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ABSTRACT A new practical methodology for the analysis of the damage to viscoplastic 
structures under low cycle fatigue loading paths is proposed The idea consists of 
carrying out a two time scale scheme an implicit algorithm for the numerical 
integration of the constitutive equations inside the loading cycles (small time scale), 
and an explicit scheme over the loading cycles (large time scale) For the small time 
integration, an implicit asymptotic algorithm based on the integral formulation of the 
constitutive equations, is used For the large time scale integration, an explicit 
algorithm, called "cycle jump technique" is used to integrate the model over all the 
loading cycles It can be shown that the combination of the two schemes is 
advantageous It allows to use and restore a limited number of variables, which are 
sufficient to estimate a cycle jump and give a measure of the way in which all the state 
variables are changing over the loading cycles Numerical results are presented and 
discussed at both Gauss point and structural levels in order to judge the applicability, 
efficiency and accuracy of the proposed method 

RESUME Une nouvelle me thodologie "pratique" de calcul des structures imilastiques 
endommageables sous chargements cycliques est proposee L 'idee consiste a mettre au 
point un schema a deux echelles de temps un algorithme implicite pour I 'integration 
numerique des equations de comportement a I 'interieur d 'un cycle (temps court) et u n 
algorithme explicite dans I 'espace des cycles (temps long) Pour I 'integration sur le 
temps court, un algorithme asymptotique implicite a ete developpe, base sur une 
formulation integrale des relations de comportement endommageable Pour 
/'integration sur /e temps long, un algorithme explicite de saut de cycles est utilise pour 
integrer dans l'espace des cycles L 'association de ces deux schemas presente des 
avantages utiliser et stocker un nombre restreint de variables, suffisantes pour 
estimer /'increment de saut de cycles et donner une mesure adequate de I 'evolution de 
toutes les variables d'etat le long des cycles Des resultats numeriques sur un point de 
Gauss et des exemples soulignent I 'applicabilite et I 'efficacite de cette demarche 
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1. Introduction 

The last two decades have shown an important progress in the derivation of 
constitutive equations. This is mainly due to the need for safety in many mechanical 
components subjected to very severe working conditions. For instance, structural 
components operating in nuclear or aerospace industries, are being subjected to 
increasingly severe and complex mechanical and thermal cyclic loading conditions. 
Such conditions often lead to a complex stress redistribution in structures, where 
localized regions of cyclic plasticity take place under cyclic thermal or mechanical 
loading paths. In addition, as discussed in [CHA 86], several processes interact i) 
the structural stress redistribution, ii) the cyclic hardening or softening processes 
which depend on the material and iii) the cyclic mean-stress relaxation which 
depends both on the material and on the applied loading. 

Moreover, the stress redistribution is also due to the interaction and cumulation 
of many kinds of material deterioration (such as ductile, creep and fatigue damages), 
which induce a non-homogeneous distribution of the material properties, when 
combined with different mechanical behavior (elasticity, plasticity and 
viscoplasticity ... ). This may have a great influence on the residual life of the 
structures. In other words, it is necessary to model the complete strain and damage 
behavior of the material in order to make an accurate failure analysis of structure 
(evaluation of the lifetime). This is possible with the classical elasto-viscoplastic 
constitutive equations "strongly" coupled to the damage evolution equations. 

Usually, the fatigue life prediction (high and low cycle fatigue) is made using 
simplified uncoupled approaches ([BEN 81], [LEM 86] and [AKR 97]). The 
principle is to calculate the mechanical fields distribution within the structure for 
one typical loading cycle (generally the so called stabilized cycle) Then, the 
obtained solution is used to predict the fatigue-life of each material (or Gauss) point 
of the structure. This uncoupled approach, even if it is very easy to use, cannot take 
into account the distribution of the mechanical fields due to their different 
interactions This leads us to underestimate the fatigue life according to the non 
relaxation of the stresses under the effect of the damage initiation and growth 

The fully coupled approach, developed in this work, allows to take into account 
accurately both transient stages of the fatigue life: (i) the positive hardening at the 
beginning of the loading history, (ii) the negative hardening observed during the last 
loading cycles due to the damage growth until the initiation of the macroscopic 
crack. Consequently, this kind of approach, if more expensive than the previous 
one, is thought to predict more accurately when and where the fatigue damage 
initiation can take place within geometrically complex structures. 

On the other hand, the coupled constitutive equations governing the evolution of 
internal state variables are, in general, highly non-linear and mathematically 'stiff. 
This inherent stiff character of the constitutive equations causes major problems 
during numerical integration. Present-day, structural engineering problems involve 
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complex thermal and mechanical loading histories, especially the case of cyclic 
loading. For the solution of these problems, the entire loading history has to be 
traced, requiring these equations to be integrated many times. The cost and CPU 
time involved abandoning the conventional methods of employing small time steps 
over the total fatigue life for accurate integration of these stiff equations. Therefore, 
there is a strong need to develop efficient and accurate integration algorithms with a 
self-adaptative time-step strategy that can achieve the desired accuracy and stability 
over the entire integration range i e. the loading history (many thousand cycles). 

