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ABSTRACT. Piezo-ceramics are brittle; they can fail untimely due to the propagation of flaws or 
defects produced during their manufacturing process. ln this paper, we propose a numerical 
estimate of a J -integral generalized to electro-mechanical processus, wich will prove useful in 
designing a propagation criterion. To that end, we use the finite-element method to solve the 
piezo-electric problem, providing thus displacements and coordinates of elements that consti­
tute the chosen integration path. Then the computation of J is achieved by using the energy­
domain-integral methodfor piezo-ceramics such as PZT-4H and PZT-SH. 

RÉSUMÉ. Les piézo-céramiques sont des matériaux fragiles; la propagation d'un défaut acquis 
lors du processus de fabrication peut provoquer une rupture prématurée. Dans cet article, 
nous proposons un calcul numérique d'une intégrale J generalisée aux processus électro­
mécaniques utile dans un critère de propagation. Pou cela, on utilise la méthode des éléments 
finis pour la résolution du problème piézo-électrique fournissant les déplacements et les coor­
données des différents éléments qui constituent le contour d'intégration. Le calcul numérique de 
J est effectué par la méthode de l'intégrale du domaine de l'énergie pour des piézo-céramiques 
PZT-4H et PZT-SH. 

KEYWORDS: Finite element computation, energy-domain-integral method, piezo-electricity, piezo­
ceramics, PZJ-4H, PZT-SH. 

MOTS-CLÉS: Calculs par éléments finis, méthode de l'intégrale du domaine de l'énergie, piézo­

électricité, piézo-céramiques, PZT-4H, PZT-SH. 
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1. Introduction 

Piezoelectricity is a characteristic property of the material whieh can exist natu­
rally (for example quartz) or can be transmitted artificially to the material by submit­
ting it to polarization. This is the case of the ceramics, for example: barium titanate, 
lead zirconate or PZT whieh are the most used piezoelectrie ceramies in industrial ap­
plications. A non piezoelectric isotropie ceramic, submitted to polarization, becomes 
an anisotropie piezoelectric one with a transverse elastic isotropy and a hexagonal 
symmetry of class 6mm with x3 as an axis of polarization and x 1 - x 2 as an isotropie 
plane. Piezoceramies are brittle [PAK 90] [SUO 92]; the propagation of a flaw or a 
defect produced during their manufacturing process can cause an early failure. An 
electrical potential of a magnitude of about MV fm applied to a piezoceramic can 
enhance the propagation of a crack [CHU 89]. As these materials are frequently used 
in industry, it becomes necessary to introduce a failure criteria to predict their lasting 
quality during their life service. The notion of crack extension force is taken as the 
critical threshold of the fracture. When this extension is along the x1 axis, this force 
becomes identical to the J integral. When the traction on the crack faces is zero, we 
have G = J [PAK 86] [MCC 90]. 

Up to now, J was calculated with an approximate method [PAK 90] [SUO 92] 
[SUN 95]. In this study, we intend to compute J numerically for a piezoceramic mate­
rial. We will adopt the following procedure: the elastic problem will be solved thanks 
to MODULEF (The program developed by INRIA); this will allow us to have the co­
ordinates, strains and the electric field of the different elements of the path integral, 
these results will be the input data to our program "rupture" to calculate J by using 
the energy integral domain method. 

2. Problem formulation 

For a linear, elastic, piezo-electric, by neglecting the body forces in the small strain 
theory J is (see [MAU 95], [DAS 94] and [DAS 95]) 

[1] 

Here r is any path surrounding the crack tip, beginning at the inferior crack surface 
and ending at the superior one in the trigonometrie way, the unit normal ni being 
oriented outward. W is the electric enthalpy, aij is the stress field, and Dij is the 
electric induction field. 

