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ABSTRACT
Composite materials are usually treated as homogeneous when
carrying out structural design. However, failure in these materials
often originated at their heterogeneous microstructure or
constituents; hence, the different materials should be considered
in the analysis. The use of composite materials has increased
considerably over the years due to their relative superior
properties. The accurate determination of their mechanical
properties and behaviour is thus of great practical significance.
The Boundary Element Method (BEM) has demonstrated to
be a powerful computational technique for the analysis of
many physical and engineering problems. The present work
deals with the use of the multi-domain BEM to obtain a more
appropriate characterisation of fibre–matrix composites. The
generally anisotropic fundamental solution based on a double-
Fourier series is employed together with a fast BEM approach,
namely, the Adaptive Cross Approximation (ACA) technique. The
ACA technique is aimed at speeding up the process required
to generate the BEM matrices. Some numerical examples are
presented to demonstrate its applicability. The present work is
a precursor to treating problems involving anisotropic inclusions
in general composites.
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1. Introduction

The use of composite materials in engineering has increased due to their relative
superior properties such as lightness, flexibility, durability, adaptability and me-
chanical resistance. Hence, accurately predicting the behaviour and determining
its mechanical properties is of great importance. Fibre–matrix composites are
one of the most common types of composites due to its particular composition
and properties. For example, the addition of high strength fibres to a polymer
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matrix can greatly improve some of itsmechanical properties such as the ultimate
tensile strength, impact resistance, temperature resistance, among others.

The BEM is a well-established and powerful computational technique for the
analysis of many physical and engineering problems. Its implementation for
elastostatics involves the evaluation of the displacement fundamental solution
and its derivatives. For the case of isotropic materials, it can be represented by
simple explicit forms. However, the corresponding expressions for the case of
generally anisotropic solids are significantly more complex and mathematically
involved.

The anisotropic fundamental solution for displacements was first presented
by Lifshitz and Rozenzweig (1947), but not as a closed form. It was expressed
as a contour integral around a unit circle on a oblique plane at the field point
and in terms of the Christoffel tensor. The first implementation of this solution
into a 3D BEM code was by Wilson and Cruse (1978). There were significant
challenges in the development of efficient algorithms for the accurate numerical
evaluation of this quantity and its derivatives (see Phan, Gray, & Kaplan, 2004;
Sales & Gray, 1998; Tonon, Pan, & Amadei, 2001; Wang & Denda, 2007).
Explicit, closed form expressions of the Green’s function and its derivatives
were derived by Ting and Lee (1997), and Lee (2003) in terms of the Stroh’s
eigenvalues. However, they were left unnoticed by the BEM community until
Tavara, Ortiz, Mantic, and Paris (2008) implemented it in BEM for the special
case of transverse isotropy, and Shiah, Tan, and Lee (2008) and Tan, Shiah,
and Lin (2009) for general anisotropy. Taking advantage of the periodic nature
of the Green’s function, when expressed in spherical coordinates, Shiah, Tan,
and Wang (2012), reformulated this fundamental solution and its derivatives
by representing them by double-Fourier series. Recently, Tan, Shiah, and Wang
(2013) further implemented it into a 3D BEM code. This development reduced
significantly the computational effort for the evaluation of these quantities.

The final matrix system in BEM analysis is generally fully populated and
unsymmetric. For very large numerical problems, such as when solving multi-
scale problems, the memory requirements and solution times may be less than
desirable. The issue of speeding up the solution process of large system of
equations has been addressed by Rokhlin (1985), Bebendorf (2000), Bebendorf
and Rjasanow (2003). As stated in Bebendorf and Rjasanow (2003), it is possible
to use purely algebraic algorithms to generate the approximation of suitable
blocks of the collocation matrix, using only relatively few entries of the original
blocks. This technique is referred to as the Adaptive Cross Approximation
(ACA). The ACA uses matrix hierarchisation to reduce the storage requirement
and the computational complexity arising in the numerical analysis.