Keeping the aforementioned requirement in mind, a great deal of study on 
numerical methods for integrating damage and/or viscoplastic rate equations in 
relation to the solution of boundary value problems has been reported Several 
numerical schemes have proven to be quite effective. In general terms, it has been 
argued that even if the multi-step methods such as those due to [GEA 81] usually 
give better solution accuracy as well as reliability, they are not suitable for large­
scale finite element computation because of their excessive need for computer 
storage. In view of this, one-step integration methods are much more desirable. In 
the context of these latter methods, two classes of algorithms can be identified: 
explicit and implicit algorithms. Extensive discussions on the advantages and 
disadvantages of these methods are available in the following works ([SIM 86], 
[GOL 89], [GEL 92], [TOU 93]. .. ). More recently, some works ([FRE 92], 
[CHU 91]) have proposed explicit and implicit asymptotic exponential integration 
algorithms with application to the integration of viscoplastic models. Unfortunately, 
the calculation of a large number of successive loading cycles between the initial 
undamaged and the fmal fully damaged (initiation of a macroscopic crack) states is 
still very expensive. For that reason, some methods have been developed to make 
possible the structure computation over a large number of cycles The so called 
"large time increment algorithm" [LAD 85] and "the time homogenization method" 
([GUE 86]) can be considered as straightforward methods to achieve this task 
However, some engineering approaches have been proposed to increase the efficiency 
and the usefulness of these methods Their main objective is to realize some cycle 
jumping increments using explicit schemes [LEN 89], [DUN 94] and [NES 98]. 

In the present paper, the damaged viscoplastic model is implemented in both 
the in-house point material solver as well as the general purpose finite element code 
SIC (available at the University of Technology of Compiegne). A two time scale 
integration scheme is proposed. It uses, (i) an implicit asymptotic algorithm for the 
numerical integration in the time space, and (ii) an explicit cycle jump algorithm in 
the cycle space. This allows the numerical prediction of the fatigue life of 
mechanical components. The main advantage of this scheme is to reduce the number 
of variables in both scales. Numerical results are presented and discussed in order to 
judge the applicability, efficiency and accuracy of this integration strategy in 
conjunction with the damaged viscoplastic model. 
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2. Coupled Damage and viscoplastic constitutive equations 

The classical framework of thermodynamics of irreversible processes with 
internal state variables is used. The present phenomenological model takes into 
account both non-linear hardening (isotropic and kinematic) and isotropic damage as 
dissipative phenomena. For the sake of simplicity only the small strain isothermal 
transformations are considered. This leads to neglect of the heat transfer and to 

assuming the additive decomposition of the total strain according to Eij = Efj + EG . 

Here, EG represents the overall plastic and viscoplastic strain components. The 
thermodynamic formalism is based on the assumption of the existence of two 
potentials depending on the state variables. These are, classically, divided into two 
families· 

- the controlled or observable state variables reduced in this isothermal case to 
the total strain tensor associated to the Cauchy stress tensor (Eij,O"ij) 

- the non observable or internal state variables taken here as : 

- the isotropic hardening variables (r,R) 

- the kinematic hardening represented by k internal variables ( ab,Xb). 
-the isotropic damage variables (D,Y). 

The coupling between damage and viscoplastic behavior is carried out through 
the effective state variables which can be used in the state and dissipation potentials 
instead of the classical state variables defmed above. In this work, these effective 
state variables are determined by using the hypothesis of the total energy 
equivalence [SAA 94]. Therefore, the relationship between the effective and the 
classical state variables are chosen as: 

(1) 

(2) 

~~ -'~1 D rvk U.IJ- Y 1-JJ U.IJ 

--~<. X~ 
Xij=--'J_ 

Vl-D 
(3) 

2.1. The state equations 

The fully coupled state laws are summarized hereafter (see [SAA 94] for more 
details). 

O"ij = vE EhOij + _E_ Efj 
(1 +V)(1-2v) (1 +V) 

(4) 
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2-
Ye = 1 h(O"ij) cr* (7a) 

2 E: 

In these equations O;j denotes the second order unit tensor, E and v are 
respectively the Young modulus and Poisson's ratio. The elastic, kinematic and 

isotropic moduli in the damaged state are respectively defmed by. E = (1-D)E, 

Ck = (1-D)Ck and Q = (1-D)Q, where Ck is the kth kinematic hardening modulus and 

Q the isotropic hardening modulus. The invariant h(Z;j) defmes, in the stress space 
and for any symmetric second order tensor Z;j, the following norm : 

(8a) 

where Z~ = Z;j - 1 Zkk O;j is the deviatoric part of Z;i In Eq (7a), cr* is the 
3 

multiaxial damaged criterion defmed by . 

cr* = 2.(1 +v) + 3(1-2v) (___Q)j___)
2 

3 h(O"ij) 
(8b) 

crH being the hydrostatic pressure. 

