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ABSTRACT

In this research, by applying the improved
(
G′
G

)
-expansion

method, we have found the travelling and solitary wave
solutions of the fractional-order biological population model,
time fractional Burgers equation, the Drinfel’d–Sokolov–Wilson
equation and the system of shallow water wave equations.
The advantage of this method is providing a new and more
general travelling wave solutions for many non-linear evolution
equations, it supply three different kind of solutions in the form
(the hyperbolic functions, the trigonometric functions and the

rational functions). This method included the extended
(
G′
G

)
-

expansionmethodwhen σ = 0 and the
(
G′
G

)
-expansionmethod

when N takes only positive value and zero. All of these merits
help us in survey of the physical meaning of each models
mentioned above for investigating stability of these models.
Rapprochement between our results and the previous renowned
outcome presented.
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1. Introduction

The second half of the twentieth century saw a second revolution in studying
the classical physics. A wave equation having soliton solutions has both non-
linearity and dispersive property. Scientists showed the effects of non-linearity
in the dynamical equations. They showed the non-linearity has two interesting
manifestations of opposite property. One of this property is chaos and the
second is soliton. Both of these properties developed into paradigms with solid
mathematical background and physical observation.

Over the years, many methods were developed to evaluate the exact and
solitary wave solutions of physical, biological, plasma, fluid mechanics, optical
fibers, solid state physics, chemical kinetics and geochemistry . . . etc.models. For
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examples Wazwaz (2004), Khater (2015), Zhang (2008), Seadawy and Dianchen
(2016), Kim and Sakthivel (2012), Vitanov (2010), Xie, Yan, and Zhang (2001),
Seadawy (2015), Ma and Fuchssteiner (1996), Hu and Zhang (2001), Seadawy
(2012), Wedin & Kerswell (2004) and so on.

The technique adopted is to expand a solution to higher-dimensional equa-
tions around a solution to an ODE. This basic idea presented and analysed in the
reference Ma and Fuchssteiner (1996) as well, and a more systematical approach
to travelling waves was emerged into a so-called transformed rational function
method (Ma & Lee, 2009). The current situation in the manuscript had an
applicationof such explored idea ormethod, since an expansion in (8) is a rational
function of the

(
G′
G

)
function, whose Equation (9) implies that

(
G′
G

)
satisfies

a Riccati equation. The general solution to a general Riccati equation has been
given by (40)–(42) inMa and Fuchssteiner (1996).More generally,multiple wave
solutions could be presented by the multiple exp-function method (Ma & Zhu,
2012), and this is the unique way to go with, following Fourier theory. Another
interesting question is how to transform a fractional PDE into a non-fractional
ODE. Is a dimensional reduction sufficient. The current manuscript deals with a
few interesting questions and the computations are carefully made. The new
method for finding the exact solutions of some time-fractional Kortewegde
Vries (KdV) type equations appearing in shallow water waves are obtained.
The newmethod for time-fractional equations viz. time-fractional KdV-Burgers
and KdV-mKdV equations for finding the exact solutions is employed. The
fractional complex transform accompanied by properties of local fractional
calculus for reduction of fractional partial differential equations to ordinary
differential equations are used Sahoo and Saha (2016). The fractional complex
transformmethod for wave equations on Cantor sets within the local differential
fractional operators are obtained. The proposed method was efficient to handle
differential equations on Cantor sets (Yang, Baleanu, & He, 2013; Zhao, Cai, &
Yang, 2016).

The basic point of this research is to stratify the improved
(
G′
G

)
-expansion

method for obtaining the travelling and solitarywave solution of fractional-order
biological population model, time fractional burgers equation, the Drinfel’d–
Sokolov–Wilson equation and the system of shallow water wave equations (Ar-
shad, Seadawy, Lu, & Wang, 2016; Khalfallah, 2009; Lu, Seadawy, & Arshad,
2017; Selima, Seadawy, & Yao, 2016; Seadawy, 2017; Seadawy, Arshad, & Lu,
2017; Zahran & Khater, 2014).

