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ABSTRACT
An approach to construction of a beam-type simplified model 
of a horizontal axis wind turbine composite blade based on 
the finite element method is proposed. The model allows 
effective and accurate description of low vibration bending 
modes taking into account the effects of coupling between 
flapwise and lead–lag modes of vibration transpiring due 
to the non-uniform distribution of twist angle in the blade 
geometry along its length. The identification of model 
parameters is carried out on the basis of modal data obtained 
by more detailed finite element simulations and subsequent 
adoption of the ‘DIRECT’ optimisation algorithm. Stable 
identification results were obtained using absolute deviations 
in frequencies and in modal displacements in the objective 
function and additional a priori information (boundedness 
and monotony) on the solution properties.

1.  Introduction

The main tendency, throughout the past decades, in the evolution of wind energy 
technology has been the growth in size of wind turbines. This is attributed to 
both economic and technological reasons since employing larger turbines leads 
to enhancing performance and increased capacity of production in wind energy 
projects (Serrano-González & Lacal-Arántegui, 2016; Wiser & Bolinger, 2015). 
However, scaling up wind power plants gives rise to new challenging problems 
in the design and operation of single turbines as well as wind farm spacing and 
turbine poising, the solution to which requires versatile tools. As far as a single 
turbine is concerned an increase in the length of the blade necessitates more 
intensive investigations in structural dynamics performance of the blade and 
re-evaluation of stresses evolved. In particular, serious issues arise due to adoption 
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of long slender blades for modern wind turbines, which are much more flexible 
than earlier ones. The possible intense vibrations in service conditions can not 
only cause fatigue damage or affect structural strength and stability, but also have 
significant influence on power production (Staino & Basu, 2015).

In the past, wood and aluminium were used in construction of blades but now-
adays wind turbine blades are almost universally made of composite materials with 
wooden stiffeners as secondary structural elements. This allows reducing their 
weight through attaining higher stiffness-to-weight and strength-to-weight ratios. 
The question of simultaneous optimal design of composite blades to achieve both 
aerodynamic efficiency and structural strength are considered in Chen and Chen 
(2010). The resulting design for the blade yields a composite shell structure, as 
the primary load bearing element, encompassing standard NREL airfoil sections, 
rather inhomogeneous (slenderised towards the end) and structurally pre-twisted 
along its length.

Finite element methods (FEMs), as realised in modern commercial CAE pack-
ages (ANSYS, ABAQUS, NASTRAN, etc.), form a strong suite for simulation 
of static and dynamic response of structural and mechanical systems with high 
accuracy. The element libraries of these pieces of software are comprehensive and 
include 1D, 2D and 3D elements. Furthermore, the software allows use of doubly 
curved shell elements with composite through-thickness lay-ups. The analyses 
conducted here are on the basis of homogenised anisotropic shell elements for 
model representation, using not too much of computer resources. But in many 
cases, e.g. investigation of general structural dynamics, aero-elastic vibrations, 
or preliminary design of vibration control in mechanical and aerospace systems, 
such detailed models are superfluous and can be replaced by simplified beam 
type models which allow to describe general blade deformations with appropriate 
accuracy and require much less simulation time and computational resources. 
The same scenario is encountered when setting up models for different slender 
aerospace structures: in many cases wings, fuselages, etc. can be considered using 
simplified one-dimensional beam and rod approximations.

Several approaches to obtaining a simplified model exist. One group of methods 
utilises direct approximation techniques based on energy equivalence, method of 
virtual displacements or minimum total potential energy (Lee, 1995). An alter-
native group consists of methods employing parameter identification techniques 
applying various optimisation methods or methods of Artificial Intelligence such 
as Artificial Neural Networks (ANN’s) to obtain models whose results are best 
fitted (in the sense of selected measurable outcomes) to data, obtained from phys-
ical experiments or computer simulations, using more precise but more resource- 
consuming and computationally immoderate models (Trivailo, Dulikravich, 
Sgarioto, & Gilbert, 2006). Both types of methods work well for simple homo-
geneous and weakly inhomogeneous structures, but in more complicated cases 
parameter identification has definite advantages. Also, these approaches can be 
combined, so that identification is used to correct parameters of models derived 
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by direct methods. In the latter, the form of the model is fixed and parameters are 
adjusted so that the model represents certain behaviour faithfully.