Note that the translation of the yield surface center, i.e. the kinematic hardening 
k 

effect, is given by the sum of the overall X;j tensors: 

(8c) 
k 
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2.2. Evolution equations: Differential formulation 

The evolution equations associated to the dissipative phenomena are deduced 
from appropriated yield function and dissipation potential. For the isothermal case, 
one get [SAA 94]: 

·P ~ 
Eij = Ap nij' 

. k 
<Xij = 

3 ,..D X·· .. - U!J- IJ n,J --
2 J2(Gij - Xij) 

(9) 

(10) 

(11) 

(12) 

where ak and b are material coefficients characterizing the non-linearity of the 
hardening; y, r and 11 are material coefficients characterizing the damage evolution 
and p; being the value of p at the beginning of the i'h loading cycle. n;i is the normal 
to the yield surface. . 

The viscoplastic « multiplier » Ap is given by: 

(13) 

and 

(14) 

with K and N are viscosity parameters and k is the initial yield surface radius. 

It can be seen that i...p is nothing but the norm of the plastic strain rate defined 
by: 

2 ·P·P 
=<.£ijEij 
3 

(15) 

The damage evolution law is chosen through equation (12) to represent, in this 
work, the low cycle fatigue mechanism ([LEM 86]) . Moreover, the thermodynamic 
admissibility of the present model can be easily shown ([SAA 94]). 
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2.3. Evolution equations: Integral formulation 

The set of constitutive equations ((9) to (12)) fonns a system of highly non­
linear first order ordinary differential equations (ode) defmed at a given time They 
can be integrated numerically using a classical explicit or implicit integration 
schemes According to the original work (without damage) by [WAL 87], it is 
possible to convert these ode into a new set of integral equations defmed over an 
interval of time Applied to the fully coupled constitutive equations presented 
above, one may get [NES 98]: 

O'ij(t) = Xij(t) + vE Ekk(t)Bij + [ 
1 

exp{- (L(t)- L(~))} 
(1+v)(1-2v) ~=() 

(16) 

at(t) = f 
1 

exp{- (G\t)- d(~))} eif d~ 
• ~=() ~ 

(17) 

r(t) = ( exp{- (Q(t) - Q(~))} _£_ d~ 
.Ji;=() ~ 

(18) 

D = Jt([cr*(p- Pi?] 1 P r~ 
r (1- D)ll ~ 

0 

(19) 

with: 

(20) 

(21) 

Q(t) = J l b Y1="D _£_ d~ 
I;=() ~ 

(22) 
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The state variables are now expressed in the form of implicit recursive integral 
equations (Eq. (16) to (19)), which depend on the scalar parameters L, Gk and Q 
which are themselves integral functions as indicated by Eq. (20) to (22) All these 
developments can be found in [NES 98] and will be published in a forthcoming 
paper [NES 00]. 

3. A two time scale integration scheme for cyclic loading 

This section is devoted to the presentation of a new methodology for the 
integration of the coupled damage viscoplastic constitutive equations under cyclic 
loading paths This procedure uses: (i) an implicit asymptotic algorithm to the 
numerical integration in the time space (small time scale) and (ii) an explicit 
algorithm (cycle jumping technique) in the cycle space (large time scale) It will be 
shown the advantage of the association of the two schemes in reducing the number 
of variables to integrate the constitutive equations. In fact, the small time 
integration scheme involves only a resolution of two non-linear equations While 
the large time integration scheme can be used with only two variables which are 
sufficient to estimate the cycle jump step (~N). This gives a convenient measure of 
the way in which all state variables are changing over the cycling history 

3.1. Small time scale integration 

A number of numerical integration schemes are available for numerical 
integration of the ordinary differential equations. The choice of a particular scheme 
is dominated by four considerations: i) stability, ii) convergence, iii) suitability for 
finite element implementation, and iv) computational cost. In the following, a 
numerical time integration is performed by an asymptotic integration algorithm 
initially proposed by [WAL 87] and extended in [NES 00] to the coupled damage 
and viscoplastic models described in the previous section. The algorithm is based 
on the approximation of the set of integrals Eq (16) to (19) using a recursive 
relationship In order to evaluate these integrals, an asymptotic expansion of the 
related integrand is performed about the upper limit of the time interval [t, t+M], 
resulting in an iterative implicit integration scheme Similarly to the classical 
algorithm ([AUR 94], [CHAB 96] and others), the asymptotic scheme reduces the 
fully coupled equation to two scalar equations in the case of fully isotropic flow 
(plasticity and damage). Initial anisotropy needs, at least, two additional tensorial 
equations for both plasticity and damage flow ([HAM 00]). However, the 
asymptotic algorithm can not be applied for initial anisotrpy related to the 
plasticity, since parameters L, Gk and Q have to be scalars. Within a typical time 
step [t, t+~t], one can obtain the above integral Eq. (16) to (19) in term of the 
appropriate variables value defmed at the beginning of the current time step. With 
the resulting integrated form of each state variables, the asymptotic expansion can 
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now be used to represent each integral. Therefore, the specific relations associated to 
each physical quantity (Cauchy stress, kinematic hardening, isotropic hardening and 
damage variables) are given by [NES 98]: 

