271 255.000000 99.500000 .000000 1.000000
272 255.000000 87.000000 .000000 1.000000
273 255.000000 62.000000 .000000 1.000000
274 255.000000 49.500000 .000000 1.000000
275 254.614735 30.713958 .000000 .853553
276 281.213958 4.114735 .000000 .853553
277 300.000000 4.500000 .000000 1.000000
278 318.786042 4.114735 .000000 .853553
279 345.385265 30.713958 .000000 .853553
280 345.000000 49.500000 .000000 1.000000
281 345.385265 72.135314 .000000 .853553
282 377.364686 104.114735 .000000 .853553
283 400.000000 104.500000 .000000 1.000000
284 475.000000 104.500000 .000000 1.000000
285 625.000000 104.500000 .000000 1.000000
286 700.000000 104.500000 .000000 1.000000

Table B3 shows the knot vector along ξ -direction that was used for both dies (for the
coarser ‘mesh’ example). A degree 2 was used for the NURBS basis functions.

Table B3. Knot vector used for both dies.

Knot number ξ

1 .000000
2 .000000
3 .000000
4 .500000
5 1.000000
6 1.000000
7 1.500000
8 2.000000
9 2.000000
10 2.500000
11 3.000000
12 3.000000
13 3.500000
14 4.000000
15 4.000000
16 4.500000
17 5.000000
18 5.000000
19 5.500000
20 6.000000
21 6.000000
22 6.500000
23 7.000000
24 7.000000
25 7.000000
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