For the calculation of the J integral, we assume the hypothesis of brittle fracture 
i.e, the material is continuous and elastic in the macroscopic sense but il contains a 
discontinuity of the displacements. The first step is to solve the electroelastie problem 
to find out the value of the different contributions in expression 1. 
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3. Electroelastic problem formulation 

3.1. The case of a piezoelectric material 

For a region B of R 3 occupied by a piezoelectric structure under surface forces 
of density Td applied on the âBr part of the boundary âB; the displacements are 
imposed on ô Bu which is a part of this boundary. In addition, the region Bis subject 
to the electric charges applied on the part âB~ and to an electric potentiel on âB~. 
The problem is to determine the displacement field Uï and the electric potential 4> in 
every point M of B and also the stress field a and the charge density q from the initial 
configuration u0 and f/>0 . The formulation of the problem with the partial derivatives 
in the quasistatic case is: 

find ui(x, y, z) and f/>(x, y, z) on B for i = 1, 2, 3 with: 

aii,i = 0 in B; 
Di i = 0 in B; 

a ii ni = Tl on ô Br; [2] 

with: 

-ni : the unit exterior normal to âB; 

- uf : the imposed displacement on ô Bu; 

- q: the imposed electric charge on âB~; 

- 4>d : the imposed potential on âB~; 

- aij : the stresses field; 

- Di : the electric displacement. 

D·n· = q on âBe. 
1 l q' 

Ui = uf on ô Bu; 
4> = 4>d on âB~; 

The constitutive equations of the piezoelectrics are given by: 

and [3] 

Sij = H Ui,j + Uj,i) is the strains field, and Ei is the electric field, Ei = -c/>,i 

Piezoelectricity is a simple generalization of the elastic problem by adding an un­
known scalar, the electric potentialf/J. Indeed, the constitutive equations are still in the 
generallinear form (but in a larger space of nine dimensions). 

{a}= [ë].{S} [4] 

With: 

{a}= {au a22 a33 a23 a13 a12 D1 D2 D3}T 
{S} ={su 822 833 823 813 812 -E1 -E2 -E3}T [5] 
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and: 

Cu c12 C16 eu e21 €31 

c22 C26 €12 €22 eaa 

[é]= c66 €16 €26 €36 [6] 
-Eu -€12 -€13 

-€22 -€23 

-€33 

3.2. The particular case of ceramics 

The constitutive equations for a piezoceramic are: 

au 

0'22 

cu C12 C13 0 0 0 su 
0'33 C12 cu C13 0 0 0 S22 

c1a C13 ca a 0 0 0 sa a = 
0'32 0 0 0 C44 0 0 2sa2 

0 0 0 0 C44 0 2sal 

0'31 0 0 0 0 0 Cs6 2s12 

0'12 

0 0 €31 

0 0 ea1 

{ E1 } 0 0 eaa 
E2 [7] 

0 €15 0 
Ea 

€15 0 0 
0 0 0 

D1 su 

[ .~. 
0 0 0 €15 

~ l 
S22 

D2 = 0 0 €15 0 sa a 

ea1 eaa 0 0 2s32 

Da 2sal 

2s12 
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0 

+ [8] 

4. Problem of the boundary conditions on the crack faces 

Conceming the boundary conditions on the crack faces, Mikhailov and Parton 
(1990) (MIK 90] and Parton (1976) [PAR 95] have assumed that crack faces to be 
traction free and that the potential and the normal components of the induction are 
continuous: 

1/J+ = r D~ = D;; [9] 

This condition is not physically valid because the permittivity for the piezoceram­
ics is about 103 superior to the environmentone (example of silicon oil or air) [PAK 90] 
which does not allow 1/J or D to be continuous across the crack faces. 

In 1980, Deeg [DEE 80] analysed the dislocation, fracture and inclusion problems 
in piezoelectric solids. In order to simplify his study, he assumed that the normal 
component of the electric induction (on the crack faces) vanishes. PAK [PAK 90] has 
formulated a detailed argument to justify this hypothesis, that is wh y this condition is 
called the D-P condition (Deeg and Pak) [TON 96]. 

In 1987 [MCM 87], McMeeking has studied the fracture of a dielectric with a 
conductor fluid filling the crack. He found out that the most appropriate condition is 
ljJ+ = 1/J- =o. 

Actually the D-P condition is the one commonly used in the mechanical study of 
the fracture of the piezoelectric materials. This hypothesis consists in considering the 
crack faces traction free and the normal component of the electric induction on the 
crack faces zero. This condition is valid in the case of imperfect contact of the crack 
faces and when the space between the two crack faces is filled by air or by a non­
conducting gas, this is what happens in reality, especially in the case of a mechanical 
loading acting in the opening mode of the crack. 

