
Improving the finite element ordering
for the frontal solver

Stephane Negre* -Jean Paul Boufflet**,*** -Jacques Carlier**,***

Piotr Breitkopf**,****

* INSSET
48 rue du Raspail, 02100 Saint-Quentin

stephane. neg re@ insset. u-picardie.fr

** Universite de Technologie de Compiegne, Centre de Recherches
BP 529, 60205 Compiegne Cedex

*** UMR 6599 HEUDIASYC

{jean-paul.boufflet,jacques. earlier}@ utc.fr

**** UMR Roberval

piotr.breitkopj@utc.fr

ABSTRACT We present the structure of greedy methods used for reordering the nodes or the
finite elements of a mesh and we propose two improvements that can be easily implemented
in existing software. We investigate a wave reordering method which adapts the reordering
strategy during the reordering process. Then, we propose an adaptation of the Tabu Search
optimization technique for finite element reordering. The results show the efficiency of the
improvements The wave reordering method and the Tabu Search provide very good solutions
offering a motivation to carry on research for optimizing their computing time.

RESUME Nous presentons la structure des methodes gloutonnes utilisees pour reordonner les
nceuds ou les elements finis d'un maillage et nous proposons deux ameliorations qui peuvent etre
facilement implementees dans des codes existants. Nous explorons une methode de renumero­
tation par vagues qui adapte la strategie de renumerotation durant la renumerotation. Ensuite,
nous proposons une adaptation de La technique d'optimisation de recherche taboue pour la
renumerotation des elements finis. Les resultats montrent l'efficacite des ameliorations. Les
methodes de renumerotation par vagues et de recherche taboue fournissent de tres bonnes so­
lutions qui offrent une motivation pour poursuivre La recherche afin d'optimiser leurs temps de
calcul.

KEYWORDS: reordering, frontal solver, greedy method, wave method, Tabu Search

MOTS-CLES renumerotation, solveur frontal, methode gloutonne, methode par vague, recherche
taboue

Revue europeenne des elements finis Volume 9- no 8/2000, pages 917 a 940

918 Revue europeenne des elements finis Volume 9- no 8/2000

1. Introduction

The actual work concerns the solution of large scale systems of linear equations
issued from the finite element method applied to mechanical problems. In particu­
lar, we are interested in problems of the size requiring the use of massively parallel
computing. In our approach we distinguish three steps:

1. we decompose the domain into subdomains;

2. we search for an optimal numbering of elements in each subdomain;

3. we assign jobs to processors.

In the actual paper we focus the second stage of the process which is critical for the
performance of the linear solver. The idea is to use optimization techniques issued
from the operation research community and to analyze their impact in the domain of
computational mechanics.

Optimizing the numbering of nodes (or elements) may have different goals de­
pending on the algorithm chosen for the resolution of the linear system. The data
structure of the global rigidity matrix has to be taken into account:

1. when a direct method (Choleskly, Gauss) is chosen along with skyline structure
of the matrix, one has to minimize the banwitdh of the overall system.

2. a direct method with sparse data structure needs maximize the number of zero
terms after triangulation. The sequence of nodes optimal for this pattern is usually
different from that obtained for the skyline (band) storage.

3. when a frontal solver is used, the optimization concerning the sequence of ele­
ments is sought in the way to minimize the frontwidth.

The problems 1 and 2 concern the optimization of the numbering of the nodes and
problem 3 the numbering of elements Despite this difference similar algorithms are
used. In the finite element literature various algorithms have been proposed. E. Cuthill
and J. McKee [CUT 69] have proposed an algorithm to minimize the bandwidth,
Gibbs Poole and Stockmeyer [GIB 76] adress the problem of reducing the bandwidth
and the profile. By applying an algorithm proposed by A. Razzaque [RAZ 80], one
can obtain a finite element reordering from a node reordering. The algorithm pro­
posed by S.W. Sloan for reducing the wavefront and profile is one of the most efficient
[SLO 83][SLO 86][SLO 89]. An adapted version of this algorithm has been studied
by I.S. Duff, J.K. Reid and J.A. Scott [DUF 89] for a frontal code. A Simulated
Annealing approach was proposed by B. A. Armstrong [ARM 84] [ARM 85], consid­
ering the profile and the wavefront criteria.