In this work, the application of hierarchical matrices and ACA to short fibre–
matrix problems using the 3D multi-domain BEM for elastostatics with the
anisotropic fundamental solution based on double-Fourier series is illustrated.
First, this anisotropic fundamental solution and its derivatives are reviewed.
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Then, the use of hierarchicalmatrices andACA is discussed. This will be followed
by some numerical examples that will show the applicability of the proposed
methodology.

2. 3D anisotropic fundamental solutions and its derivatives

The displacement fundamental solution or Green’s function, U(x) = Uij(P,Q),
is defined as the displacement response in the xi direction at the field pointQ due
to a unit load applied in the xj direction at the source point P in an homogeneous
infinite body. This solution for the case of 3D generally anisotropic materials was
firstly derived by Lifshitz and Rozenzweig (1947). Ting and Lee (1997) showed
that the Green’s function can be also expressed in terms of the Barnett–Lothe
tensor, H[x]. In the solution first derived by Lifshitz and Rozenzweig (1947),
H[x] is expressed considering a spherical coordinate system, the explicit form of
the Green’s function can be expressed as follows,

U
(
r, θ ,φ

) = 1
4πr

H
(
θ ,φ

)
. (1)

This expression depends only on the spherical angles (θ ,φ) and can be further
expressed in terms of the Stroh’s eigenvalues as,

H
(
θ ,φ

) = 1
|T|

4∑
n=0

qn�̂(n), (2)

where �̂ is the adjoint of �. The Stroh’s eigenvalues are obtained solving a sextic
equation in p, which is obtained from setting the determinant |�(p)| to zero. The
explicit expressions for |T|,� and qn can be found inTing andLee (1997) andTan
et al. (2013). Moreover, due to its periodic nature, H

(
θ ,φ

)
can be represented

by double-Fourier series around θ and φ, as follows,
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(3)

where λ
(m,n)
uv are the Fourier coefficients, which can be numerically integrated by,

e.g. Gaussian quadrature. The k abscissa points, λ(m,n)
uv , may be re-written as,

λ(m,n)
uv = 1

4

k∑
p=1

k∑
q=1

wpwqf (m,n)
uv

(
πξp,πξq

)
, (4)

where w and ξ are the weights and Gauss points, respectively, and f (m,n)
uv

(
θ ,φ

)
represents the integrand of λ(m,n)

uv . In short, the fundamental displacement solu-
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tion can also be written as,

Uuv
(
r, θ ,φ

) = 1
4πr

α∑
m=−α

α∑
n=−α

λ(m,n)
uv ei

(
mθ+nφ

)
, (5)

where α is an integer number, large enough to yield the desired accuracy.
Numerical experiments reported in Tan et al. (2013) have shown that values
of k = 64 and α = 16 will be adequate to evaluate even the most highly
anisotropic materials. Lee (2009), using partial differentiations of the Green’s
function in spherical coordinates, eliminated the necessity of working with
high order tensors, as those seen in Ting and Lee (1997) and Lee (2003). The
displacementderivatives canbeobtainedbyworking in spherical coordinates and
applying the chain rule.All explicit forms are given in Shiah et al. (2012), Tan et al.
(2013), Shiah, Tan, and Lee (2010). The most significant advantage of using this
Fourier series representation of theGreen’s function and its derivatives is that the
Fourier series coefficients, λ(m,n)

uv , are only evaluated once. This further reduces
the computational effort, besides the relatively simplicity of the implementation
into a BEM code.

3. Acceleration scheme for the BEM

The proposed acceleration scheme has as its main objective the reduction of
the memory requirements as well as to speed up the total solution time. The
scheme takes advantage of the matrix hierarchisation and the use of low rank
approximations by the use of the ACA technique. The matrix is represented as a
collection of blocks, some of which admit a particular approximated representa-
tion that can be obtained by computing only few entries from the original blocks.
These special blocks are called admissible or low rank blocks and are obtained
by the ACA. Blocks that cannot be represented in this way must be computed
and stored entirely, as stated by Benedetti, Milazzo, and Aliabadi (2009, 2011).