Cauchy stress 

O'ij(t + ~t) = Xij(t + ~t) + vE Ekk(t)Oij 
(l+v)(l-2v) 

+ exp{- ~L} [ O'ij(t)- Xij(t) - vE Ekk(t)Oijl (23) 
(l+v)(l-2v) 

+ (iii~Eii- 2~ ~EkkOij- ~Xii- ~D Xii)[l- exp(-&)] 
3 1-D ~L 

with 

~L = 3~~p + ~D 
( )

tiN ~ 1 D 
KVl-D Vl-D ~p/~t + Q r(t+~t) + Vl-Dk) -

(24) 

Kinematic hardening 

k { k} + Ad~ [1- exp(-~d)] a,it + ~t) = exp - ~G <lij(t) u"''J ---''-'-:---"-
~Gk 

(25) 

with: 

(26) 

Isotropic hardening. 

r(t + ~t) = exp{- ~Q} r(t) + ~p [ 1 
- e~6~Q)] (27) 

with. 
~Q = byl.:D ~p (28) 

Damage 

Two time discretisation schemes can be used: 

- first order approximation: 
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D(t + At) = D(t) + AD = D(t) + D(t+At) At (29) 

- second order approximation: 

D(t + At) = D(t) + ~D = D(t) + 0.5 (D(t) + D(t+~t)) At (30) 

The recursive relationships given in Eq. (23), (25), (27) and (29) or (30) for 
determining O"ij(t+~t), a.~(t+~t), r(t+~t) and D(t+~t) involve the parameters 

~L. ~G\ ~Q and ~D. These parameters, in tum, via equations (24), (26) and (28), 
require a knowledge of O"ij(t+~t), a.b(t+~t), r(t+~t) and D(t+~t), for their 
evaluation. These equations are then recursive or implicit equations. Therefore, four 
implicit equations have to be resolved by Newton-Raphson iterative method 
However, the parameters ~L and ~Q are linearly dependent and related to the 
cumulated plastic strain ~p = p(t+~t) At. One can evaluate these parameters by 
computing the second invariant of the plastic strain rate, using. 

(31) 

where ~eii is deviatoric strain tensor increment and Jl is the shear modulus in the 

damaged state (Jl = (1-D)Jl). 

The unknowns are then reduced to AL and ~D, which can be determined by the 
resolution of the following implicit nonlinear system (two equations): 

g1 (~L. ~D)= ~L- 3ll~P -~D = 0 (32) 
.r.-d )tiN - 1 D 

Kv 1-u\ V1-D Ap/~t + Qr(t+At) + V1-Dk) -

and· 

gz (AL, AD)= AD - D(t+At) At = 0 (33a) 

or 

. . 
gz (AL, ~D)= ~D- 0.5 (D(t)+D(t+~t)) ~t = 0 (33b) 

If AL = x1 and ~D = x2, then equations (32) and (33a) or (33b) can be written as: 

(34) 

Using the classical Taylor expansion of the functional gi, the equation (34) can be 
linearized to get: 
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gi(x/) 8xf = - g i(xf) (35) 
Xj 

Each step of the iteration procedure requires the solution of (32). For 8xf, which 

d fi · d" I · xlc+l e mes a new mterme 1ate so utton J : 

xf+1 = xf + 8xf (36) 

being the basis of the next iteration step. This iterative process is continuated until 
convergence toward the solution, when the following convergence criteria are 
satisfied: 

and (37) 

where £1 and £2 are tolerance limits (EI = E2 = 10-4
) and [1-11

2 
designates an 

Euclidean norm From a computational standpoint, the asymptotic integration 
algorithm appears to be quite appealing. In (36), the coefficient matrix, denoted by 

J = ()gj/()xj, a 2x2 Jacobian matrix may be derived analytically or numerically. The 
efficiency and performance of this scheme is compared to others in [NES 98] or 
[NES 00]. 