The remnant of this paper is systematised as follows: In Section 2, we give the
description of the improved

(
G′
G

)
-expansion method. In Section 3, we use this

method to get the exact solutions of (NLPDEs.) pointed out above. In Section 5,
conclusions are given.
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2. Basic steps of technique

2.1. Conformable fractional derivative and its properties

The conformable fractional derivative of order α is defined by the following
expression (Anderson & Ulness, 2015; Hosseini, Bekir, & Ansari, 2017; Khalil et
al., 2014)

Dαf (x) = lim
τ→0

f (t + τ t1−α) − f (t)
τ

= t1−α f
′
(t), (1)

where
(
0 < α < 1

)
. We list some important properties for the conformable

fractional derivative as follows:

Dα
t t

r = r tr−α , (2)
Dα
t (f (t)g(t)) = g(t)Dα

t f (t) + f (t)Dα
t g(t), (3)

Dα
t
f (t)
g(t)

= g(t)Dα
t f (t) − f (t)Dα

t g(t)
g2(t)

. (4)

2.2. The improved
(
G′
G

)
-expansionmethod

Consider the following non-linear evolution equations

{
(u, ux , uy , ut , ux y , ux t , . . . ) = 0,
F(u,Dα

x u,Dα
y u,D

α
t u,Dα

x Dα
y u,Dα

x D
α
t u, . . . ) = 0. (5)

where F is a polynomial in u(x, t) and its partial derivatives in which the highest
order derivatives and non-linear terms are involved. In the following, we give
the main steps of this method:

Step 1.We use the wave transformation

⎧⎨
⎩

(x, y, t) = u(ξ), ξ = x + y − c t,

u(x, y, t) = u(ξ), ξ = x + y + c tα
α

.

(6)

where c is a constant, to reduce Equation (5) to the following ODE:

P(u, u′, u′′, u′′′, . . . ) = 0, (7)

where P is a polynomial in u(ξ) and its total derivatives.
Step 2. Suppose the solution of Equation (7) has the form:

u(ξ) =
N∑

i=−N

ai

⎛
⎝

(
G′
G

)
(
1 + σ

(
G′
G

))
⎞
⎠

i

, (8)
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where ai, is constants to be determined, such that aN �= 0 andG = G(ξ) satisfies
the following second-order linear ordinary differential equation(LODE):

G′′ + μG = 0, (9)

Step 3. Determine the positive integer N in Equation (8) by balancing the
highest order derivatives and the non-linear terms.

Step 4. Substitute Equation (8) along Equation (9) into Equation (7) and

collecting all the terms of the same power
(
G′
G

)i
where (i = N ,N −1, . . . , 1−N ,

−N) and equating them to zero, we obtain a system of algebraic equations, which
can be solved by Maple or Mathematica to get the values of ai and σ .

Step 5. Substituting these values and the solutions of Equation (9) into
Equation (8), we obtain the exact solutions of Equation (5).

3. Application

Here, we apply the improved
(
G′
G

)
-expansion method described in Section 2

to find the exact travelling wave solutions and the solitary wave solutions of
fractional-order biological population model, time fractional burgers equation,
the Drinfel’d–Sokolov–Wilson equation and the system of shallow water wave
equations.

3.1. Fractional-order biological populationmodel

Consider a time fractional biological populationmodel (Bekir, Guner, &Cevikel,
2013; Lu, 2012; Rida, Arafa, & Mohamed, 2011; Zhang & Zhang, 2011):

∂2

∂x2
v2 + ∂2

∂y2
v2 + h(v2 − r) − ∂αu

∂tα
= 0, (10)

where h and r are arbitrary constants. Using the wave travelling transformation

v(ξ) = v(x, t) where
(

ξ = kx + iky + ωtα

α

)
,

carries the partial differential equation (PDE.) (10) into the ordinary differential
equation (ODE.):

v2 − δv′ − r = 0. (11)

Where δ = ω
h . Balancing between the highest order derivatives and nonlinear

terms appearing in Equation (11) ⇒ (
v′ & v2

)
we obtain (N = 1). So that, by

using Equation (8) we get the formal solution of Equation (11):

v = a−1
1 + σ

(
G′
G

)
(
G′
G

) + a0 + a1

(
G′
G

)
1 + σ

(
G′
G

) . (12)
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Substituting Equation (12) and its derivative into Equation (11) and collecting
all term with the same power of

(
G′
G

)j
where

(
j = 4, 3, 2, 1, 0

)
we get algebraic

system. By solving it by any computer program like maple, mathematica, . . . etc,
we secure:

μ = 0, σ = σ , a−1 = 0, a0 = −δ, a1 = δσ.

