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RÉSUMÉ. Une nouvelle technique de base réduite est proposée afin de résoudre une large classe 
de problèmes non linéaires. L'idée principale est de réduire les problèmes linéaires obtenus 
par une technique de perturbation et non pas le problème non linéaire initial. On a examiné en 
détail/' efficacité numérique de cette nouvelle méthode qui s'avère être très attrayante pour des 
problèmes de grande taille. Une analyse détaillée des algorithmes classiques de base réduite 
est également présentée. 

ABSTRACI: An alternative reduced basis technique is proposed to solve a large class of non-linear 
problems. The basic idea is to reduce the linear problems obtained by perturbation technique 
and not the initial non-linear problem. The numerical efficiency of the new method is discussed 
in details and it tums out to be very attractive for large scale problems. A detailed analysis of 
classical reduced basis algorithms is also presented. 
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1. Introduction 

The application of the reduced basis method to non-linear problems was proposed 
about twenty years ago. The employed basis resulted from a linear buckling analysis 
[BES 74], from phases of correction [ALM 78] or from a perturbation technique. This 
latter tumed out to be the most efficient. Only sorne vectors were used in the applica
tions (from 2 to 10, generally 6 or 7) since from a certain order, the computed vectors 
are Jess and Jess linearly independant. The proposed computation algorithm could be 
summed up in four steps: step 1: computation of the basis vectors with a perturbation 
technique; step 2: computation of the non-linear reduced problem; step 3: resolution 
of the non-linear reduced problem; step 4: correction phase and beginning of a new 
step. The gain obtained with this process is from Riks' point of view [RIK 84], coun
terbalanced by the excessive cost of steps 2 and 4. We will analyse once more this 
algorithm, in particular the essential point which is the cost of the corn pu ting time to 
get the reduced problem. This computation becomes too expensive for high orders (15 
to 30) but it is different for the asymptotic numerical method (ANM) that uses only a 
representation in series of the solution branch in the following form : 

p p 

U(a) = Uo + L aiUi and À(a) = Ào + I:aiÀi [1] 
i=l i=l 

where U is the unknown vector and À a scalar parameter. The computation of the 
series (1) needs only the above first step, and thus we can obtain dozens of compu
tation steps without any correction and for a reasonable cost [COC 941]. It has been 
established that it is interesting to compute a large number of terms of the series, al
though the new generated vectors are nearly a linear combination of the previous ones. 

It was also proposed to transform the polynomial approximation (1) by an asymp
totically equivalent rational approximation under the form : 

p p 

U(a) = Uo + L fi(a)Ui and À= Ào + Lfi(a)Ài [2] 
i=l i=l 

where the /i(a) are rational fractions called Padé Approximants [AZR 92], [COC 943]. 
As compared to the polynomial approximation, the additional computing time is negli
gible. When it is coup led with a continuation technique, it allows us to di vide approxi
matively by two the number of steps necessary to solve a given problem [AEH 00], 
[BRU 99]. 

The reduced basis method has been compared with these two kinds of ANM in a 
recent work [NAJ 98]. It has been shown that the step lengths obtained by the ratio
nal representation [2] were close to the ones obtained by the reduced basis technique 
while the latter needs more computing time because of the step 2. Furthermore, the 
step length with the representation [1] and [2] for high orders (example order 16) were 
much larger than those obtained with the reduced basis method in low orders (example 
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order 8). It appears that the reduced basis technique is not efficient compared to the 
two others, unless a mean to decrease the computing time associated to the step 2 is 
found. This second step is then a critical point for a bigger utilization of the reduced 
basis technique in the resolution of non-linear problems. 

One shaH mention that it is not obvious to treat numerically a large number of 
vectors Ui obtained by perturbation technique. Especially the orthogonalisation pro
cess and the calculus of the coefficients of the rational fractions involve numerical 
instabilities [NAJ 98], [CHA 97]. Fortunately, this does not affect the efficiency of the 
Asymptotic Numerical Methods for large truncation orders p. 

The aim of this study is to present a new way to apply the reduced basis technique 
which allows one to use a basis with higher dimensions, for a moderate computing 
time. The objective is to avoid the reduction of the initial non-linear problem and 
to reduce th~ linear problems obtained by the perturbation technique. This allows to 
avoid the second step and the factorisation of the global tangent matrix, that requires a 
too ex pensive computing time. An efficient application of the reduced basis technique 
supposes good strategies for the choice of the basis (step 1) and a continuation method, 
but herein we shall not try to establish definitive settlements about this choice. Most 
of the applications presented in the literature deal with non-linear elasticity. Qui te the 
reverse, the proposed procedure can be applied to every problem where we are able to 
apply an efficient perturbation technique. This was established in viscous fluid mecha
nics [CAD 00], for the unilateral contact [AEH 98], in plasticity [BRA 97], [ZAH 98] 
and in viscoplasticity [BRU 99]. 