3.2. A large time scale integration 

The treatment of the numerical integration in the case of cyclic loading paths 
must be involved by using an appropriate scheme, which is adapted to the behavior 
of the structure in the cycle space (Figure 1). In fact, the fatigue life of the structure 
can be schematically decomposed into three main stages· i) the hardening stage where 
the maximum stress (pick stress value for each cycle) increases, ii) the stabilized 
stage, defined as the stage in which the internal stresses are in equilibrium with the 
damage effects and finally iii) the softening stage represented by the decreasing of the 
stress fields due to the rapid increasing of damage until final fracture It is obvious 
that the stabilized stage represents the longest stage of the lifetime, especially in the 
case of high cycle fatigue. Therefore, it is often impossible to make the simulation 
of the behavior of the structure during all its lifetime. An accelerated calculation 
method, called "cycle jump technique" initially proposed by ONERA [LEN 89] and 
used by [DUN 94] and [NES 98], seems to be more attractive for its simplicity of 
implementation in gener~l purpose finite element codes. 
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Equivalent stress 
1 
I' 1 · Hardening stage 
v--------------..,..-."""" 2 Stabilized stage 

3 Softening stage 

2 3 

, 
Reduced fatigue life NINR 

Figure 1. Schematic representation of of the fatigue life main stages 

The principle of this technique is based on the fact that for large time part of the 
structure lifetime (stabilized stage), stress redistribution is small This suggests a 
possibility to drop the calculation of some intermediate cycles. In order to do this, 
it is necessary to express the vector y containing the state variables as a cycle 
function instead of a time function. Therefore, a particular cycle instant 
't (0 :s; 't :s; T) during the N1

h cycle is chosen so that the value of the vector at this 
cycle is given by: 

y(N) = y((N-l)T + 't) (38) 

where T is the cycle period. The problem reduces then to fmd a succession of 
discrete values for the yN: 

(39) 

where NR represents the number of cycles to failure.The integration of the variable 
YN is performed by using a second order Taylor expansion as follows. 

(40) 

The rate change of the state variables YN is expressed in term of a "pseudo" 
differential equation defmed as follow: 

. -By - YN+l- YN 
YN - -BN- - -"....:..:..:...:.1---"-~ (41) 
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The second derivative YN is also expressed approximately in term of the state 
variables rate YN The cycle jump length DN can be determined such that the error, 
resulting from truncating the higher order terms, is lower than a fixed tolerance 
11· The procedure for obtaining ~N from the rate of change of the state variables is 
outlined using two possibilities. The first one consists in limiting the Taylor 
expansion to the first order and calculate an optimal cycle jump ~N which keep 
sufficiently small the frrst order term compared with the actual value 

(42) 

where 11 1 is an accuracy parameter. The second possibility is a second order Taylor 

development where the optimal ~N step results from the minimization of the 

second order term comparing to the first order one with an h2 accuracy parameter 

(43) 

The cycle jump increment ~N is evaluated for each state variables at each 
integration point of the structure. The selected value is the minimum one among all 
~Ni 

The classical jump technique uses all the state variables to estimate the cycle 
jump length. These latter change differently (more or less non-linear) with different 
levels. This leads to difficulties to determine the suitable value of the cycle jump, 
particularly, when a cycle jump value belonging to state variables with insignificant 
values are taken into account. In order to establish a general approach for the 
determination of a suitable cycle jump increment (~N), it is necessary to choose 
suitable parameters which give a measure of the way in which all state variables are 
changing. New parameters given by the integral formulation of the problem may be 
considered as adequate variables describing the different stages of the evolution in 
the cycle space of the state variables. For instance, the parameter ~L has an 
important role in the asymptotic algorithm. It is an increment quantity over a given 
time step, which appears in the implicit recursive expression of the integral equation 
associated to the stress tensor. This expression gives not only the stress tensor at the 
end of time step, but take into account the rotation of the flow direction (i e the 
normal to the yield surface) during the non-proportional loading paths. Moreover, as 
schown in Figure 2, the parameter M- is sensitive to the main non-linearities of the 
model during both the hardening and the softening stages for any proportional and 
non proportional loading paths including the continuous rotation of the normal to 
the yield surface. This suggests the use of the parameter ~L as a main parameter to 
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estimate the cycle jump AN using (42) or (43). However, to enhance the calculation 
of AN during the softening stage, the damage variable D (or its increment AD) can 
be helpfully used 

Parameter AL 

2 

Reduced fatigue life N/NR 

Figure 2. Shematic evolution of L!L over the cycles 

1: Hardening stage 
2 · Stabilized stage 
3 · Softening stage 

3 

... 

Consequently, the cycle jump method can work as follow: 

(i) after each cycle jump, the constitutive equations are numerically integrated 
over a given number of cycles (5 cycles for instance) This ensures the stability of 
the solution before the next jump and permits to estimate the needed pseudo­
derivatives. 