5. The energy-domain-integral method 

5.1. The case of an elastic material 

5.1.1. Two-dimensional problem 

Starting with the expression of the J integral (see [MAU 93], [MAU 95] and [RIC 71]): 
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[10] 

We can write equation [10] in a new form by considering a closed contour around 
the crack tip. The procedure is as follows. Let us note the ex teri or normal to r• : rii, 
as in figure 1 (r* = r1 - ro + r+r-). We have then 

on 

on 

on 

r+ and r­

ro 

r1 

m1 = 0 andm2 =~ 1, 

By introducing a fonction q which is smooth in the closed domain and equal to 1 
on r 0 and 0 on r 1' we can easily show th at equation [ 1 0] takes on the form: 

L 
A* 

~ 

m 

Figure 1. Representation of the closed contour around the crack tip 

[Il] 

The second term disappears when considering the crack faces traction free. Using 
the Green-Gauss theorem we can write : 
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= 1 { (uii aui - W8li)~dA 
}A• 8x1 8xi 

If awl a aui (- - -(Uij-))qdA 
A· axi ÔA; axi axl 

[12] 

Here A* is the area enclosed by r o and r 1. The second term of the integral is 
zero when the body forces are neglected. For an elastic material under quasistatic 
conditions, in the absence of the body forces, thermal strains and crack-face traction, 
equation (12] becomes: 

If aui 8q 
J = (uii-- W8li)-dA 

A• 8x1 8xi 
[13] 

Equation (13] is path independent; q can be interpreted as a normalized virtual 
displacement. That is why the domain integral method is interpreted as a method 
analogous to the the virtual-crack-extension one. 

5.1.2. Three-dimensional problem 

In the two-dimensional case, the path integral was expressed in terms of an area 
integral. In the three-dimensional case, it will be more appropriate for the numerical 
analysis to express the path integral in terms of a volume integral. 

In the case of three-dimensional fracture, we introduce a local coordinate system 
in the position 'TJ where J(TJ) is calculated along the crack front as indicated in figure 
(2a) by using equation ( 1 0]. The pa th r o is located in the plane ( o, xï, x2) (see figure 
2b). 

Let us construct a tube of length L::.L and of radius ro along a segment of crack 
front. 

We define the virtual extension of an elementary segment of the crack front as 
indicated in the figure 3 below. 
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Crack front 

., 
Normal to the front 

'1 
r
0 

Tangential to the front 

b)Representation of the local 
crack plane coordinates for 
a section Tl· .. ······,....-·-·----- -·----

a)Representation of the local 
coordinates along the crack front. 

Figure 2. Local coordinates along the crack front in 3-D 

. q(Tl) 

' ' 

Crack front .. ·~ 
' Crack front 

' 

a)Crack front elementary segment b)Interpretation of q as a virtual crack extension 

Figure 3. Area enclosing an elementary segment of the crack front 

The q function is assimilated to a virtual crack extension of the point "1 in the 
direction normal to the crack front. l:;L is the length of the elementary segment under 
consideration (figure 3a). For each displacement q(ry) corresponds an increment of a 
potential energy -81r = J(ry)q(ry). Let us note -81r the total variation of the potential 
energy corresponding to the virtual extension of the whole segment l:;L (see figure 
3b) we have: 

-07r = [ J(ry)q(ry)dry 
jb.L 

[14] 

We introduce ] the energy corresponding to the extension of an elementary seg­
ment of the crack front, which makes it possible to write: 
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-81r = J 6.L = r J(TJ)q(1J)d1J [15] 
}t:;.L 

By replacing J(17) by its expression, we obtain: 

- . 1 auj J 6.L = hm [W 8li - a;j -]qn;dA 
ro-+0 So 8x1 

[16] 

We construct around the tube of radius r 0 (see figure 3a) another tube of radius r 1 

(see figure below), we define (as in the two-dimensional case) J for the new closed 
area, which results in the expression below: 

[17] 

where the area S* = S1 + s+ + s- - S0 is as indicated in figure 4: 

Crack front 

Figure 4. The areas So and S1 enclosing the volume integration B* in 3-D 

The definition of q is: 
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q = { 1 on So and 0 on sl } [18] 

The three-dimensional formulation of the integral domain method is: 

[19] 

In this equation, we considered that : 

m1 = 0, m3 = 0 and m2 = ~ 1 on the crack faces supposed to be traction free. 
By applying the divergence theorem to the area integral of equation [19], 

we obtain: 

J b.L = 1 [a· ·u · 1 - W t>1 ·]q ·dB lJ J, ' ·' v• 
[20] 

We have to combine this last expression with equation [ 15] to fi nd out the pointwise 
value of J: J(7J). The result is (cf. Anderson [AND 91]): 

Jb.L 
J(1]) = I~L q(7J)d(1J) 

[21] 

where the denominator term represents the variation of the area of the crack resulting 
from its virtual extension, this area is represented in the figure (3a). 