In BEM analysis, the kernels of the BIE are computed and they are the
coefficients of the system matrices. In a potential theory problem, the kernels
are the potential and flux fundamental solutions, while in an elasticity problem,
the kernels are the displacement Ujk and traction Tjk fundamental solutions.
They both depend upon the positions of the source point d and the field point x.
The kernels Ujk(d, x) and Tjk(d, x) are two-point asymptotic smooth functions
and singular when d = x. These functions can be approximated by a sum of
products of two functions ui(d) and vi(x),

κ
(
d, x

) =
k∑

i=1

ui
(
d
)
vi

(
x
) + Rκ

(
d, x

)
, (6)

where κ can be either ujk or tjk, Rκ(d, x) is the error of the approximation and∣∣Rκ

(
d, x

)∣∣ ≤ εκ with εκ → 0 for k → 0.
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The existence of low rank approximants is based on the asymptotic smooth-
ness of the kernel functions, i.e. on the fact that kernels Uij and Tij are singular
only when the source and field points are coincident, when x = y, Bebendorf
(2000), Bebendorf and Rjasanow (2003), and Grasedyck (2005). This is a suffi-
cient condition for the existence of low rank approximants. A low rank blockM
of sizem x n has the following representation

Mk =
k∑

i=1

ai · biT = A · BT, (7)

where A and B are matrices of size m x k and n x k, respectively. If k is low,
the representation shown above requires the storage of (m + n)k real numbers
instead of m x n, speeding up the matrix–vector product of the corresponding
block. For a more detailed analysis, refer to Borm, Grasedick, and Hackbusch
(2003) and Grasedyck and Hackbusch (2003).

The approximation block Mk satisfies the relation ‖M − Mk‖F ≤ ε‖M‖F ,
where ‖·‖F represents the Frobenius norm and ε is the prescribed relative error.
The low rank blocks are constructed by computing and storing only some of
the original blocks entries. Such entries allow the representation presented in
equation (7) through suitable algorithms, namely, the ACA.

Large dense matrices with diagonal singularity can be hierarchical approxi-
mated following the three basic steps (Kurz, Rain, & Rjasanow, 2007):

(1) construction of clusters,
(2) finding possible admissible blocks and,
(3) low rank approximation of admissible blocks.

Kurz et al. (2007) adapted the ACA algorithm proposed by Bebendorf (2000)
and applied it with BEM. An implementation of this algorithm in conjunction
with the double-Fourier fundamental solutions is presented in this work. First,
the mass and centre of each cluster are stored, then, the covariance matrix of the
cluster is obtained by

C =
n∑

k=1

gk
(
xk − X

) (
xk − X

)T, (8)

where n is the number of elements of the cluster, gk is the element area (length
for 2D problems) and X is the centre of the cluster.

Then, the largest eigenvalue of C defines the eigenvector, v1, which gives the
direction of the longest extension of the cluster. The separation plane (line in
2D)

{
x ∈ �3 : (x − X, v1) = 0

}
goes through the centre X of the cluster and

is orthogonal to v1. The algorithm is applied recursively to the sons until they
contain less than or equal to some prescribed number nmin of elements. Next,
cluster pairs which are geometrically well separated are identified. They will be
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regarded as admissible cluster pairs. An appropriate admissibility criterion is
the following simple geometrical condition. A pair of clusters (Clx ,Cly) with
nx > nmin andmy > nmin elements is admissible if,

min(diam(Clx), diam(Cly)) ≤ ηdist(Clx ,Cly), (9)

where diam(Clx) is the diameter of the circumscribed sphere evolving the cluster
Clx , dist(Clx ,Cly) is the distance between clusters and η is called the admissibility
parameter. This parameter influences the number of admissible blocks on one
hand and the convergence speed of the adaptive approximation of low rank
blocks on the other hand (Borm et al., 2003). A full study of this parameter
was assessed by Benedetti et al. (2011) and Rodríguez, Galvis, Sollero, and
Albuquerque (2013). They showed that the choice of η directly affects the quality
of the ACA-generated matrix and a good choice of this parameter results in
a matrix closer to the optimal matrix produced by the coarsening procedure.
This fact was also justified by the reduction in the number of blocks. Once the
clusters were defined and all admissible blocks were detected, the ACA was used
to approximate these blocks by low rank.