(ii) compute the first and second pseudo-derivatives, at the same time, necessary 
to determine the cycle jump increment AN, which is needed for the state variables 
extrapolation. 

(iii) calculate the cycle jump for the two variables AL and D with the following 
relation: 

AN6L = 11 AL and ANo = 11 J? => AN = min (AN6L,ANo) (44) 
AL D 

(iv) extrapolate the state variables by considering two cases· 

- first scheme (noted CITY I as the Cycle Jump Technique Version I) the 
extrapolation for AN cycles is made for all state variables with the Taylor 
development Eq. (40), 

- second scheme (noted CJTV2 as the Cycle Jump Technique Version 2) the 
extrapolation is made on the parameters AL, Ap and D with Eq. (40). The results 
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are then substituted in the asymptotic forms Eqs. (23), (25) and (27), which give the 
extrapolation of the remaining the state variables. 

cr~+t.N(t+~t) = £ C a.~+t.N(t+~t) + vE ekk(t+At)Oij 
3 (l+v)(l-2v) 

+ exp{- ~LN+t.N} [ crli(t)- £ C a.li(t) - vE ekk(t)Oijl (45) 
3 (1 +v)(l-2v) 

+ ~e!' [I -exp( -~G~+t.N)] 
IJ k 

~GN+t.N 
(46) 

with 

The cycle jumping technique presented above is used to predict the response of a 
material point or structural components submitted to cyclic mechanical loading 
paths. The results are compared with those obtained by carrying out the complete 
computations over all the loading cycles without cycle jumping. The effectiveness 
and accuracy of the cycle jumping technique can therefore be evaluated. 

4. Numerical examples 

Numerical examples, in both Gauss point and structural levels, are given to 
demonstrate the utility of the proposed numerical schemes. Several aspects are 
illustrated through these examples namely accuracy, convergence and applicability in 
structural analysis. All computer runs were made on the DEC ALPHA 3000 
workstation Some fixed parameters are introduced in the implementation of the 
cycle jump technique· 

-the timet in the cycle which gives the large time value of the state variables, 

- the minimum number of cycles (JUMPMIN) to compute successively before 
to jump; 

- the accuracy parameters h for the cycle jump step dN; 

-the authorized maximum number of jump cycles (JUMPMAX). 
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The material parameters adopted in the subsequent numerical studies are compiled in 
Table 1. 

Parameter Value Unit 
- Isotropic elasticity E 144000 MPa 

v 0 3 
- Viscosity N 10 

K 2000 MPa 
- Yield stress k 211 MPa 
- Isotropic hardening Q 3000 MPa 

b 10 or 3 
- Kinematic hardening c 10000 MPa 

a 20 or 5 
- Fatigue damage y 0 3 

r 12 

TJ 15 

Table 1. Used material parameters 

4.1. At Gauss point level 

In this section, some numerical simulations are carried out using two typical 
biaxial loading paths The first one (Figure 3a) is isochoric and proportional 
inducing a constant normal to the yield surface The second one (Figure 3b) is non 
proportional inducing four changes of the normal to the yield surface during one 
loading cycle. The chosen 'tis the end of sequence 1 in Figure 3a and 2 in Figure 3b 
(located by a star). The adopted values of JUMPMIN and JUMPMAX are 
respectively 5 and 60 cycles. 

Strain EJ 1 Strain e 11 

(a) (b) 
Figure 3. Selected a) proportional and b) non-proportional loading paths 



Numerical integration for cyclic viscoplasticity 881 

The first verification of the cycle jump technique, with the two schemes CJTV 1 
and CJTV2 described in section 3, concerns the convergence. Figures 4 and 5 
represent the evolution of the maximum equivalent stress (peak stress value for each 
cycle) versus the reduced fatigue life (N/NR), for both cycle jump techniques (shown 
by symbols) and full calculations over all cycles (shown by solid line) The solution 
obtained by the complete cycle by cycle calculation (solid line curve) is taken as a 
reference solution which gives a total fatigue life NR = 384 cycles The fatigue lives 
obtained with the proposed cycle jump scheme are: 

* CJTVI: For 11 = 0.01, only 134 cycles have been calculated giving a total 
fatigue life of NR = 389 cycles (compared to the reference solution of 384 cycles) 
For h = 0.1, only 76 cycles have been calculated giving a total fatigue life of NR = 
392 cycles. 

* CJTV2: For 11 = 0 01, only 131 cycles have been calculated giving a total 
fatigue life ofNR = 387 cycles. For h = 0.1, only 75 cycles have been calculated 
giving a total fatigue life of NR = 391 cycles It is worth noting that for h = 0.1 
both computation using CJTV 1 and CJTV2 schemes save about 80% of effectively 
calculated cycles compared to the reference solution, with a very small errors for the 
total fatigue life (2% for CJTV1 and 1.8% for CJTV2). Moreover, one may see in 
the figures the effectiveness of the adaptive jump size control in choosing the 
appropriate size of jump. Large jumps can be seen in regions of low curvature, and 
progressively, when the curvature of the peak stress curve increases as the material 
element is close to failure, smaller jumps appear to maintain the accuracy of the 
prediction. 