Traditionally, it is known that parameter identification is an ill-posed problem, 
and in general there are issues with instability and non-uniqueness of solution. 
The effectiveness and quality of parameter identification largely depends on the 
structure and size of a chosen mathematical model, on appropriate selection of 
identified parameters, and on objective function(s) which describes and quantifies 
the error between model prediction and experimental data (or the ANN config-
uration and settings, when it is used). In dealing with such ill-posed problems, it 
is very useful to take into account additional a priori information about solution 
properties, e.g. the limitedness and monotonicity (Bakushinsky & Goncharsky, 
1994).

In the present paper, modal analysis of a horizontal axis wind turbine (HAWT) 
composite blade is conducted using the finite element technique. Then a sim-
plified model is proposed which consists of discrete masses connected by one- 
dimensional beam segments. In this low-dimensional beam model representing 
the fundamental vibration modes of the blade, the real blade is approximated by 
a piecewise homogeneous cantilever beam consisting of several sections with 
lumped masses located at the connection points between sections and at the end 
point. In order to take account for blade pre-twisting in the framework of the 
model developed, for each piecewise homogeneous beam section, the principal 
axes are chosen to be oriented along local coordinate axes, which are rotated by 
some angle around the beam axis. Then, by making use of Euler–Bernoulli beam 
theory and presenting general solutions of beam equations as third order poly-
nomials as well as continuity conditions between the beam segments and at the 
end points, the problem is reduced to the system of differential-algebraic equa-
tions with constant coefficients which describe free vibrations of the considered 
beam-mass model. The natural frequencies and vibration modes for a generically 
considered segmented beam can be easily determined. The physical parameters 
of the approximate beam-mass model developed are then identified with the 
application of an effective global minimisation procedure through extensive use 
of modal information obtained by FEM simulations.

2.  Finite element analysis of blade vibration

In order to propose a simplified low-dimensional beam-type model of a wind 
turbine blade, we need to have sufficiently precise information on the dynamic 
properties of the investigated object. In the present case, as a source of refer-
ence data, we use the results of finite element simulations based on the three- 
dimensional model of turbine blade. This model is set up in the commercial FEM 
package ABAQUS (2014) employing shell elements for the representation of the 
structure. The geometry of the blade is based on the results of optimised blade 
design obtained in Chen and Chen (2010) (except that internal stiffeners were 
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omitted). Material of the blade is supposed to be unidirectional composite with 
fibres predominantly aligned along its length. The laminated fibre-reinforced com-
posite shell is homogenised through the thickness so that an anisotropic shell of 
equivalent thickness is obtained. Details of non-structural parts are not included 
as they only contribute to unnecessary sophistication of the model. The blade 
model consists of five sections with different wall thicknesses. Figure 1 shows the 
general blade FEM model structure.

Section wall thicknesses and material constitutive parameters are given in 
Tables 1 and 2.

Modal computations conducted in ABAQUS provide a series of the natural 
frequencies for the turbine blade. The six lowest frequencies which correspond to 
bending vibrations of the blade are presented in Table 3. It is worth mentioning 
here that because of structural pre-twisting, the blade hasn’t pure flap and lead-lag 
vibrations indeed. They are coupled here but flap vibrations prevail.

Corresponding modal displacements were extracted in the nodes along the top 
and bottom reference lines in the blade FEM model. The results are presented in 
Figure 2, where the upper graphs show flap displacements v = uy, and lower graphs 
show lead–lag displacements u = ux.