4. Multi-domain applied to 3D fibre–matrix problems

The multi-domain BEM approach is a natural choice when solving fibre–matrix
problems, due to the possibility of analysing each region individually. After the
BEM is applied to each sub-region, or sub-domain, the system coupling can be
formulated by considering displacement compatibility and traction equilibrium
at the interfaces between sub-regions. The compatibility condition requires that
nodal displacements for a region i, at an interface between region i and region j,
must be equal to the displacement components evaluated in region j at the same
interface. The equilibrium between traction vectors at the interface nodes must
be also considered. These conditions can be represented as,

ui = uj

ti = tj
(10)

where the double subscripts is used to denote the vector in question is a collection
of components on the interface between region i and region j. Further details on
the multi-domain approach can be found in Kane (1994) and Aliabadi (2002).
As an illustration of the current implementation, consider the simple example
with four fibres shown in Figure 1.

Five regions were created from the above example; the matrix and the four
fibres. The multi-domain collocation matrix, Hcoll , generated in this example is
shown below.
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Figure 1.Multi-domain example with four fibres.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1
11 H

1
12 H

1
13 H

1
14 H

1
15 −G1

12 −G1
13 −G1

14 −G1
15

0 H2
12 0 0 0 G2

12 0 0 0

0 0 H3
13 0 0 0 G3

13 0 0

0 0 0 H4
14 0 0 0 G4

14 0

0 0 0 0 H5
15 0 0 0 G5

15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where He
ij and Ge

ij represent the incidences in matrices H and G between sub-
regions i and j in the case where quantities are associated to a specific region e.
The order of the sub-region incidences are determined by first simply listing all
the permutations, (Kane, 1994), for this example,

11 12 13 14 15 21∗ 22 23 24 25 · · · 51∗ 52∗ 53∗ 54∗ 55 (12)

where the digits represent the subregions being analysed. For the permutation
where the first digit is higher than the second digit (∗), blocks of traction
components, Ge

ij, are created; otherwise, blocks of displacement components,
He

ij, are created. The negative sign is due to the traction having opposite signs
when analysing different regions at the interface.Moreover, as there is no contact
betweenfibres,matriceswithboth indices i and j corresponding tofibres are equal
to zero. In this case all fibres are within them matrix, therefore subregions i = j
for i > 1 do not occur. Hence, the system can be further compressed as,

Hcoll = [
A C

]
, (13)
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where,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1
11 H

1
12 H

1
13 H

1
14 H

1
15

0 H2
12 0 0 0

0 0 H3
13 0 0

0 0 0 H4
14 0

0 0 0 0 H5
15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (14)

and

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G1
12 −G1

13 −G1
14 −G1

15

G2
12 0 0 0

0 G3
13 0 0

0 0 G4
14 0

0 0 0 G5
15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

The sub-matrices,He
ij andG

e
ij, are obtained applying the BEM to each e region

individually. The ACA technique can also be used to this end. It is worth to
point out that, usually, the fibres have a very small number of elements and
consequently the ACA would not present any advantage on the approximation.
Thus, the ACA will be applied to the region which contains the matrix medium.
For regularmulti-domain problems no compression can bemade and the system
of equation (11) should be used instead.

5. Numerical examples

Three numerical examples are presented to demonstrate the successful imple-
mentation of the proposed BEMapproachwith theACA acceleration scheme de-
scribed above. In the first example, a square cross-section beam under transverse
pressure is analysed. Four regions are defined with the same material in order to
test the multi-domain approach. Normalised displacements are compared with
the continuous one-region BEM. In the second example, the fibre–matrix model
is tested with an isotropic material. Results are compared with the analytical
solution. Finally, the fibre–matrixmodel is testedwith amore complex geometric
combination of materials. The main objective is to test the acceleration scheme.
Displacements are compared between conventional BEM and results obtained
after applying the fast BEM approach. Moreover, the application of the ACA is
tested by comparing the solution CPU times. It should be noted that materials
for the problems treated are isotropic and transversely isotropic even though
they are analysed using the BEM program for general anisotropy. The present
work serves as a precursor to treating problems involving anisotropy inclusion
in a matrix medium.
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(a)

(b)

Figure 2. (a) Geometry and boundary conditions for example A; (b) multidomain BEM mesh of
half beam.