The accuracy of the simulation with the cycle jump techniques depends 
obviously on the order of the Taylor development retained to extrapolate the damage 
variables after the jump. In fact, curves in figure 6 show the response of the same 
previous simulation with CJTVl (TJ = 0.01) where the damage variable is 
extrapolated by a first order Taylor expansion The lifetime is then overpredicted 
with an error of 5. 7% which suggests that a higher order extrapolation is suitable to 
represent the non-linear behavior of the damage variable at the last stage of the 
lifetime of the material element. 

On the other hand, the small time integration scheme has an effect on the cycle 
jump simulation. This is illustrated by using the classical cycle jump scheme with 
two different small time integration schemes: asymptotic algorithm (CJTAS) and 
Runge-Kutta algorithm (CJTRK). All the state variables are involved in the 
evaluation of the cycle jump step. The cycle jump step associated to a tensorial 
variable is calculated by using its second invariant. The simulation is then 
conducted with the same previous loading and parameters, but with a slight change 
in the material parameters a=5 and b=3 to have a longer non-linear hardening stage 
and without coupling the damage The results show that the calculations are 
performed respectively for 141 and 165 cycles with CJTAS and CJTRK, instead of 
500 cycles for the full calculation (Figure 7). One may note that the asymptotic 



882 Revue europeenne des elements finis. Volume 9- no 8/2000 

algorithm seems to give a better self-stability to the cycle jump scheme. As a matter 
of fact, when the prediction deviates after the jump from the reference solution 
obtained by the full calculation, the redistribution of the state variables occurs more 
rapidly for the asymptotic algorithm leading to more accurate estimation of the cycle 
jump step. 

Now the case of the non-proportional loading path given in Figure 3b is 
examined using the same 11 = 0.1, which is shown to be enough to estimate the 
cycle jump increment ~N. The numerical severity of this type of loading path 
comes from the fact that the normal to the yield surface changes during the cycle. 
Three different calculation have been performed with the same loading path using 
three different cycle jumping schemes. The obtained results are summarized in Table 
2 and shown in Figures 8, 9, IO and II. 

Predicted lifetime NR Number of calculated Error(%) 
cycles 

JUMP- 5 7 5 7 5 7 
MIN cycles cycles cycles cycles cycles cycles 

CJTVl 1008 1006 163 168 1 1 09 

CJTV2 1026 1024 127 169 29 27 

CJTAS 1001 1004 185 180 04 07 

Table 2. Predicted lifetimes with different schemes 

Figure 8 shows the simulation with the first test performed with CJTVI and 
11 = 0 1. Good agreement with full calculation is established. The lifetimes 
predicted with two different values of JUMPMIN 5 and 7 cycles are respectively 
I 008 and I 006 cycles. These results correspond respectively to 163 and I68 cycles 
calculations and give errors of I.l and 0.9% for NR in comparison with the reference 
lifetime value 997 cycles obtained with full calculation. The effect of JUMPMIN 
may then be important enough to enable the state variables redistribution to take 
place, and to permit the correct evaluation of the cycle jump step. In the same 
manner, the second test performed with CJTV2 and 11 = 0.1 gives also an acceptable 
simulation (Figure 9) with maximum error of 2.9 % for NR. This latter test shows a 
light difference with the full calculation at the first stage of the lifetime, which 
reveals the inaccuracy of this kind of extrapolation when the non-linearity of the 
hardening stage is high. However, the cycle jump scheme is developed specially to 
simulate a stabilized stage which is the highly consuming CPU time stage and the 
accuracy can be improved in this region of high curvature using a lower value of the 
accuracy parameter. On the other hand, one may underline for CJTV 1 and CJTV2 
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the adaptability of the parameters LlL and D to take into account the multiaxiality of 
the loading and to estimate the suitable cycle jump step. Finally, the last tests are 
performed with CJT AS (Figure 1 0). The simulation is not less accurate, the lifetime 
is predicted with maximum error of 0.7% corresponding to a calculation of 180 
cycles. The lower percentage of the cycle jump and the irregularity of the cycle jump 
steps for this case highlights the strong difficulty of estimating the cycle jump when 
several variables are taken into account. 