5.2. The case of a piezo-electrical material 

Theoretical development 

Let us consider the general case i.e, the three-dimensional one, and let us adopt, 
first, a simplified mesh (figure 5a). 
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1] 

a)The 3-D mesh. b)The mesh along the crack front 

Figure S. Path integral in 3-D 

We consider the axis "rJ" with origin "E" (figure Sb) along the crack front, as in 
the elastic case, we define in each point of the axis "rJ" (figure Sa) a path 'T" which 
center is the point under consideration (that is the case for the point "D" in (figure 6a) 
and then we compute the J integral of which the expression is: 

[22] 

For the point D, we can write Jv = J(rw). If we move virtually the point D in 
the "x1 " direction of a distance c5a(rJD ), we obtain a potential energy variation: 

[23] 

D 

a)The integral J in D b )Result of the virtual extension of D 

Figure 6. Integral path J in the point D 
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During its own extension, the D point carries away the points situated on the right 
of (D") and also the ones situated on the left of (D"'). D" and D"' are located 
respectively on the left and on the right of Don the (ry) axis (see figure 6 b). 

' 
~ .. D' ,. ' 

, , .. ~ .. -!7 

' 
~a (TJ D) .. · ' 

a)Virtual crack extension of D b)The area integral at D 

Figure 7. Virtual crack extension in 3-D 

If oa( 'Tl) is the virtual extension of any point located along the segment 'TJD" D'" and 
J(ry) is its corresponding path integral, then, the total change of potential energy of 
the material under consideration is: 

[24] 

We note the distance 'TJD" D'" by /:::,.L, if we introduce the released energy for a 
virtual extension of a unit segment of the crack front, we obtain: 

[25] 

A is any area enclosing the crack tip which can be represented, for example, by 
the lateral area A1 of the cylinder of radius R1 (see figure 8). 

Let us consider the lateral area A • = A1 + A+ - A0 + A- and let us introduce 
the exterior normal to this area defined by: 

-on Ao : mi = -ni; 

-onA1: mi= ni; 

-on A+ and A-: m1 = 0 and m2 =~ 1. 

We introduce the q function defined by: 



{ 
q = 0 
q=l 
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on A1 
on Ao 

[26] 

Figure 8. The volume of integration in 3-D 

The integration along the area Ao is the same as the one along A •. The proof of 
this is as follows: 

Jb.L = -~ (W 61i - O'ijUj,l - Di,P,I)miqdA [27] 
Ao 

= -1 (W 61i - O'ijUj,l - Di,P,I)miqdA 
At+A+-Ao+A-

+ ~ (W bli - O'ijUj,l - DirP,l }miqdA 
At 

+ ~ (aijUj,l- DirP,l))miqdA [28] 
A++A-

The second term of the integral vanishes because q is taken equal to zero on A1 , 

the third term is also zero if we consider that the crack faces are traction free and that 
D+ = n- =O. In this way we have proved that: 
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[29] 

By using the divergence theorem we then obtain: 

]~L [30] 

[31] 

If the body forces vanish, the second term of the integral vanishes as weil. This 
makes it possible to write: 

[32] 

Here B* is the volume enclosed by the two cylinders of radius Ro and R1 of figure 
8, and the virtual crack extension is in the x1 direction. Figure (6b) shows that q on 
D" and D"' (which corresponds to the ends of the cylinderof figure 8) is equal to "0". 

In practice, Ro is taken to be equal to zero, this means that the virtual extension 
is only applied to the crack tip. In this case, A* corresponds to the lateral area of the 
cylinder of radius R1 (figure 8).The pointwise value of J is J(ry) and its expression is 
given by equation 21. 

6. Implementation of the numerical computation 

We consider equation (32], by expanding this expression and arranging the differ­
ent terms we obtain: 

]~L 
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[33] 

Here q is given by equation (34], and ââq , where j = {1, 2 or 3}, is given by the 
Xj 

expressions (35] 

âq 
ÔXj 

8 

q = LNiQi 
i=l 

[34] 

[35] 

lt. h and J3 represent the three integrais of the expression [33) and are calculated 
in the Gaussian points; the coordinates of the Gaussian points and the corresponding 
weights can be found in the book by Dhatt and Touzot [DHA 81] or in Zienkiewicz's 
[ZIE 71]. 