This article is organized in the following way. First, we recall two presentations of 
the reduced basis technique written in the case of non-linear elasticity. Next, we ana
lyse carefully the computational cost of the aforementioned techniques to determine 
their range of applicability. Finally, the new version of the reduced basis technique is 
presented and we analyse it in the same way. 

2. The classical reduced basis methods 

This method has been proposed and tested by Almroth [ALM 78], Noor and Peters 
[NOO 83], [NOO 80], [NOO 81]. It consists in using vector fields u1, u2, u3 ... , Upas a 
basis in a Rayleigh-Ritz approximation. The unknown u representing the displacement 
is then searched in the following way : 

[3] 

where the coefficients ri are the new unknowns to be determined. In order to illustrate 
the method, let us consider a problem involving the elastic behaviour with geometrie 
non-linearities. The equilibrium of a solid body occupying a region 0 0 , in a reference 
configuration with boundary ano can be expressed by the equilibrium equation and 



58 Revue européenne des éléments finis. Volume 10- no l/2001 

the stress-strain relation : 

[4] 

[5] 

where 'Y= "(1 +'Ynl is the Green-Lagrange strain tensor, S the second Piola-Kirchhoff 
stress tensor, >. is a load parameter and (S0 ,À0 ,u0 ) is a solution state chosen as (0, 0, 0) 
for the sake of simplification : 

In what follows, we shall present and test two ways to apply this reduced basis tech
nique. 

2.1. Classical reduced basis method 

According to the expression (4), the equilibrium equation is quadratic regarding 
to the variables u and S. A displacement approach is carried out replacing the stress
strain relation (5) into (4). One then obtains a cubic expression regarding to the va
riable u: 

foJ'Y1(u) +"(n1(u,u)): D: 'Y1(15u)dv 
+ fo. ('Y1(u) + 'Yn1(u, u)): D: 2"(n1(u, 15u)dv- ..\Pe(ISu) = 0 

[7] 

The principle of the reduced basis technique is to approach the displacement u and the 
virtual displacement 15u in the following way : 

p 

u = Lriui 
i=l 

p 

15u = L 15riui 
i=l 

where ri and 15ri are real and ri become the new unknowns. 

[8] 

[9] 

Reporting equations (8) and (9) into the cubic expression (7) leads to a cubic expres
sion regarding to the variables r : 

The operators l*, q* and c* are defined in Appendix A. 
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In order to solve these equations, the coefficients lii, qiik and ciikl have to be com
puted. For instance with a basis of 3 vectors, 78 coefficients have to be computed and 
for a basis of 10 vectors, 6105 coefficients. As we can see, the number of coefficients 
hu gely increases with the size of the basis. A reduction of the number of coefficients 
to be computed would allow us to reduce the computing time of this method. That is 
what is tempted in the next section. 

2.2. A variant of the classical reduced basis method 

In order to reduce the computing time to get the reduced problem, an alternative 
method has been proposed in the literature [NAJ 98]. This consists in obtaining a 
quadratic problem using a mixed variable (u, S). Then with additional variables, this 
leads to a reduced quadratic problem. The basic !ines are mentioned here and for 
further details refer to [NAJ 98]. The principle is to start from the mixed formulation 
(4) and (5) which is quadratic regarding to the displacement-stress variables ( u, S). 
The equilibrium equations are approached choosing the vectors fields t5u under the 
form (9) and searching the displacement fields under the same form (8). As for the 
stress-strain relation (5), one requires it to be satisfied exactly. Reporting (9) and (8) 
into the stress-strain relation (5) leads to: 

p p p 

S(u) = D: (L>;(-hu;)) + LL>;Tj/nl(u;,ui)) 
i=l 

This can be rewritten : 
p 

S(u) = Lr;S; + 
i=l 

i=l j=l 

rkSk with N = p + p(p + 1) 
2 

These notations have been introduced: 

S; = D : '-/(u;) for 1 ~ i ~ p 

sk = D: 2!n1(u;,Uj) for i =1= j 

or Sk = D: 1n1(u;, u;) for i = j(p + 1 ~ k ~ N) 