3.  Low-dimensional beam model of turbine blade

In order to build a low-dimensional beam model representing the fundamen-
tal vibration modes of the blade, the real blade is approximated by a piecewise 
homogeneous cantilever beam consisting of N sections of length Lk with lumped 
masses mk, k = 1,N , located at the connection points between sections and at the 
end point (see Figure 3). As depicted the z-axis is oriented along the beam, while 
the y-axis is in the flap direction and the x-axis is in lead-lag bending direction. 
Here, we use the Euler–Bernoulli beam model because the blade is long and slen-
der in y direction and the vibration in this direction is considered mainly, while 
for the lead-lag x motions, the lower modes of interest can be considered using 
long-wave approximation.

Figure 1. FEM model geometry of composite wind turbine blade.



EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS﻿    545

The analysis of the graphs for modal displacements obtained by ABAQUS 
simulations on the model presented in Figure 2 shows rather strong coupling 
between flap and lead-lag motions for the second and third modes due to the 
twisting of the structure along its length. This leads to the conclusion that the 
simple model possessing few degrees-of-freedom (beams-and- lumped masses 
model of Figure 3) should contain a mechanism to describe this effect. Also, we 
can note that torsion is not considerable for the six low modes, and in the sequel 
will be neglected.

Thus, to take into account the blade twisting, we build the model where each k-
th piecewise homogeneous beam section, the principal axes of which are oriented 
along local coordinate axes, are rotated by the angle αk around the z-axis (Figure 4).

In local coordinates, for the k-th homogeneous weightless section, the beam 
deformation is described by standard Euler–Bernoulli beam equations:

 

where (EIy)k and (EIx)k are bending stiffnesses. Since in our case the beam sec-
tions are connected to masses and are parts of the dynamic system, displacement 
components depend not only on z coordinate, but also on time t: uk = uk(z, t), 
vk = vk(z, t). It must, however, be noted that distributed beam masses are not con-
sidered and only the lump masses are. In other words, as far as system stiffness 
is concerned we are dealing with a distributed stiffness of a continuous system, 
whereas for the dynamic analyses the masses are concentrated and we are dealing 
with a discrete parameter model.

(1)(EIy)k
�4uk

�z4
= 0 and (EIx)k

�4vk

�z4
= 0,

Table 1. Section thicknesses along the beam axis (measured from the circular root).

Distance from the root z (mm) Thickness t (mm)
1754 96.02
9648 79.04
14,251 53.21
29,212 13.44
44,175 10.34

Table 2. Stiffness moduli and Poisson ratios for the UD composite (1 – direction of fibre, 2 – trans-
verse direction 3 – direction through the thickness).

ρ (kg/m3) E1 (MPa) E2 (MPa) E3 (MPa) ν12 ν13 ν23 G12 (MPa) G13 (MPa) 
G23 

(MPa)
1860 3.7 × 1010 1.80 × 1010 1.80 × 1010 .25 .25 .3 8 × 109 8 × 109 6.9 × 109

Table 3. Computed natural frequencies for wind turbine blade.

Mode number 1 2 3 4 5 6
Frequency (Hz) .52 1.81 2.33 4.07 6.37 7.27
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General solutions of Equations (1) can be presented as polynomials of the third 
order. Using local coordinate ξk (measured from the beginning of the section in 
z direction), they can be written as:

 

As the generalised coordinated for the components of displacements, the coeffi-
cients a(k)

j
 and bkj  in (2) are functions of time.

(2)uk = a(k)
0

+ a(k)
1
�k + a(k)

2
�2k + a(k)

3
�3k , vk = b(k)

0
+ b(k)

1
�k + b(k)

2
�2k + b(k)

3
�3k .

Figure 2. Computed modal displacements: (a) in the y direction (flap), and (b) in the x direction 
(lead-lag).
Notes: Modes 1 – .5265 Hz, 2 – 1.8191 Hz, 3 – 2.332 Hz, 4 – 4.0737 Hz, 5 – 6.3726 Hz, 6 – 7.2776 Hz (blue and red lines 
correspond to the top and bottom reference lines in the blade FEM model).
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The components of basis unit vectors of the k-th local coordinate system in the 
reference global coordinate system (subscript ‘0’) are presented as:

 
(3)e

(k)
x = (cos �k, sin �k)0, e

(k)
y = (− sin �k, cos �k)0,

Figure 3. Structure of the beam-mass-simplified blade model.