So that, the travelling wave solution:

v = δ

⎛
⎝−1 + σ

⎛
⎝

(
G′
G

)
1 + σ

(
G′
G

)
⎞
⎠

⎞
⎠ , (13)

then, we have only rational case solutions:

v = δ

(
−1 + σA2

A1 + (ξ + σ)A2

)
. (14)

3.2. Time fractional Burgers equation

Consider the one-dimensional time fractional Burgers equation (Bekir et al.,
2013; Inc, 2008):

∂αv
∂tα

+ εvvx − σvxx = 0. (15)

where ε and σ are constants. Using wave transformation

u(x, t) = u(ξ) ξ = kx + ωtα

α
,

which carries PDE. (15) into ODE.:

v + ρv2 + βv′ + c = 0. (16)

Where ρ = ck
2ω and β = −σk2

ω
. Balancing between the highest order derivatives

and non-linear terms appearing in (16) ⇒ (
v′ & v2

)
we obtain

(
N = 1

)
. So

that, by using Equation (8) we get the same formal solution of Equation (11).
Substituting Equation (12) and its derivative into Equation (16) and collecting
all term with the same power of

(
G′
G

)j
where

(
j = 4, 3, 2, 1, 0

)
we get algebraic

system. By solving it by any computer program like maple, mathematica, . . . etc,
we procure:

Case 1
ρ = 0, a−1 = −c, a0 = 2cσ , a1 = −cσ 2

So that, the exact travelling wave solution:

v = −c
1 + σ

(
G′
G

)
(
G′
G

) + 2cσ − cσ 2

(
G′
G

)
1 + σ

(
G′
G

) . (17)
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Then, the solitary wave solutions:
When (μ < 0), we obtain the hyperbolic function solution:

v = − c
(
A1 + A2σ

√−μ
)
cosh

(√−μξ
) + (

A2 + A1σ
√−μ

)
sinh

(√−μξ
)

√−μ
(
A1 sinh

(√−μξ
) + A2 cosh

(√−μξ
))

+ 2cσ − cσ 2
√−μ

(
A1 sinh

(√−μξ
) + A2 cosh

(√−μξ
))

(
A1 + A2σ

√−μ
)
cosh

(√−μξ
) + (

A2 + A1σ
√−μ

)
sinh

(√−μξ
) . (18)

When (μ > 0), we obtain the trigonometric function solution:

v = − c
(
A1 − A2σ

√
μ

)
sin

(√
μξ

) + (
A2 + A1σ

√
μ

)
cos

(√
μξ

)
√

μ
(
A1 cos

(√
μξ

) − A2 sin
(√

μξ
))

+ 2cσ − cσ 2
√

μ
(
A1 cos

(√
μξ

) − A2 sin
(√

μξ
))

(
A1 − A2σ

√
μ

)
sin

(√
μξ

) + (
A2 + A1σ

√
μ

)
cos

(√
μξ

) .

(19)

When (μ = 0), we obtain the rational function solution:

v = −c
A1 + (

ξ + σ
)
A2

A2
+ 2cσ − cσ 2 A2

A1 + (
ξ + σ

)
A2

. (20)

Case 2
ρ = −a−1 + c

a2−1
, σ = 0, a−1 = a−1, a0 = a1 = 0

So that, the exact travelling wave solution:

v = a−1
1 + σ

(
G′
G

)
(
G′
G

) . (21)

Then, the solitary wave solutions:
When (μ < 0), we obtain the hyperbolic function solution:

v = a−1

(
A1 + A2σ

√−μ
)
cosh

(√−μξ
) + (

A2 + A1σ
√−μ

)
sinh

(√−μξ
)

√−μ
(
A1 sinh

(√−μξ
) + A2 cosh

(√−μξ
)) .