[ 11] 

[12] 

[13] 

[14] 

[15] 

Th us the key point is the introduction of p(p + 1) /2 additional variables to represent 
the non-linear dependance of the stress with respect to the reduced basis variables r;, 
1 ~ i ~ p. These additional variables are defined by a quadratic relation : 

. h k . . i(i- 1) 
Tk = T;Tj Wlt = tp + J -

2 
[16] 

With this choice of the unknowns r =t < r 1 , r 2 , ..... , r P, r P+l, .... , rN >, the reduced 
equation obtained from the princip le of virtual work is only quadratic : 

l;iri + Qiikrirk- >.J; = 0 i = 1,p j = 1, N and k = 1,p [17] 
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The operators l and q are defined in Appendix A. As in the previous section, in 
order to solve these equations, the coefficients lii and Qijk have to be computed. For 
instance with a basis of 3 vectors, 60 coefficients have to be computed and for a basis 
of 10 vectors, 3630 coefficients. As we can see, the number of coefficients is smaller 
than the ones obtained previously, nevertheless it remains too large to achieve an ac
ceptable computation cost. 

Note that both the problems (10) and (17) represent rigorously the same problem, 
but they are not expressed regarding to the same variables r. It is then possible to 
apply an asymptotic numerica1 method (representation with the series or the Padé 
Approximants) to solve them as presented in the next section. These methods are not 
expensive in computing time; however, they may present numerical instabilities. 

3. Numerical evaluation of the reduced basis methods 

3.1. Three variants of the ANM 

The asymptotic numerical methods permit to determine non linear equilibrium 
pathes by means of asymptotic expansions. Different methods have been proposed : 
the direct computation of series, where the unknowns are represented by power series 
as follows: 

{ ~ = ~~ } = tai { ~~:~ } 
>.- Ào i=l À(i) 

[18] 

p is the truncation order and a is a parameter which can be defined as a = { < 
u- u0 , u 1 > +(>.- ,\0 )>.1 }. lntroducing the expansions (18) into equations (4) and 
(5) and identifying like powers of a leads to a set of linear problems. A discretisation 
by the finite element method leads at each order to: 

[19] 

where f [" L depends only on the Ui and Si co ming from previous orders (see [COC 942] 
for further details). 

The transformation of the polynomial approximation into asymptotically equiva
lent rational fractions called Padé Approximants can improve the range of validity. 
From the vectors ui an orthogonalised basis ui bas to be first computed for example 
by the Gram-Schmidt procedure. u and >. are then searched as follows, [NAJ 98] : 

p p 

u(a) = L: /i(a)ui and >.(a) = L: /i(a)>.i. 
i=O i=O 

Another way to ex tend the range of validity of these representations is to apply the 
reduced basis technique presented and tested by Noor and Peters [NOO 83], that has 
been recalled in Part 2. The princip le is to apply a Rayleigh-Ritz reduction technique to 



Reduced basis technique 61 

the original problem, using the first vectors u; or u; of the series as a basis (these two 
basis should lead theoretically to the same results). u is then searched in the following 

p 

way: u = L:: r;u;. 
i=l 

The computing time to find the solution depends on the method used to solve the 
problem. lndeed, for the direct computation of series, the computing time needed is 
govemed by the computation of Kt, the decomposition of Kt (note that the method 
employed in programming is the Crout method), and the computation of the right hand 
sides f;NL and their associated u;. The computing time ofthese terms depends on the 
number of d.o.f. of the problem. 

In order to define the time needed by the representation with the Padé Approxi
mants, one has to add to the time used by the direct computation of series the tirne 
to orthogonalise the basis u; as weil as the time to compute the Padé coefficients, but 
these additional times are not expensive. 

Conceming the reduced basis techniques, the time needed to obtain the solution is 
ruled by the computation of the coefficients to perform the reduced system, if the basis 
is supposed to be already computed. Indeed, the number of ciikl (classical reduced 
basis technique) and Qijk (variant of the reduced basis technique) increases a lot with 
the dimension of the basis. 