J can be calculated as follows: 

3 3 3 

J /::;.L = L L L (J1 + J2 + h)detCwe9 w119 w<9 [36] 
{g=l 1/g=l (g=l 

where eg.'T/g and (g are the integration Gaussian points and W{g' w,g and W(g are 
the corresponding weights. 

The example below can give us an idea about the choice of the value of q: 

Let us consider the example of the mesh represented in figure 9a. The details of 
the mesh along the crack front are given in figure 9b. In the plane ( o, xî, x2), q = 1 
on 80 and on the points located in the region enclosed by 80 and 81, q = 0 for the 
points situated on S 1 . 
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a)An example of a mesh 
in 3-D. 

Figure 9. Example ofmesh in 3-D 

c. 

B,~H 
et!i§Y , , , . . G 

A E ·· ... 

F 

b) The ox 3x 1 plan. 

Along the x 3 axis, "q = l" on the point where J is calculated and "0" in the 
adjacent points. If we considera point situated in the end point, for example "E" (or 
"H"), "q = l" for this point and "q = 0" for the point "F" ("G" if the point under 
consideration is "H"), for an internai point like "F" (or"G"),"q = l" for the point 
under consideration and "q = 0" for the adjacent points. In this case the adjacent 
points are: "E" and "G" (i.e., "F" and "H" if we calculate J for the point "G"). 

7. Numerical results 

7 .1. Introduction 

The authors mentioned here computed J by using an "approximated method". The 
most recent ofthese articles is the one written in 1995 by Park and Sun [SUN 95]. They 
presented the electrical and mechanicalloadings for a piezoelectric material for each 
mode of fracture with the corresponding expression which leads to the computation 
of J (or G). This is summarized below. 

For a PZT-4H piezoelectric ceramic, the total energy release rate (G) for each 
mode of fracture was obtained as: 



1 

----1.....------- ~ 

<---~ 

2 

Mode I 
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1 
1 

~------- . 
x3 

Mode II 

1 
1 
1 

~------ -'1>-

Mode III 

* x3is the polarisation axis of the piezoelectric material 

Figure 10. The loading corresponding to each mode of fracture 

7 .2. Presentation of the example considered for the numerical computations 

In this section, we will consider a few examples of the fracture of a piezoelectric 
ceramic, for which the approximate computation of J is given in the corresponding 
article. The difference between the examples considered is the direction of the polar­
ization axis in comparison with the position of the mechanicalloading and crack front. 
This is a way to validate our numerical computation procedure on the one hand and to 
find out the variation of J in fonction of the variation of the electric potential on the 
other hand. The fini te elements mesh used for the different examples is the same in ali 
cases (see figure 11). This mesh represents half of the who le plate un der consideration 
for an edge-cracked plate and quarter of the plate in the case of a central-cracked one 
(when the symmetry of the geometry and the loading is taken into account). The ge­
ometrical features (thickness, length and width) are left unchanged. We will consider 
the PZT-5H and PZT-4H which are the most used piezoelectric ceramics. 



116 Revue européenne des éléments finis. Volume 10- n• 1/2001 

The properties of the PZT-SH are [PAK 92]: 

Cu = 12.6 1010 N/m2
, C12 = 5.5 1010 Nfm2 , C 13 = 5.3 1010 Nfm2 

C33 = 11.71010 N/m2
, C44 = 3.531010 N/m2

, C66 = 3.55 1010Nfm 2
, 

e31 = -6.5 C/m2
, e33 = 23.3 C/m2

, e15 = 17 Cfm2
, 

fu= 15110-1° CfVm, f33 = 13010-1° C/Vm. 

The properties ofthe PZT-4H are [SUN 95]: 

Cu = 13.9 1010 N/m2
, C12 = 7.78 1010 Nfm2 , C 13 = 7.43 1010 Nfm2 

C33 = 11.3 1010 Nfm2
, C44 = 2.56 1010 Nfm2 , C66 = 3.06 1010 Nfm2 , 

e31 = -6.98 Cfm2
, e33 = 13.84 Cfm2

, e15 = 13.44 C/m2
, 

fu= 6. 10-9 C/Vm, f33 = 5.4710-9 C/Vm. 