Moreover, with the same loading history, the cycle jump technique CTJV2 is 
tested with the following damage law parameters: y = 0.1, r = 20 and 11 = 15, 
which lead to an important fatigue lifetime of NR = 57128 cycles given by the full 
calculation. Good agreement between the CJTV2 prediction and the full calculation 
is obtained The predicted lifetime obtained is NR = 57938 cycles (an error of 1 4%), 
this result has been carried out by computing only 4752 cycles, with a reduction in 
computer processing time of approximately 91.7%. This test highlights how much 
the computational effort required for the cycle jump technique is less than 8.3% of 
that for the full calculation. 
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Finally, Figure II shows the predicted hysteris loop in the space stress-plastic 
strain for the studied non-proportional path. It is clear that plastic strain amplitude 
is not so negligeable in this loading path (about 0.8%). 

4.2. At structural level 

The proposed numerical schemes are now discussed in the context of fmite 
element simulation. Both the constitutive equations and numerical schemes are 
implemented in finite element code SIC (available at the University of Technology 
of Compiegne). The cycle jump step LiN is calculated at each Gauss integration 
point and the retained value is the minimum one among all LiN over all Gauss 
points. Two sample problems are included to demonstrate the utility of the 
numerical schemes: three bars structure and a plate with a circular hole. 

4.2.1. Simplified three bars structure 

The example is composed of three bars with different lengths to reproduce stress 
concentration (Figure I2). The material coefficients are shown in Table I, except for 
the damage law where the coefficients y and r are taken as 0.3 and 10 respectively 
to have a predicted fatigue life less than I 03 cycles. Each bar is modeled with an 
eight node quadrilateral plane strain fmite element. A tensile loading performed 
simultaneously on the three bars induces different fields redistribution in each bar 
Indeed, in the case of cyclic loading (cycled between± 0 016 total strain within a 
period of 64 s), the failure occurs successively in the bars where the stress is more 
important as shown in Figure 12 The calculation with CJTV2 (11=0 1) is performed 
for 110 cycles instead of 699 cycles. The number of cycles corresponding to the 
failure of the three bars is predicted with an error of 1.2%. Moreover, one may see 
the effectiveness of the adaptive jump size control in choosing the appropriate size 
of LiN. As the first bar is close to failure, smaller jumps appear, and as soon as the 
failure occurs, large jumps can be seen for the simulation of the second bar which is 
still in its stabilized stage. The same behavior is observed at the failure of the 
second bar. 

Figure 12. Simplified three bars structure 
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Figure 13. Behavior of three bars structure subjected to cyclic loading with CJTV2 
1J = 0 1 and JUMP MIN= 5 cycles 

4 2.2. A plate with a central circular hole 

This example concerns a rectangular plate with a circular hole at its center as 
given in Figure 14. The material coefficients are shown in Table I, except for the 
damage law where the coefficients y and r are taken respectively 0.35 and 10. The 
two opposite ends of the plate are subjected to uniform displacements with no 
lateral constraints. A complete loading-unloading cycle at a constant strain rate of 
0 001/s is applied to the plate within a time period of 28 s. By taking advantage of 
symmetry, only a quarter of the plate was modeled by 288 a eight-noded plane 
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strain element Local responses are represented in Figure 15 at the Gauss points A, 
B and C belonging respectively to elements 277, 217 and 145 The first broken 
Gauss point belongs to element 277 (Gauss point A). The simulation with CJTV2 
reproduces quite accurately the local responses obtained by the full calculation (Error 
of2.6% with 11=0.1 and only 169 cycles are calculated instead of 615 cycles for the 
first broken Gauss point). One may note that the variables L1L and D represent 
adequately the evolution of the state variables for evaluating the cycle jump step. 

u 

Figure 14. A plate with a central circular hole 
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Figure 15. Simulation of a plate with a circular hole subjected to cyclic loading 
with CJTV2, T/ = 0 1 and JUMP MIN= 5 cycles 

5. Conclusion 

A two time scale scheme for integrating the coupled damage viscoplastic 
constitutive rate equations under cyclic loading paths involved in fmite element 
analysis is presented. This resolution strategy uses both implicit and explicit 
schemes simultaneously in two different time scales. The small time integration 
scheme is performed with an asymptotic algorithm based on the integral formulation 
of the constitutive equations and leads to an iterative implicit strategy. The large 
time integration scheme is explicit and based on the Euler expansion with an 
adaptive cycle step .!\N calculation. It is found that the combination of the two time 
scale schemes allows to predict the complete state variables and the correct lifetime 
with a significant reduction in computer processing time of more then 90%. The 
selected parameters .!\L and D give an adequate measure of the way in which the 
state variables redistribution is taking place over the cycles and in addition reduces 
the number of the stored variables The calculation of the cycle jump step .!\N then 
becomes more efficient. This two time scale scheme constitutes a helpful 
engineering tool for the fatigue life prediction using a fully coupled constitutive 
equation. However, the present damaged viscoplastic model should be improved to 
take into account the unilateral nature of damage, which is associated with the 
possibility for the existing microcracks to be open (active damage) or closed 
(passive damage) by the external applied load. 
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