3.2. Two numerical benchmarks 

R•2S40 mra 
L"'l54mm 
h:ll7mllll 
8=0.1 rd 

E=JI02.7SMpa 

Y"'D.J 
P•IOOON 

2.5 

15 

10 " )0 

FIG. 1 - a) Elastic cylindrical shallow shell loaded by a concentated force (roof 
problem). b) Load as a function of the displacement at the center M. Reference curve 

1\vo examples have been studied. The first one is the classical cylindrical shallow 
shell loaded by a single force. Hereinunder, it is referred to as the roof problem. A 
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Geomeliy: 
L=200. mm l.S 

R= 100. mm 
h = 1. mm 
s=SO.mm 2.5 

1 = 79.5 mm 

Material: 
1.5 

E= 71122.5 Mpa 
v=O.l 

0.5 . 
FIG. 2- a) Cylindrical shell with two diametrically opposite eut outs and loaded by a 
uniform axial compression. b) Load as a function of the radial displacement at point 
M. Reference curve 

mesh for a quarter of the shell, and 200 triangular DKT18 elements [BAT 90] have 
been used. The total number of d.o.f. is 726. The geometry and the material descrip
tion are given in figure la. The reference solution obtained with a continuation method 
is represented in figure 1 b. 

The second example is a classical test problem already discussed in [RIK 84] and 
[NOO 81]. It is a cylindrical shell with two diametrically opposite eut outs and Ioaded 
by a uniform axial compression. The geometry and the material characteristics are 
given in figure 2a and the reference solution obtained with a continuation method 
is represented in figure 2b. For symmetry reasons, one eight of the shell has been 
discretised with a regular mesh involving 1608 triangular DKT18 elements. The total 
number of degrees of freedom is 5190. 

Order calculus of [Kt] [Kt] decomposition Fnl Total (series) 
5 2.1 0.7 1.6 4.4 
10 2.1 0.7 3.4 6.2 
15 2.1 0.7 5.1 7.9 
20 2.1 0.7 7 9.8 

TAB. 1 - Roof (726 d.o.f): Computing time for direct computation of series at order 
5,10,15 and 20 
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Reduced basis Reduced basis 
(quadratic) (cubic) 

Nb Basis reduced system Total reduced system Total 
vectors vectors 

5 4.4 1.9 6.3 3.4 7.8 
10 6.2 15.5 21.7 64 70.2 
15 7.9 65 72.9 177 184.9 
20 9.8 183 192.8 559 568.8 

TAB. 2 - Roof (726 d.o.f): Computing time for the classical reduced basis at order 
5,10,15 and 20 

3.3. Numerical results and discussion 

We first discuss the size of the step lengths obtained according to the truncation or
der and the employed method: the direct computation of series, the rational fractions, 
or one of the two reduced basis techniques. In accordance with wh at was expected, the 
two reduced basis techniques introduced in section 2 give exactly the same solution : 
they on! y differ in the way of computation. 

We propose to analyse the step length from the residual curves. They represent the 
logarithm of the residual norm versus the displacement w. Generally, the quality of 
the solution is supposed to be good when the residual norm is Jess than 10-3 and this 
is what we keep in our discussion. In the case of the roof (figure 3), the best quality 
of the solution is obtained with the subspace method, the worse by the series, in ac
cordance with what was expected. We also verify that the truncation order has a great 
influence on the quality of the solution and that the series at order 15 give better results 
than the reduced basis method at order 5. As already underlined by [NAJ 98], the best 
computational strategy is obtained by choosing large truncation orders. If a criterion 
Jess than 10-3 for the residual is considered, the obtained step lengths at order 5 are: 
W 8 = 4.2 (series), Wp = 5.5 (Padé) and Wr = 6.5 (reduced basis); at order 10: w8 = 9 
,Wp = 11 and Wr = 12, at order 15: w8 = 11 ,Wp = 14 and Wr = 15. If the introduc
tion of the reduced basis or of the Padé Approximants allows us to increase the range 
of validity, this improvement is not considerable. The reduced basis technique would 
on! y be interesting if the additional computing cost was relatively cheap. 

Order calculus of [Kt] [Kt] decomposition Fnl Total( series) 
5 17 27 15 59 
10 17 27 30 74 
15 17 27 46 90 
20 17 27 63 107 

TAB. 3- Cylinder (5190 d.o.f): Computing time for direct computation of series at 
order 5,1 0,15 and 20. 
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Reduced basis Reduced basis 
(quadratic) (cubic) 

Nb Basis reduced system Total reduced system Total 
vectors vectors 

5 59 15 74 27 86 
10 74 125 199 301 375 
15 90 522 612 1415 1506 
20 107 1474 1581 4501 4608 

TAB. 4- Cylinder (5190 d.oj): computing time for the classical reduced basis at 
order 5,10,15 and 20 