Figure 4. Orientation of the k-th homogeneous beam section corresponding to blade twisting.
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Thus, for the components of displacement vector for the k-th beam section, we 
have
 

Of course, such transformations are universal and affect the components of any 
other vector, such as moments and forces.

Local components of bending moments thus take the form:
 

And for shear forces we obtain:
 

At the clamped point of the beam (z = 0), the cantilever beam essential boundary 
conditions hold which give for the coefficients of the beam solutions in Equation 
(2) a(1)

0
= a(1)

1
= b(1)

0
= b(1)

1
= 0. At the points of connection between sections 

continuity conditions must hold, i.e. the components, in the global coordinate 
system, of transversal displacements and their derivatives with respect to z as 
well as components of bending moments are continuous. It must be noted that 
and components of shear forces have jumps due to the inertial forces from the 
lumped masses. At the end free tip point, zero moment and shear force–inertial 
force conditions hold. These are the free-end natural boundary conditions.

Thus, the conditions of continuity between the first and the second beam sec-
tions give the following equations (hereinafter dots, as usual, denote temporal 
differentiation):

 

(4)uk = uke
(k)
x + vke

(k)
y = (uk cos �k − vk sin �k, uk sin �k + vk cos �k)0.

(5)Mxk = −(EIx)k
�2vk

�z2
, Myk = (EIy)k

�2uk

�z2
.

(6)Qyk =
�Mxk

�z
= −(EIx)k

�3v

�z3
, Qxk = −

�Myk

�z
= −(EIy)k

�3u

�z3
.
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(ä(2)

0
cos 𝛼

2
− b̈(2)

0
sin 𝛼

2
),

6a(1)
3
(EIy)1 sin 𝛼1 − 6a(2)

3
(EIy)2 sin 𝛼2 + 6b(1)

3
(EIx)1 cos 𝛼1 − 6b(2)

3
(EIx)2 cos 𝛼2

= m
1
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Then, from the conditions of continuity for connection points of other beam 
segments (k = 2,N − 1), we obtain following equations:

And finally, moment and force conditions at the end point give:

where uEND and vEND are displacement components of the tip in the global coor-
dinate system.

The system of differential-algebraic equations with constant coefficients of 
Equations (7)–(9) describes free vibrations of the considered beam-mass model. 
These can be represented in compact matrix form as:
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To find natural frequencies and vibration modes, the solution of Equation (10) 
is represented in the exponential form as follows:

 

Substitution from Equation (11) into Equation (10) leads to the generalised eigen-
value problem (Gruber, 2014) having the following form:
 

The solution of which gives the spectrum of eigenvalues, �2

k, and their correspond-
ing eigenvectors, ck. Then the natural cyclic frequencies of vibrations are calculated 
by the formulae fk =

√
−�2

k∕(2�), and components of ck are used to represent 
vibration modes of Equation (2).

On the basis of these relations, we developed a MATLAB function which 
computes natural frequencies and vibration modes for a generically considered 
N-section beam-mass models with coupling between vibrations in the x and y 
directions due to stepwise structural twisting.

4.  Solving the parameter identification problem

The physical parameters of the approximate beam-mass model built in previous 
section need to be determined (identified) on the basis of known information 
on the behaviour of the real structure. In our case, we have data for bending 
vibrations of the composite wind turbine blade on lower natural frequencies and 
mode shapes, obtained earlier in section 2 by FEM simulations using ABAQUS. 
But it is known that using merely modal data one cannot provide a unique set of 
parameters of the system using the solution of the identification problem (Baruch, 
1997). Because of this in the literature (see Trivailo et al., 2006) modal data were 
complemented by the values of beam bending stiffness, identified separately from 
static measurements, and subsequently modal data were used for determining 
model mass parameters.