(22)
When (μ > 0), we obtain the trigonometric function solution:

v = a−1

(
A1 − A2σ

√
μ

)
sin

(√
μξ

) + (
A2 + A1σ

√
μ

)
cos

(√
μξ

)
√

μ
(
A1 cos

(√
μξ

) − A2 sin
(√

μξ
)) . (23)

When (μ = 0), we obtain the rational function solution:

v = a−1
A1 + (

ξ + σ
)
A2

A2
. (24)

Case 3
μ = −1 + 4cρ

4β2 , σ = 0, a−1 = − 1
2α

, a0 = β

ρ
, a1 = 0
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So that, the exact travelling wave solution:

v = − 1
2α

1 + σ
(
G′
G

)
(
G′
G

) + 2cσ − cσ 2

(
G′
G

)
1 + σ

(
G′
G

) + β

ρ
. (25)

Then, the solitary wave solutions:
When (μ < 0), we obtain the hyperbolic function solution:

v = − 1
2α

(
A1 + A2σ

√−μ
)
cosh

(√−μξ
) + (

A2 + A1σ
√−μ

)
sinh

(√−μξ
)

√−μ
(
A1 sinh

(√−μξ
) + A2 cosh

(√−μξ
))

+ β

ρ
. (26)

When (μ > 0), we obtain the trigonometric function solution:

v = − 1
2α

(
A1 − A2σ

√
μ

)
sin

(√
μξ

) + (
A2 + A1σ

√
μ

)
cos

(√
μξ

)
√

μ
(
A1 cos

(√
μξ

) − A2 sin
(√

μξ
)) + β

ρ
.

(27)
When (μ = 0), we obtain the rational function solution:

v = − 1
2α

A1 + (
ξ + σ

)
A2

A2
+ β

ρ
. (28)

Case 4

μ = − a−1
(−2a2−1 + a−1a0 + 2ca0

)
(
2a−1 + a0

) (
8a2−1 + 4a−1a0 + a20

) , ρ = −2a−1 + a0
2a−1a0

,

β = − 8a2−1 + 4a−1a0 + a20
2a−1a0

, σ = 1, a−1, a0 = a0, a1 = −a−1 − a0.

So that, the exact travelling wave solution:

v = a−1
1 + σ

(
G′
G

)
(
G′
G

) + a0 − a−1 − a0

(
G′
G

)
1 + σ

(
G′
G

) . (29)

Then, the solitary wave solutions:
When (μ < 0), we obtain the hyperbolic function solution:

v =a−1

(
A1 + A2σ

√−μ
)
cosh

(√−μξ
) + (

A2 + A1σ
√−μ

)
sinh

(√−μξ
)

√−μ
(
A1 sinh

(√−μξ
) + A2 cosh

(√−μξ
))

+ a0 − a−1 − a0

√−μ
(
A1 sinh

(√−μξ
) + A2 cosh

(√−μξ
))

(
A1 + A2σ

√−μ
)
cosh

(√−μξ
) + (

A2 + A1σ
√−μ

)
sinh

(√−μξ
) .

(30)
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When (μ > 0), we obtain the trigonometric function solution:

v =a−1

(
A1 − A2σ

√
μ

)
sin

(√
μξ

) + (
A2 + A1σ

√
μ

)
cos

(√
μξ

)
√

μ
(
A1 cos

(√
μξ

) − A2 sin
(√

μξ
))

+ a0 − a−1 − a0
√

μ
(
A1 cos

(√
μξ

) − A2 sin
(√

μξ
))

(
A1 − A2σ

√
μ

)
sin

(√
μξ

) + (
A2 + A1σ

√
μ

)
cos

(√
μξ

) .

(31)

When (μ = 0), we obtain the rational function solution:

v = a−1
A1 + (

ξ + σ
)
A2

A2
+ a0 − a−1 − a0

A2

A1 + (
ξ + σ

)
A2

. (32)

Case 5

μ = − a−1
(
a−1a0 + 2a2−1 + 2ca0

)
a0

(−a0 + 4a−1
) (−a0 + 2a−1

) , ρ = −a0 + 2a−1

2a−1a0
,β = −a0 + 4a−1

2a−1
,

σ = −1, a1 = a1, a0 = a0, a1 = −a−1 + a0.