The reduced basis used herein is the basis u; obtained by perturbation then ortho
normalisation. We also tried to carry out this calculation with the basis Ui obtained 
from the perturbation, but without the orthonormalisation. The quality of the solution 
was always inadequate (residual greater than 10-3), even for very small values of the 
displacement: the range of validity of this approximated solution was then nonexistent. 
We think it is due to an ill conditioning of the matrix lij and of the tangent matrix lfj 
which occurs in the solution of the reduced problem (17). Even with the orthonorma
lised basis, the quality of the solution obtained by the reduced basis technique at order 
15 for small values of the displacement (residual almost equal to w-7) is worse than 
the one obtained by the two direct asymptotic representations ( residual almost equal 
to 10-12). Likely, this unexpected behaviour is due to sorne numerical instabilities 
that are also connected to the ill conditioning of the matrices l~j (see figure(3)). 

The numerical tests for the cylinder lead to the same conclusions. The largest step 
length is obtained by the reduced basis technique and the smallest with the series, but 
the step length is not the only significant computational parameter. In figure (4), we 
have reported three load-deftection curves at order 5 and at order 15 with the Padé 
Approximants. Once more, the rational approximation at order 15 gives much better 
results than the reduced basis at order 5. Furthermore, despite many efforts, we have 
not been able to reach a satisfactory residual with the reduced basis technique, what is 
probably due to numerical instabilities. 

Let us now discuss the computing times that are necessary to get ali these asymp
totic approximations. On tables 1 and 3, we reported the computing times needed to 
compute the series up to orders 5,10,15 and 20. The total computing time has been 
splitted into three parts : first the time to compute the tangent matrix, then the one to 
decompose it and finally, the one to compute the right hand sides Ft1 and the Ui. The 
last time is the only one to depend on the truncation order and we notice that it is 
more or less proportional to this order. Note that the time distribution is very different 
in these two tests: with a small number of degrees of freedom (d.o.f.), the matrix de
composition is not time consuming, but it becomes very significant in the second test 
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,L Pad~(15) 
·12 __ ... -~ ....... , ............ :. 

·14~--~----~-----L-----L----~----~----~--~ 
0 8 

w 
10 12 14 16 

FIG. 3- Roof, (726 d.o.f): representation of the residual obtained by the three me
thods. The series are truncated at arder 5 and 15 

(5190 d.o.f.) and it will be prominent for large scale problems because it is known that 
the decomposition time increases as the cube of the number of unknowns. 

The computing time to get the orthogonalised vectors u; within the classical 
Gram-Schmidt orthogonalisation and to get the rational fractions is negligible (less 
than 1% for the orders 5 or 10, 2% for the order 15 and 2.5% for the order 20). That is 
why the polynomial and the Padé Approximants methods have nearly the same com
puting time. Because the range of validity of the rational approximations is larger than 
the polynomial one for about the same computational amount, the first method is bet
ter than the second one and we consider it as a reference in what follows. 

Let us now broach the main point to be discussed in this section. On tables 2 and 
4, we have presented the computing time needed by the two types of reduced basis 
method, by comparison with the computing time of the basis, that is about the one 
to build up the rational approximations. In these tables, we have only included the 
time needed to get the coefficients of the quadratic system (17) or of the cu bic system 
(10) by getting rid of the time to solve this reduced system; in fact, the last time is 
not very small, but we have neglected it in this presentation, because it depends on 
the computational strategy and the ours could perhaps be improved. Whatever the 
reduction is, the computing time of the reduced system is huge so long the size of 
the basis is larger than 10. Thus the reduced basis techniques presented in part 2 can 
not be practically applied for an order beyond 7. Furthermore we notice the same 
computing time for the rational approximation at order 15 and the reduced basis at 
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3r--------.--------~-------.--------~------~ 

'

// ... -/ Padi (15) 

Padt (S) 

-~···":// //~ : -~L 
2.5 

"l························ .... 
Poly(S) 

0.5 

0~------~--------~------~--------J-------~ 
0 2 3 4 5 

w 

FIG. 4- Cylinder, (5190 d.o.f): displacement of the point M with the three methods. 
The series are truncated at order 5 

order 5, but we have already seen that the range of validity is much larger in the 
first case. From this table, it appears that the quadratic reduced basis method is better 
than the most classical cubic one, but this improvement is not sufficient to lead to an 
efficient numerical method for large truncation orders. 