Since we use, as the source of data on the reference structure, those data 
extracted from the FEM model with a well-defined geometry and known material 
density, it is more convenient to extract some data, such as the characteristics of 
mass distribution, from this model directly. Thus, for the five structural sections 
of the blade (see Table 1 and Figure 1), we obtain following mass distribution 
parameters shown in Table 4.

(11)c(t) = c̄e𝜆t .

(12)Ac = �2Bc,

Table 4. Structural section masses and mass centre coordinates.

Section mass (kg) Mass centre coordinate (m)
1 2434.75 .877
2 8651.47 5.71
3 3150.87 11.85
4 1667.89 21.02
5 788.38 36.28
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It should be noted that this structure segmentation is not tuned well enough 
for direct use in building a simplified model, as the most slender and flexible 
part of the blade which occupies two thirds of its length, is divided only into two 
parts (4 and 5), while the rest more rigid and less deformable root part is divided 
into three parts. Such structure of the model leads to inefficient accuracy in its 
approximation capability, as well as reduction in the stability of its solution.

Instead of following this discretisation, it is proposed to divide each of the 
long flexible parts 4 and 5 into two model parts, while combining the most rigid 
root parts 1 and 2 into one model part. In dividing the segments into finer parts, 
we have assumed a linear mass distribution on each segment, so masses of the 
obtained parts and coordinates of their mass centres can be easily calculated. Then 
transition from distributed to lumped masses was made using the ‘principle of 
the lever’, when after the replacement mass centre of each approximating model 
segment remains at its initial position.

For the considered case of the six segment beam-mass model we obtain fol-
lowing values of lumped masses at the nodes (kg): m1 = 6985.084, m2 = 2003.617, 
m3 = 833.945, m4 = 556.534, m5 = 394.19, m6 = 175.308.

Values of initial twisting angles αk for homogeneous beam sections are esti-
mated at their middle points on the basis of turbine blade twisting angle distribu-
tion given in (Chen & Chen, 2010), and assuming linear variation of twisting along 
the blade structural subsections. Obtained in such a way values of αk (degrees) are 
as following: [−12.856, −10.263, −6.335, −3.665, −2.060, −1.520].

In order to solve the identification problem, we apply the effective global mini-
misation procedure using the DIRECT algorithm (DIRECT, 2003). The optimisa-
tion problem is formulated so that it determines the values of bending stiffnesses 
(EIx)k and (EIy)k which minimise the objective function (13) within constraints, 
i.e. lower and upper bounds for stiffness values and, in addition, the condition of 
decreasing bending stiffnesses from the root to end.

Extensive numerical experiments have shown that much better identification 
results are obtained when absolute deviations of frequencies and displacements 
are used instead of their squares in the objective function. Thus, the objective 
function which was used in the present study has following form:

 

where fm and f refm  are model predicted and reference values of natural frequencies, 
uk, vk and uref

k
, vref

k
 are predicted and reference displacement components (integrals 

are evaluated approximately by trapezoidal rule), q is a weight coefficient, and Nf 
and Nd are numbers of used frequencies and displacements, respectively. Good 
results were obtained for Nf = 5, Nd = 4, q = 15.
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The results of identification analyses with given parameters for the objec-
tive function are shown below. Here, identified values of logarithms of bending 

Table 5. Segment data.

Nseg 1 2 3 4 5 6
log EIx 22.7105 19.8247 18.5612 16.9871 15.9708 15.7200
EIx 7.2953 × 109 4.0715 × 108 1.1509 × 108 2.3845 × 107 8.6304 × 106 6.7160 × 106

log EIy 23.3283 22.4936 21.3745 20.2470 19.4379 18.9420
EIy 1.3532 × 1010 5.8728 × 109 1.9179 × 109 6.2110 × 108 2.7655 × 108 1.6842 × 108

Figure 5. Identified (blue) and FEM computed (red) modal displacements in flap (solid lines) and 
lead-lag (dashed lines) directions for the six-segment simplified beam-mass blade model for six 
lowest modes (a)–(f ).
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stiffnesses and corresponding values of bending stiffnesses are presented in  
Table 5.