For each example, the position of the crack front in the finite element mesh is 
represented in figure 11. 

s1. s2 and s3 in figure 11 correspond to the different areas where J is computed. 
J corresponds to J(S2) when the area is not indicated. 

Crack front 

Figure 11. The finite element mesh for a piezoelectric plate 
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7 .3. Validation of the adopted numerical method 

In order to validate the numerical method presented above to compute J, we con­
sider the case of the polarisation axis parallel to the crack front (direction x3 ) and 
perpendicular to the mechanicalloading. This example is the one studied by Suo et 
al in their article published in 1992 [SUO 92]. The manner in which the electrical and 
mechanicalloadings are applied is shown in figure 13. Suo et al computed J by using 
the following equation 

[40] 

Figure 12 shows the computation results for 6. = 6 p,m, and a variable 4> for a 
PZT-4H ceramic. The curve "num" is the one obtained by using the energy domain 
integral method and the one referenced by "Suo" is the one obtained by using the 
expression (40] thanks to the mathematic program "MAPLE". 

ô , 
·1 

·2 

-3 

-5 

-6 

Suo+­
num +-

-7 '---'----'--'---'---'-'---'----'--'---'---'-'---'---' 
~ -6 ~ 4 ~ 4 ~ 0 2 3 4 5 6 7 

Electrical potential 

Figure 12. J = f ( 4>) for a ce ramie PZT-4H ( J is in Nf m and 4> in w-4 V) 

The graph shows that the numerical results obtained are very satisfactory. Indeed, 
if we consider the difference in terms of the absolute value between the two values 
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Jnum and Jsuo. we find out that for ifJ = 0 V, we have only 0.005 %of difference 
between the two values and 0.007% for ifJ = 1 104 V. We can then conclude that our 
optimistic previsions conceming the utilization of the energy domain integral method 
for the computation of the J for a piezoelectric ceramic were right. 

Let us take advantage of using a three-dimensional study to try to know the varia­
tion of J along the thickness. Sorne results are given in Table 1 (the considered units 
are, e: rn, 4>: 10+5 V, J: N/m and 6. = 6pm). 

Considering this table, we can note that for an externat loading such as the one 
adopted by Suo et al, the J integral doesn't vary when the plate thickness varies; its 
value is almost the same for either 0.002 m or 0.01 m. For a given thickness, J is 
constant from one area to another. There is little variation for the area situated on the 
extremity of the plate, but its value is still close to the value of the area situated on the 
middle of the plate thickness. 

Also the direction of electric field doesn't influence the crack propagation. Figure 
12 shows that a negative electrical potential involves a negative J. ln this case, the 
crack faces are in contact and J is taken to be equal to zero. 

• Thickness : 0.01 rn 
*H :0.5 rn 
*B :0.1 rn 
•a : 0.04rn 

A 

+ 

;.::/!~!1/l~ffl 
11-i""'"'"•'······-·~·-
1-<· ....... ... 

a 

H: 

a ........... ;,.. 
~ 

+ + 

Figure 13. The loading of a piezoelectric plate studied by Suo et al 

7 .4. Computation of J for the Mode III 



J integral computation for piezo-ceramics 119 

e = 0.002 e = 0.002 e = 0.002 e = 0.01 e = 0.01 e = 0.01 
rjJ = -0.1 r/J=O r/J= 0.1 r/J= -0.1 r/J=O rjJ = 0.1 

J(8I} 4.3194 5.0093 4.4168 4.2985 4.9388 4.2733 
J(82) 4.3748 5.0285 4.3749 4.3857 5.0393 4.3858 
J(83) 4.4081 5.0254 4.3107 4.2736 4.9403 4.2987 

Table 1. Values of J along the thickness for the PZT 4H ce ramie ( 81, 8 2 and 8 3 as 
indicated in fig ure 11) 

Figure 14. Representation of the externalloading for the Mode III 

ln his article of 1990, Pak [PAK 90] considered a loading like the one represented 
in figure 14 (the geometrical characteristic parameters are the same as those given in 
figure 13), with a polarisation axis following the X3 direction and parallel to the crack 
front (which also follows x3) and to the extemal mechanicalloadings. 