5.1. Example a: multidomainwith four regions

In this example, the multidomain approach for more than two regions is tested
with quadratic discontinuous element. A short beam of length 2L, square cross-
section of side H and L = 5H , is subjected to a uniformly distributed pressure
load on its top surface, as shown in Figure 2(a). Figure 2(b) shows the BEMmesh
for half of the beam that wasmodelled, taking advantage of symmetry. It consists
of four sub-regions.

Each region has 34 quadratic discontinuous elements; a total of 136 elements,
305 geometrical nodes and 1088 physical nodes were used tomodel this problem.
The anisotropic 3D formulation based on Fourier series was used for an isotropic
material with E = 1 and ν = 0. For the double-Fourier fundamental solution,
α = 16 and 64 Gauss integration points were used. Normalised transverse
displacements along the x2 direction for the four regions are shown in Figure 3.

Finally, displacements at nodes (0.5, 0.5, x3) are compared with results ob-
tained from the conventional BEM with quadratic continuous elements and the
analytical solution, as shown in Figure 4.

Good agreement was observed when both approaches were compared. Dis-
continuous quadratic elements were applied due to its simpler implementation
when dealing with more than two regions in the multidomain approach and
when debonding between elements occur.

5.2. Example B: short fibre–matrixmodel (Isotropy check)

In this example, the fibre–matrix model was implemented and tested. A general
mesh generator was implemented. The fibres can be randomly oriented, as
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Figure 3. Normalised transverse x2 displacement for the four regions.

Figure 4. Normalised transverse displacement comparison at (0.5, 0.5, x3).

shown in Figure 5. The length and cross-section of the short fibres are also
input parameters; thus, the fraction volume can be also imposed. A fibre–matrix
model with 36 short fibres is shown in Figure 5(a), while a unit cell is shown in
Figure 5(b).

First, the model was tested with an isotropic material with E = 10,000 and
ν = 0.3 for the short fibres and the matrix medium, however, the anisotropic 3D
fundamental solution based on Fourier series was used. As usual, α = 16 and 64
Gauss integration points were used for the Fourier representation. An isotropic
material was used in order to properly compare results with the analytical
solution. For this first fibre–matrix example, a bar of length 4 units and square
cross-section of one unit in length is subjected to a uniformly distributed pressure
load, P = 1, on its top surface, while, its bottom surface is restricted in the three
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(a) (b)

Figure 5. (a) Fibre–Matrix model with 36 fibres; (b) unit cell with a randomly oriented short fibre.

Figure 6. Normalised x3 displacement in an isotropic fibre–matrix model.

coordinate directions. The simple analytical solution for the u3 displacement
is Px3/E. Displacements along the x3 direction for the fibre–matrix model are
shown in Figure 6.
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Figure 7. Numerical comparison of the normalised x3 displacement with the analytical solution.

Displacements at nodes (0.5, 0.5, x3)u are compared with the analytical solu-
tion, as shown in Figure 7.

Good agreement was observed when the fibre–matrix multidomain model
was compared with the analytical solution.

5.3. Example C: ACA applied tomore realistic model

In this example, the short fibre–matrix model is shown with a more realistic
combination of materials for both, fibre and matrix. Furthermore, the ACA
method was applied in the generation of BEMmatricesH andG. For the matrix
medium, a 3501-6 epoxy was considered. Material properties were considered
as isotropic with E = 4.2 GPa and Poisson ratio ν = 0.34. For the short fibres,
a AS4 carbon material was considered. Material properties were considered as
transversely isotropic with E1 = 225 GPa, E2 = 15 GPa, G12 = 15 GPa and
ν12 = 0.2. More details on the properties of the chosen combination fibre–
matrix can be found in Soden, Hinton, and Kaddour (1998).