3.4. Conclusion 

Clearly, the reduced basis technique is not an efficient numerical method as com
pared to the simple perturbation technique, especially when the latter is improved by 
the introduction of the Padé Approximants. The key point is the need of computing 
a large number of coefficients of a reduced system, what prevents to apply this tech
nique with a large number of basis vectors. We recommand not to use more than 5 
or 7 vectors for problems involving from 1000 to 10000 d.o.f. There are two more 
difficulties with this classical reduced basis technique. On the one band, it is difficult 
to withdraw sorne numerical instabilities. On the other band, it can only be applied in 
the case of very simple equations like non linear elasticity or Navier-Stokes equations. 
That is why we try to propose in the next section another way to apply the reduced 
basis technique, that will allow us to avoid ali these drawbacks. 
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4. A modified reduced basis technique 

In spi te of the pessimistic conclusions of the previous section, we shall propose a 
variant of the reduced basis technique that remains efficient with a rather large basis. 
Because the main difficulty lies in the computation of the coefficients of the redu
ced system, we no longer compute these coefficients. We suggest first to apply the 
perturbation technique that transforms the non-linear problems into a sequence of li
near ones.Secondly, to use the reduced basis technique to solve these linear problems. 
Thus, the perturbation is applied before the reduction, contrary to what is performed 
within the classical reduced basis techniques. 

4.1. Presentation of the method 

Non Linear Problem 
The unknown is 
U{u,S) 

Perturbation technique 
p 

U(a)= I: a;U<i> ... 
P recurrent linear 

continuous problems 

Discretisation Method 

(F.E.M) 

P recurrent discrete 

problems 
unknown : u (i) 

--Approximation by the redu 
j=N ~) y u =r. (i) j&l J 

ced basis 'i 

P recurrent Iinear 
reduced problems 

(i) 
unknown: ri 

Resolution 

1 
Solution by Solution by 
Padé Approximant~ Polynomials 

FIG. 5- Reduced basis technique's algorithm 
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The first steps of the new method are exactly the same as in the classical asymp
totic numerical method [COC 942]. First, we expand the variables into power series 
with respect to a parameter a. This leads to a sequence of linear problems. In the ap
plications, we shall consider the same expansion parameter as previously. Then these 
problems are discretized by the finite element method, this leads to discrete linear 
equations as in equation (19). All these equations have the same form with various 
right hand sides: 

[20] 

Supposing that we have chosen a basis of N vectors en, 1 ~ n ~ N. The discrete 
unknowns Ui are sought as linear combinations of these vectors and an approximated 
solution of the linear equations (19) is deduced by the standard Galerkin procedure. 
Then, we transform these polynomials into rational fractions as explained previously. 
For the sake of simplicity, we have achieved the finite element discretisation before 
the reduction, but these two operations could be switched without any change in the 
final approximated equation. Consequent! y, the coefficients of the matrix kmn should 
be about the same as the lii appearing in the system (10). lt is clear that the quantity 
of the real numbers kmn to be computed is exactly N (N + 1) /2, which is much lower 
than the one required in the classical reduction method. Th us, in this way, the reduced 
basis technique can be efficiently applied with a rather large basis. This algorithm is 
summarised in figure (5). 

4.2. Numerical results and discussion 

Basis vectors [Kt] Fnl Reduced matrix Ortho-vec Total 
15 2.1 4.7 0.6 0.2 7.6 
20 2.1 4.7 0.8 0.3 7.9 
25 2.1 4.7 1 0.4 8.3 
30 2.1 4.8 1.3 0.6 8.9 

TAB. 5- Roof(726 d.o.f): Computing time for the alternative Reduced basis using 
the polynomial approximations truncated at arder 15 

Basis vectors [Kt] Fnl Reduced matrix Ortho-vec Total 
15 17 37 10 1 65 
20 17 37 14 2 70 
25 17 38 18 3 76 
30 17 38 21 4 80 

TAB. 6- Cylinder (5190 d.o.f): Computing time for the alternative Reduced basis 
using the polvnfJmial approximations truncated at arder 15 
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3 .-----~----------~------~-----r----~ 

First step Crout+Padé and Reduced basis+r:._./é 
2.5 7 
' ------- ->/·f,_. ......_; 

_______ /.:· _______ _j__ _____ ~·vintofdeparture 1 / 1 i 
i 1 

;' 1 
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/ 1 

1.5 
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w 

FIG. 6- Roof(726 d.o.f.): The loading parameter À as afunction of the displacement 
at the point M. For the sake of completeness, the starting points of the steps correspond 
to wA=lO,l and wB=l5,06 

The same two points as in the previous section have to be discussed to assess the 
reliability of this new numerical technique. First, we have to verify if the reduction of 
the linear problems does not affect the step length with a proper choice of the basis. 
Then, we have to analyse the computing times. In this study, we do not try to define 
the selection of the basis that will be efficient in many situations. We limit ourselves 
to establish that one can define such a basis in order to get both a good step length and 
a moderate computation cost. 