Respectively, the obtained minimal value of the objective function is 
Fmin = 3.0868.

In Figure 5 identified modal shapes are shown with blue lines, and actual modes 
provided by ABAQUS, are depicted with red ones. Solid and dashed lines cor-
respond to the flap bending and lead-lag vibrations, respectively. As one can see 
very close agreement has been obtained using the reduced model.

The next experiment was carried out to test opportunities of improvement 
on the quality of identification by increasing the order of the model. For this we 
divided segment from 3 to 5 used in the previous model into two parts again, 
thus the model with ten segments was obtained. So in this case, lumped masses 
mk have values:

and twisting angles αk are as follows

The results of identification are given below in Table 6. First of all, we see good 
stability of identification results and better accuracy: achieved value of the objec-
tive function Fmin = 1.6713 is nearly half the previous case, so graphs in Figure 6 
demonstrate this.

It is worth mentioning that the procedure developed provides good identifi-
cation of lower vibrational modes and frequencies for a real rotor blade taking 
account of the coupling between flap and lead-lag motions caused by blade twist-
ing even within the framework of classical Euler–Bernoulli beam model.

5.  Conclusions

In this present paper, a modified approach to construction of a beam-type sim-
plified dynamic model of an HAWT composite blade is proposed. The model is 
based on an identification procedure using modal data attained by detailed FEM 
simulations.

[6985.084, 1765.386, 476.462, 416.973, 357.483, 271.076, 213.435, 197.095, 180.755, 84.931],

[−12.856,−10.263,−7.0025,−5.6675,−4.3325,−2.9975,−2.195,−1.925,−1.655,−1.385].

Table 6. Segment data.

Nseg 1 2 3 4 5

log EIx 22.6188 19.9943 18.4494 18.2133 17.114
EIx 6.6561 × 109 4.8241 × 108 1.0291 × 108 8.1271 × 107 2.7072 × 107

log EIy 23.4251 22.1001 21.832 21.2535 20.0834
EIy 1.4907 × 1010 3.9623 × 109 3.0305 × 109 1.6993 × 109 5.2736 × 108

Nseg 6 7 8 9 10

log EIx 16.7606 15.9663 15.6166 15.2014 15.1873
EIx 1.9012 × 107 8.5916 × 106 6.0562 × 106 3.9984 × 106 3.9424 × 106

log EIy 19.928 19.5295 18.9319 18.8288 18.6508
EIy 4.5146 × 108 3.0308 × 108 1.6673 × 108 1.5040 × 108 1.2588 × 108
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The constructed beam-type mathematical model takes into account structural 
pre-twisting of the blade along its length that does not allow splitting flap and lead-
lag motions. Therefore, it allows interaction between different modes of vibration.

An objective function is defined which describes a measure of absolute differ-
ences between results of modal simulations obtained by the proposed simplified 
model and the detailed FEM ones. The results of numerical experiments carried 
out show that better identification results are obtained when in the objective 
function the modular norms are used instead of quadratic norms. Additional 

Figure 6. Identified (blue) and FEM computed (red) modal displacements in flap (solid lines) and 
lead-lag (dashed ones) directions for the 10-segment simplified beam-mass blade model for six 
lowest modes (a)–(f ).
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positive effect is obtained using logarithmic scaling of identifiable bending stiff-
ness parameters.

The identification procedure is carried out using the global minimisation algo-
rithm ‘DIRECT’ with constraints imposed based on a priori information (solution 
on the compact) which provided stable solution results for the ill-posed inverse 
problem. The results of the identified beam-type models with different number 
of beam and mass sections are in agreement with the reference FEM simulation 
data both qualitatively and quantitatively.

It is conjectured that further improvements can be achieved using more com-
plex simplified models with distributed masses and inhomogeneous section 
stiffness distribution. Any such enhanced model will need to use an underlying 
mechanics principle such as minimum potential energy along with a consistent 
or inconsistent finite element formulation for approximation of displacement and 
possibly stress fields subsequent to segmentation and discretisation.
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