In this example, a bar of length 3 units and square cross-section with side
length of unity was subjected to a uniformly distributed pressure load, P = 1,
on its top surface, while, its bottom surface is restricted in the 3 coordinate
directions. In order to test the ACA method, five different cases were analysed
(4, 8, 12, 18 and 27 fibres). The ACA error tolerance is set to εc = 10−4. The
maximum number of elements per cluster was set to 30 and the admissibility
parameter, η, to 0.9. More details of the choice of these parameters are available
in Benedetti et al. (2009) and Rodríguez et al. (2013). For the most refined case
(27 fibres, 6480 quadratic discontinuous nodes) there were 45 clusters and 487
blocks, from which 46 were admissible pairs. Results from the BEM anisotropic
multidomainmodel using theACAfor theu3 displacement are shown inFigure 8.
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Figure 8. Displacement in the x3 direction for the most refined mesh.

Table 1. Coordinates of the random nodes.

Node Coordinates (x , y, z)

349 (0.000, 0.176, 1.050)
841 (0.163, 0.528, 0.577)
1050 (0.209, 0.509, 2.412)
3439 (0.791, 0.817, 2.583)
6052 (0.715, 0.585, 2.696)

Table 2. Nodal comparison between conventional BEM and ACA for random nodes.

BEM ACA BEM ACA BEM ACA

Node u1 × 10−6 u1 × 10−6 (Err.%) u2 × 10−6 u2 × 10−6 (Err.%) u3 × 10−4 u3 × 10−4 (Err.%)

349 −0.4341 −0.4325 (0.37) 26.750 26.790 (0.15) 0.2916 0.2912 (0.14)
841 1.5440 1.5470 (0.19) −0.8381 −0.8246 (1.61) 0.1564 0.1564 (0.00)
1050 1.1260 1.1270 (0.09) −0.2478 −0.2321 (6.34) 0.7561 0.7562 (0.01)
3439 −0.2270 −0.2335 (2.86) −5.1020 −5.0660 (0.71) 0.7826 0.7829 (0.04)
6052 −0.5833 −0.5849 (0.27) −0.5269 −0.5118 (2.87) 0.8506 0.8508 (0.02)

Table 2 shows comparison of the computed displacements u1, u2 and u3
between conventional BEM and ACA. Five random nodes (349, 841, 1050, 3439
and 6052) were chosen for the comparison, as can be seen in Table 1.

The percentage discrepancies of the numerical results are also as indicated in
the Table 2.
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Figure 9. Variation of the speed up ratio TBEM/TACA between conventional BEM and ACA.

Themaximumdiscrepancywas 6.34% for the displacement in the x2-direction
at node 1050. For this case, the displacement was −0.2478 × 10−6 mm for the
conventional BEM, being substantially less than the ACA tolerance of εc = 10−4.
As pointed out by Benedetti, Milazzo, and Aliabadi (2011), the ACA tolerance
should be set to be compatible with the expected smallest response value.

Figure 9 shows the variation of the speed up ratio TBEM/TACA between
CPU time for generating BEM matrices for conventional BEM TBEM and when
the ACA method is applied TACA. It can be noted that when the numerical
problem size gets to be large, the ACA scheme becomes more efficient than the
conventional BEM.

6. Conclusions

In this work, the use of hierarchical matrices and low-rank approximations
applied to 3D short fibre–matrix problems which employs the double-Fourier
series representation of the Green’s functions in multi-domain BEM analysis
has been presented. Low rank approximations were accomplished by the use
of ACA. This method is suitable for memory and time savings, especially in
the case of large-scale problems. Moreover, the multi-domain approach was
modified to account for short fibre–matrix problems. Results for a more realistic
combination of fibre–matrix were also shown; they demonstrated that the ACA
works better beyond a certain number of elements in the mesh. Beyond this level
of discretisation, the CPU solution time using the ACA scheme will be less than
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the conventional BEM formulation. The present study serves as a precursor to
treating more general anisotropic inclusions in a matrix medium.
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