So that, the exact travelling wave solution:

v = a−1
1 + σ

(
G′
G

)
(
G′
G

) + a0 − a−1 + a0

(
G′
G

)
1 + σ

(
G′
G

) . (33)

Then, the solitary wave solutions:
When (μ < 0), we obtain the hyperbolic function solution:

v =a−1

(
A1 + A2σ

√−μ
)
cosh

(√−μξ
) + (

A2 + A1σ
√−μ

)
sinh

(√−μξ
)

√−μ
(
A1 sinh

(√−μξ
) + A2 cosh

(√−μξ
))

+ a0 − a−1 + a0

√−μ
(
A1 sinh

(√−μξ
) + A2 cosh

(√−μξ
))

(
A1 + A2σ

√−μ
)
cosh

(√−μξ
) + (

A2 + A1σ
√−μ

)
sinh

(√−μξ
) .

(34)

When (μ > 0), we obtain the trigonometric function solution:

v =a−1

(
A1 − A2σ

√
μ

)
sin

(√
μξ

) + (
A2 + A1σ

√
μ

)
cos

(√
μξ

)
√

μ
(
A1 cos

(√
μξ

) − A2 sin
(√

μξ
))

+ a0 − a−1 + a0
√

μ
(
A1 cos

(√
μξ

) − A2 sin
(√

μξ
))

(
A1 − A2σ

√
μ

)
sin

(√
μξ

) + (
A2 + A1σ

√
μ

)
cos

(√
μξ

) .

(35)

When (μ = 0), we obtain the rational function solution:

v = a−1
A1 + (

ξ + σ
)
A2

A2
+ a0 + a−1 − a0

A2

A1 + (
ξ + σ

)
A2

. (36)
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Case 6

ρ = 3
16c

,β = 0, σ = −1, a−1 = −4c
3
, a0 = −16c

3
, a1 = −4c

So that, the exact travelling wave solution:

v = −4c
3

1 + σ
(
G′
G

)
(
G′
G

) − 16c
3

− 4c

(
G′
G

)
1 + σ

(
G′
G

) . (37)

Then, the solitary wave solutions:
When (μ < 0), we obtain the hyperbolic function solution:

v = − 4c
3

(
A1 + A2σ

√−μ
)
cosh

(√−μξ
) + (

A2 + A1σ
√−μ

)
sinh

(√−μξ
)

√−μ
(
A1 sinh

(√−μξ
) + A2 cosh

(√−μξ
))

− 16c
3

− 4c
√−μ

(
A1 sinh

(√−μξ
) + A2 cosh

(√−μξ
))

(
A1 + A2σ

√−μ
)
cosh

(√−μξ
) + (

A2 + A1σ
√−μ

)
sinh

(√−μξ
) . (38)

When (μ > 0), we obtain the trigonometric function solution:

v = − 4c
3

(
A1 − A2σ

√
μ

)
sin

(√
μξ

) + (
A2 + A1σ

√
μ

)
cos

(√
μξ

)
√

μ
(
A1 cos

(√
μξ

) − A2 sin
(√

μξ
))

− 16c
3

− 4c
√

μ
(
A1 cos

(√
μξ

) − A2 sin
(√

μξ
))

(
A1 − A2σ

√
μ

)
sin

(√
μξ

) + (
A2 + A1σ

√
μ

)
cos

(√
μξ

) .

(39)

When (μ = 0), we obtain the rational function solution:

v = −4c
3
A1 + (

ξ + σ
)
A2

A2
− 16c

3
− 4c

A2

A1 + (
ξ + σ

)
A2

. (40)

3.3. The Drinfel’d–Sokolov–Wilson equation

Consider the Drinfel’d–Sokolov–Wilson equation (Liu & Liu, 2002; Seadawy,
2017; Xue-Qin & Hong-Yan, 2008){

ut + pvvx = 0,
vt + ruvx + suxv + qvxxx = 0.

(41)

Using the wave transformation

u(x, t) = u(ξ), v(x, t) = v(ξ), ξ = k(x − ct),

which carries PDE. (41) into ODE.:{−kcu′ + pkvv′ = 0,
−kcv′ + rkuv′ + sku′v + qk3v′′′ = 0.