Pak bas calculated the crack force extension for a PZT-SH piezoelectric ceramic 
by using the following expression: 

[41] 

We have calculated J numerically by using the energy domain integral for the same 
problem. We have noted the corresponding value J(num), and then we compared 
J(num) to the value obtained by expression [41] computed by using the "MAPLE" 
program. We have then compared the difference (in absolute value) between J(num) 
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and J(Pak) (the unit of J is N/m) for three values of Eoo (E00 is in 10+4 V fm, 
'Yoo = 2.375 10-5 ande= 1 cm). The results are given in Table 2 which shows, once 
again, the efficiency of the numerical method. 

Eoo J(Pak) J(num) error 
-0.5 5.4879 5.3175 3.1% 
0 5.0043 4.9575 0.94% 
0.5 4.4732 4.3312 3.2% 

Table 2. Comparison of the numerical and theoretical results for the example studied 
byPak 

For 'Yoo = 2.375 10-5, e = 1 cm and for two different materials, we tried to know 
the variation of Jin function of the electric potential. We obtained figure 15 which 
first shows that for a PZT-SH piezoceramic J is larger than the PZT-4H one. This is 
quite normal because of the larger value of the PZT-SH coefficients compared to the 
PZT-4H ones, especially the C44 coefficient of which value is 3.53 1010 while for PZT-
4H its value is only 2.56 1010 • Jmax is reached for rpmax = 0.5 104 V for a PZT-SH 
and for a PZT-4H, lmaxis obtained for rpmax = 0.75 104 V. For a negative value of 
the electric potential, we have a negative value for J for both materials. This means 
that the two crack faces are in contact and in reality, J is taken to be equal to zero. 
In this case and in the case of an electric potentiallarger than rpmax, it will not have 
any crack propagation. For a value of an electric potential situated between zero and 
rpmax, the crack propagation will be facilitated by the electrical field. We can exp lain 
this by the fact that the applied electrical field is shared between the elastic stress and 
the electric induction. Between zero and rpmax the induction is weak compared to the 
stress, this fact has caused the crack propagation. For an electric potentiallarger than 
rpmax, the induction effect becomes preponderant over the stress one. This results in 
the stop of the crack propagation. 

e = 0.002 e = 0.002 e = 0.002 e = 0.01 e = 0.01 e = 0.01 
rp = -0.1 rp=O rp = 0.1 rp = -0.1 rp=O rp = 0.1 

J(s1) -1.9516 0.7994 -0.9897 2.3598 7.4287 8.4619 
J(s2) 0.5006 4.2526 3.6360 0.8504 4.9575 4.7949 
J(s3) -0.4879 0.7994 -0.9897 2.3598 7.4287 8.4619 

Table 3. Values of J along the thickness for a PZT-5H ce ramie 

The three-dimensional calculation leads to an evaluation of the variation of J along 
(and in function of) the thickness. The results are given in Table 3 (the considered 
units are, e: rn, rp: 10+5 V, J: Nfm, and 'Yoo = 2.375 10-5) where we can see 
that the J(s2) value, which corresponds to the middle of the plate, does not differ 
much whether we considere = 0.002 ore = 0.01 m. On the other hand, because the 
polarisation axis is along the thickness, the J value differs from one area to another. 
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J can either increase or decrease in the end points of the plate. lt depends on the sign 
of the applied electrical potential. 

• 0 , 
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Figure 15. J = f(<P)for the Mode lll ( J is in N/m and <P in 104 V) 

For the mechanicalloading (with <P = 0.1105 V ande = 1 cm), figure 16 shows 
that it al ways increases J which implies the crack propagation. 

7 .S. Calculation of J for the Mode 1 

Let us consider the loading considered by Park and Sun [SUN 95] which is repre­
sented in figure 17. The material is placed so that its polarisation axis (which is along 
the x3 axis) is perpendicular to the crack front. In this case, crack prapagation will be 
along the x2 axis. 

The fini te element mesh used is represented in figure 19. Because of the change of 
the crack propagation direction, we write J in the following manner: 
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[42] 

For the computation of J, Park and Sun used the following expression 

~ 
.!3 
i 
:; 

·2 

05 1 1.5 2 25 

Mechanical loading in 105 

Figure 16. J = f(mechanicalloading)for a PZT-4H ceramic 

4J = -0.1104 4J = -0.1103 4J =o. 4J = 0.5 103 

Jtheo 10.8739 10.8120 10.7498 10.6872 
Jnum 10.3813 10.3811 10.3757 10.3644 
lerrorl 4.53% 3.99% 3.48% 3.02% 