For the numerical tests, we will proceed in the following way : two steps are going 
to be carried out using the direct computation of series truncated at order 15. This 
then defines 30 vectors that we transform into an orthonormal basis. This orthonor-

calcul us of treatment of Fnl Ortho-vect Total 
[Kt] [Kt] 

Crout decom- 32 2075 202 weak 2310 
position 
Reduced basis 32 170 72 9.5 284 
(30 vectors) 

TAB. 7- Cylinder (39756 d.o.f.): Computing time of one step with the standard 
A.N.M. (Crout, Padé) and with the new reduced basis technique ( reduced basis, Padé). 
Order 15 
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FIG. 7- Roof(726 d.o.f), third step: residual curve according to the representation 
(polynomial or fractions) and to the solving technique of the linear problems (Crout 
or reduced basis). Truncation arder: 15. (Point M) 

malisation has been achieved in different ways without any significant change of the 
result. This test deals with the third step of the calculus. It has been carried out at 
the end of the range of validity of the second series. We have then determined the res
ponse curves and the residual curves in four different ways : we started with two repre
sentations using the series, the coefficients Ui beeing computed either by a complete 
decomposition of the tangent matrix (noted Crout+Poly), or by the reduced basis tech
nique presented in section 4 (noted Reduced basis+Poly). We have also two rational 
representations that differ in the resolution of the linear problems (noted Crout+ Padé, 
Reduced basis+Padé). The results are presented on figures (6) and (7) in the case of 
the roof problem and on figures (8) and (9) for the cylinder problem. It clearly appears 
that the approached resolution by the reduced basis technique has a weak effect on the 
quality of the obtained results. lt even seems that in one case of the rational represen
tation (figure 7), the resolution with the reduced basis technique is preferable to the 
exact resolution using the direct method: this paradoxal result is probably linked to 
inherent numerical instabilities in the calcul us of the Padé Approximants with high or
ders [NAJ 98], (Part 3.2). In the case of the cylinder and the rational approximations, 
the approached resolution slightly reduces the step length (with a maximum admis
sible residual of 10-3 , the limit of validity is w = 5.1 with a resolution by reduced 
basis and w = 5.4 with a resolution by the Crout method). 

We have also analysed the step length obtained with the same subspace but without 
any orthogonalisation: the quality of the solution obtained this way was unacceptable. 
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FIG. 8 - Cylinder (5190 d.o.f.): Representation of the loading parameter À as a 
function of the displacement at the point M. For the sake of completeness, the starting 
points of the steps correspond to wA=l,3 and wB=3,3 

The obtained residuals were greater than 10-3 even at the beginning of the step. So, 
the proposed reduced basis technique works weil with a basis with a big size, but a 
procedure of normalisation is necessary in order to avoid numerical instabilities. 

We may wonder what is the necessary dimension of the basis to obtain a satis
factory approximative solution. Such an analysis is presented on figure (10) where the 
number of vectors varies from 15 to 30. In the case of 15 vectors, they have been obtai
ned by perturbation from the second starting point (point A). In the case of 20 vectors, 
the five first vectors obtained by perturbation from the initial point 0 have been added 
and so on. From the figure (1 0) one sees that at least 25 vectors are necessary to get a 
sufficiently large step length, and the approximation is not satisfactory below 20 vec
tors. The same results hold again for the roof problem. 

Three numerical problems are considered to analyse the effective computation 
times : the roof with 726 d.o.f., the cylindrical shell with 5190 d.o.f. and the same 
cylindrical shell without account of the symetries. In the third test, the wh ole cylinder 
has been meshed with 12856 triangularDKT18 elements. This leads to a total number 
of d.o.f. equal to 39756. Note that the biggest problem has been tested on a HP C360 
computer, it is approximatively 10 times faster than the HP 712/60 computer used for 
the other numerical tests. For the reduced basis method, we have used different basis, 
the dimension of the subspaces are between 15 and 30 vectors. In any case, the trun
cation order has always been chosen equalling to 15. 
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FIG. 9- Cylinder (5190 d.o.f), third step: residual curve according to the represen
tation (polynomial or fractions) and to the solving technique of the linear problems 
(Crout or reduced basis). Truncation order: 15. (Point M) 