(42)
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By integrating the first equation in Equations (42), we obtain

u = p
2c

v2. (43)

Substituting Equation (43) into the second equation in Equation (41) and by
integrating once the result equation, we obtain:

6c2v + p(r + 2s)v3 + 6qck2v′′ = 0. (44)

Balancing between the highest order derivatives and non-linear terms appearing
in (44) ⇒ (

v′′ & v3
)
we obtain

(
N = 1

)
. So that, by using Equation (8) we get

the same formal solution of Equation (11). Substituting Equation (12) and its
derivative into Equation (44) and collecting all term with the same power of(
G′
G

)j
where

(
j = 6, 5, 4, 3, 2, 1, 0

)
we get algebraic system. By solving it by any

computer program like maple, mathematica, . . . etc, we gain:

c = 2qk2μ, a−1 = 0, a0 = ±
√

24q2k2μ
rp(12σ 2 − 1) + 24psσ 2 − 2ps

, a1 = −a0σ

So that, the exact travelling wave solution:

v = ±
√

24q2k2μ
rp(12σ 2 − 1) + 24psσ 2 − 2ps

− a0σ

(
G′
G

)
1 + σ

(
G′
G

) . (45)

Then, the solitary wave solutions:
When (μ < 0), we obtain the hyperbolic function solution:

v = ±
√

24q2k2μ
rp(12σ 2 − 1) + 24psσ 2 − 2ps

− a0σ
√−μ

(
A1 sinh

(√−μξ
) + A2 cosh

(√−μξ
))

(
A1 + A2σ

√−μ
)
cosh

(√−μξ
) + (

A2 + A1σ
√−μ

)
sinh

(√−μξ
) .

(46)

When (μ > 0), we obtain the trigonometric function solution:

v = ±
√

24q2k2μ
rp(12σ 2 − 1) + 24psσ 2 − 2ps

− a0σ
√

μ
(
A1 cos

(√
μξ

) − A2 sin
(√

μξ
))

(
A1 − A2σ

√
μ

)
sin

(√
μξ

) + (
A2 + A1σ

√
μ

)
cos

(√
μξ

) . (47)
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Figure 1. The solitary wave sketch of solution [ Periodic singular soliton solution of Equation (18)
& Singular kink soliton solution of Equations (19), (20)], when (k = 5,ω = 5,α = .5, c = 4, σ =
6, A1 = 2, A2 = 3)

When (μ = 0), we obtain the rational function solution:

v = − a0σA2

A1 + (
ξ + σ

)
A2

. (48)

3.4. The system of shallowwater wave equations

Consider the system of the shallow water wave equation (Dolapci & Yildrim,
2013; Yang, Machado, & Baleanu, 2017):

{
ut + (uv)x + vxxx = 0,
vt + ux + vvx = 0.

(49)

Using the wave transformation

u(x, t) = u(ξ) ξ = (x − ct),
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Figure 2. The solitary wave sketch of solution [ Periodic Dark soliton solution of Equation (46) &
Singular kink soliton solution of Equations (47),(48) ], when (k = 5, c = 5, q = 1, r = −2, p =
3, s = −2, a0 = −3,α = .5, c = 4, σ = −1, A1 = 6, A2 = 7)

which carries PDE. (49) into ODE.:

{−cu′ + vu′ + uv′ + v′′′ = 0,
u′ − cv′ + vv′ = 0,

(50)

Integrating once the second equation with zero constant of integration, we get

u = cv − v2

2
. (51)

substituting Equation (51) into the first equation of Equation (50) we obtain

v′′′ + (3cv − 3v2

2
− c2)v′ = 0. (52)

Integrating Equation (52) with zero constant of integration, we find

v′′ + 3
2
cv2 − 1

2
v3 − c2v = 0. (53)
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Figure 3. The solitary wave sketch of solution [ Kink soliton solution of Equation (55) & Singular
kink soliton solution of Equation (56) & Soliton wave profile of Equation (57) ], when (k = 5,ω =
5,α = .5, c = 4, σ = 6, A1 = 2, A2 = 3)

Balancing between the highest order derivatives and non-linear terms appearing
in (44) ⇒ (

v′′ & v3
)
we obtain

(
N = 1

)
. So that, by using Equation (8) we get

the same formal solution of Equation (11). Substituting Equation (12) and its
derivative into Equation (53) and collecting all term with the same power of(
G′
G