4J = 0.1104 

10.6243 
10.3478 

2.6% 

Table 4. Numerical and theoretical results for a PZT-4H ce ramie loaded in a 1 mode 
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Figure 17. The piezoelectric plate loading in Mode 1 

<P J(PZT -4H) J(PZT- 5H) 
0 10.3837 8.0611 
-0.2510" v 10.3872 8.0620 
-110" v 10.3895 8.0482 

Table 5. The <P values for which J is maximal for the PZT-4H and PZT-5H ce ramies 

We have calculated J numerically by using the energy domain integral for the same 
problem for a PZT-4H ceramic, with an electric potential as an extemalloading and a 
stress equal to 3.4 106 Pa. We denoted the results obtained as Jnum and compared the 
results to those obtained by [43] using the "MAPLE" program. The results obtained 
are denoted as Jtheo. 

The difference between the two computations is given in Table 4 (</J is in V and 
J in N fm ande = 1 cm) which shows, once again, the validity of the numerical 
method we used. 

By choosing the extemal electric loading values, equivalent to those used by Park 
and Sun and for two different thicknesses (e = {0.002, 0.01} m) and for a stress 
equal to 3.4 106 Pa, we have drawn in figure 18 the variation of Jin fonction of the 
electric potential for a PZT-4H ceramic and in figure 20 the one corresponding to a 
PZT-5H ceramic. As in the mode III, the curve is almost the same for both materials. 
The two curves also show that J does not vary whether we consider the thickness 
0.002 or 0.01 m. In the neighborhood of <P = 0, the values are very close. In order to 
see more clearly what happens in this zone, we have given the J values in table 5. 
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Figure 18. J = f ( <P) for a PZT-4H ceramicin Mode 1 ( J is in N / m and <P in 103 V) 

From the table 5, we can see that lmax does not correspond to <P = 0 but to <P = 
-10 103 V for the PZT-4H ceramic and for the PZT-5H ceramic we have </Jmaz = 
-0.25 103 V. The two curves show that for a negative electric potential smaller 
than <Pmax, the J value is negative, the crack faces are in contact, and in reality J 
is taken to be equal to zero. For an electric potential value smaller than <Pmax and 
larger than zero, there will be no crack propagation. For an electric potential value 
between zero and <Pmax, because of the stress which receives a contribution from the 
electric potential that increases its value, J increases and there is a tendency to a crack 
prapagation. 

For an electric potential smaller than <Pmax and larger than zero, when <P decreases 
(we are dealing with negative values), the electric induction effect becomes larger than 
that of the stress and the crack does not propagate any more. 

We have studied the variation of J along the thickness for the PZT-5H ceramic. 
The results are given in Table 6 (the units used are e : in rn, J : N fm and aâ3 = 
3.4 106 Pa) where we can see that J does not vary a lot. This could be expected, 
because in this case the polarisation axis is not set along the thickness as was the case 
in the mode m. 

The curve representing the variation of J in function of the mechanicalloading is 
given in figure 21 (for a PZT-4H ceramic with e = 1 cm and <P = 0.1104 V). We can 
see that J increases as the mechanicalloading increases. 



Figure 19. The used mesh in Mode 1 

e = 0.01 
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e = 0.01 e = 0.01 
4J=O 4J = 0.5103 v 4J = -0.5 103 v 

J(s1) 8.0376 8.0281 8.0364 
J(s2) 8.0505 8.0407 8.0495 
J(s3) 8.0374 8.0279 8.0359 

Table 6. The J values along the thickness for a PZT 5H ce ramie. 

7 .6. Conclusion 

After computing J for a piezoelectric ceramic, we can conclude that: 
i- The energy domain integral is suitable for the numerical computation of J. 
ii- An exterior mechanicalloading al ways enhances the crack propagation. 
iii- An externat electric loading can enhance or stop the crack propagation, depending 
on the crack mode, the loading and the direction of the polarisation axis. 
iv- J varies along the thickness, when the polarisation axis is along the thickness. 
When the polarisation axis is not along the thickness, theo J does not vary along the 
thickness. 
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These remarks are based on our own calculations. They need to be completed and 
supported by an experimental study. 
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Figure 20. J = f(ljJ)for a PZT-5H in mode 1 (1/J is in 103 V and Jin Njm) 
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Figure21. J = f(mechanicalloading) (J is in Nfm and a33 in 106 Pa) 
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