For the two smallest problems (tables 5 and 6), the computing time is of the same 
order as the reference calculation (i.e., solving linear problems by Crout decomposi
tion, order 15, rational approximation). The computing time increases with the dimen
sion of the subspace, but not too much. Therefore, it is possible to work with a rather 
high dimension and it is recommanded to choose a higher dimension than 20, pro
vided that such a basis is available. For the medium problem (cylinder, 5190 d.o.f.), 
the computation cost of the new method is 11% lower than the reference method 
(MAN+ Padé), while the step lengths are about the same. The interest of the reduced 
basis technique is obvious from the results conceming the large scale problem (cylin
der, 39756 d.o.f.). Indeed, the reduced basis technique permits to decrease the total 
CPU time of 87.5% as compared with the standard MAN-Padé algorithm while the 
two methods lead to about the same step length. In this case, most of the CPU time 
with the standard algorithm is spent by the matrix decomposition: this is consistent 
with a number of operations that is proportional to the cube of the number of d.o.f. 
Because the CPU time to generate the reduced matrix does not increase in the same 
manner, a time reduction from 2075 to 170 is not surprising. An additional time re
duction is obtained in the calculation of the right hand sides Jr1 and the corresponding 
displacement vectors Ui. In any case, the orthogonalisation process and the getting of 
the Padé Approximants have not a significant cost. 
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FIG. 10- Cylinder (5190 d.o.f.): Logarithm of the residual at order 15 for different 
basis vectors. Reduced basis technique combined with the rational fractions 

5. Conclusion 

In this study a new reduced basis technique has been proposed and discussed to 
solve non-linear problems. Contrary to the classical reduced basis method [NOO 83], 
the perturbation is applied bef ore the reduction. This avoids the calculation of many 
coefficients of a reduced non-linear problem. As compared to the classical asympto
tic numerical method [COC 941] it differs only by the solving process of the linear 
problems that is performed by a reduced basis technique and not by a direct decom
position of the tangent matrix. lt can also be strongly and cheaply improved by the 
introduction of Padé Approximants. 

The presented numerical tests have clearly shown that the new method is very at
tractive for large scale problems. For instance, the computing time of one step of a 
problem having 39756 d.o.f. can be divided by 8. It has also been shown that the tech
nique works weil even with a rather large dimension of the subspace. 

Likely, the new numerical technique could be useful in the prediction phase of 
prediction-correction algorithms applied to large scale problems. Indeed, many vec
tors can be computed using this type of numerical processes. This could help to de
fine subspaces for the reduced basis technique. A complete discussion of this point is 
beyond the scope of the presented paper. 

The application of the ANM to large scale problems (bigger than 105 d.o.f.) is a 
challenge. Finally, a direct linear solver would imply a too big computation time. An 
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iterative method such as the conjugate gradient would allow a faster resolution, but the 
computation time would then be proportional to the truncation order. To account for 
previous resolutions with the same matrix, sorne techniques are available [REY 96]. 
Despite sorne attempts [MOK 99], the latter technique does not yet provide very good 
results within the ANM. The coupling of the ANM with the domain decomposition 
method is a more promising way [GAL 00]. The results of the present paper suggest 
that the reduced basis technique could also make easy the solving of large scale pro
blems by the ANM. 

The classical reduced basis method for non-linear problems has been revisited. 
Clearly, it is not recommanded when the dimension of the subspace is larger than 
five, because of the CPU time that hugely increases with the order. Furthermore and 
contrary to the new technique, it presents other drawbacks: numerical instabilities, 
application field restricted to quadratic or cubic systems. 
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Appendix A 

The operators t•, q• and c• are defined as follows: 

t;i = fo. (··l(ui): D: 'l(ui))dv 
qiik = fo.bn1(uj,Uk): D: 'Y1(ui))dv 

+ fo.('l(uj): D: 2'Yn1(uk, ui))dv 
c;jkl = fo.bn1(uj,uk): D: 2'Yn1(u,,ui))dv 
and ft = Pe(ui) 

[21] 
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The operators l and q are defined as follows : 

lij = J O.o Sj : ··yi ( Ui )dv 
for i = 1,p and j = 1, N 

Q;jk = fo.o Si: {'y1(ui) + 2')'n1(uk,ui))dv 
for i = 1, p j = 1, N and k = 1, p 

and fi = Pe(ui) for i = 1,p 

[22] 