)j
where

(
j = 6, 5, 4, 3, 2, 1, 0

)
we get algebraic system. By solving it by any

computer program like maple, mathematica, . . . etc, we obtain:

μ = −1
4
c2, σ = 0, a−1 = c, a0 = ±2, a1 = 0

So that, the exact travelling wave solution:

v = c
1 + σ

(
G′
G

)
(
G′
G

) ± 2. (54)

Then, the solitary wave solutions:
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When (μ < 0), we obtain the hyperbolic function solution:

v = c
(
A1 + A2σ

√−μ
)
cosh

(√−μξ
) + (

A2 + A1σ
√−μ

)
sinh

(√−μξ
)

√−μ
(
A1 sinh

(√−μξ
) + A2 cosh

(√−μξ
)) ± 2.

(55)
When (μ > 0), we obtain the trigonometric function solution:

v = c
(
A1 − A2σ

√
μ

)
sin

(√
μξ

) + (
A2 + A1σ

√
μ

)
cos

(√
μξ

)
√

μ
(
A1 cos

(√
μξ

) − A2 sin
(√

μξ
)) ± 2. (56)

When (μ = 0), we obtain the rational function solution:

v = c
A1 + (

ξ + σ
)
A2

A2
± 2. (57)

Note that:
All the obtained results have been checked with Maple 16 by putting them back
into the original equation and found correct.

4. Discuss the results

In this research, we showed a good comparison between our results and that
obtained by other researchers using the different methods. We sorted our com-
parison for each models in the main following steps:

Firstly: Solutions of fractional-order biological population model:
Equation (14) is new form of solution for the model from that obtained in Lu

(2012) who used Backlund transformation of fractional Riccati equation.
Secondly: Solutions of time fractional burgers equation:
All our solutions for this model are new and more general solution from that

obtained in Inc (2008) which use the variational iteration method.
Thirdly: Solutions of the Drinfel’d–Sokolov–Wilson equation:
Equations (46), (47) are similar to Equations (3.20), (3.21), (3.23), (3.25),

(3.26) in Seadawy (2017) when
(
μ = −4q2A2) and (

ω2 = 24q2k2μ(r+2s)
6(r(12σ 2−1)+24sσ 2−2s) ,

A1 = 2ωB+qA−σ
√−μ(2ωB−qA)

1+σ 2μ2

)
.

Equation (48) is a new form of solution for Equation (3.35) in Yang et al.
(2017) who used modified simple equation method.

Fourthly: Solutions of the system of shallow water wave equations:
Equations (55), (56) are similar to Equations (21), (29) in Dolapci and Yildrim

(2013) when
(
c = 2 ± λ,A1 = 0, σ = 0, λ2 = 1 + 4μ

)
.

Equation (57) is new form solutions from that in Dolapci and Yildrim (2013)
who sue exp −φ(ξ)-expansion function method. So that, it is shown that the
improved

(
G′
G

)
-expansion method provides an effective and a more powerful

mathematical tool for solving non-linear evolution equations in mathematical
physics. It is one of the generalmethodwhich depended on the auxiliary equation
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but also contain two methods which make this method an effective tool for
obtaining exact analytical solutions for many of non-linear partial differential
evolutions equations with integer and fraction order and it a second advantage
of it.

5. Conclusion

In this research, we succeed to apply the improved
(
G′
G

)
-expansion method for

finding new and more general solutions (exact and solitary wave solutions) of
fractional-order biological population model, time fractional burgers equation,
the Drinfel’d–Sokolov–Wilson equation and the system of shallow water wave
equations. We discussed the travelling and solitary solutions of two non-linear
partial differential equations with fraction order and two other non-linear partial
differential equationswith integer order. Figures 1–3 showdifferent kinds of soli-
tary wave solutions for these models. We believe that our results of these models
will be useful for young researchers who are going to study the exact solutions of
non-linear partial differential equations (NLPDEs.).We also hope that our results
will be interesting for some referees. The improved

(
G′
G

)
-expansion method is

very simple, direct, effective and powerfulmethod to apply it formany non-linear
evolution equations.
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