Research in the domain is still active. Recently, the paper of G. Kumfert and
A. Pothen [KUM 97] proposed a hybrid method combining the Sloan algorithm and
the spectral method. They also discuss the importance of the tuning of the Sloan
algorithm. J.K. Reid and J.A. Scott [REI 99] propose some improvements of the Sloan
method ameliorating the orginal algorithm of [GIB 76] for computing the pseudo-

Improving the finite element ordering 919

diameter of the graph. J.A. Scott [SCO 99] develops a set of reordering tools for a
frontal solver.

The work we present concerns the reordering of finite elements for the frontal
method [IRQ 70] and in particular its parallel version: the multifrontal solver
[ESC 92]. This paper presents two improvements that we propose for the Sloan re­
ordering heuristics. Then, we propose two additional approaches:

- the first one spreads successive waves of reorderings in the mesh;

-the second one is based on the Tabu Search (TS) optimization technique
[NEG 97] [AAR 97] [GLO 98], which visits the neighbourhood of a current solution
like Simulated Annealing does.

In order to compare our methods to the literature a collection of finite element meshes
equivalent to the Everstine [EVE 79] set of problems is used as a benchmark. The
Everstine test examples have been widely used for testing reordering techniques but
are small by today's standards. However, in the domain decomposition context, we do
not aim at the optimal ordering for the whole system but we are working locally with
subdomains of limited size.

The original Everstine [EVE 79] test suite is given in a matrix form. In appendix
A, we show the method of construction of an 'equivalent' finite element mesh giving
equivalent matrix topology.

The quality of the optimization process is measured by two criteria:

- the size of the profile of the equivalent global system which, in the case of the
frontal method, is equivalent to the sum of frontwidths ;

- an estimator of the number of floating point operations of the frontal solver that
we propose in the actual work.

It is clear, that the global time of optimization and of resolution has to be consid­
ered. An expensive method giving optimal reordering may not be useful in practical
computations. From the research point of view however, it is interesting to start ex­
ploring new methods independently of the time constraint in order to find new optimal
solutions. The time and the quality constraint may be then progressively relaxed in
order to fit overall efficiency criteria.

2. The frontal solver

In order to introduce our notations, we recall here the basic idea of the frontal
method. The frontal solver manages a frontal matrix :F whose size varies during the
solving process [IRO 70]. The execution time of the solver depends on the ordering of
the elements. A reordering vector Vnum is a vector of size m defining a permutation of
the labels of the finite elements. The contributions of each finite element are assembled
in tum according to Vnum. The fontal process alternates between accumulation of
element coefficients (assembly) and elimination. An equation is said fully summed

920 Revue europeenne des elements finis Volume 9- n° 8/2000

if all the contributions involved have been assembled. A variable becomes 'active'
on its first appeareance (incorporation) and is eliminated after its last. We define an
elementary step either as the incorporation or as the elimination of an unknown. For
a problem with n degrees of freedom, there are n incorporations and n eliminations,
corresponding to the assembling order Vnum of the m finite elements. For simplicity,
we assume that there is one degree of freedom per node and consequently, the number
of node is n.

The list of active variables at an elementary step k is called the front and is denoted
H. The number of these active unknowns is called the frontwidth and is denoted I Fk I
(i.e. the wavefront).

Figure 1. An exam­
ple of finite element
mesh used to il­
lustrate the frontal
solver

4

3

2

IFI<l assem bli f I ng o e ements

A B c D

- r-
6 81--- - - r- r-

4 3 3 6 7 7 81-- 9 - - I-- 1-
5 5 4 4 4 3 6 6 6 7 8 8

:~ ~2 2 5 5 5 4 4 4 4 6 6 6

I I 2 2 2 5 5 5 5 5 5 5 5 8 9

0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

elementary step k

Figure 2. Evolution of the frontwidth IFk I when incorporating
and eliminating variables of successive finite elements of fig­
ure 1

Figure 1 shows an example of a four finite elements mesh. The bar graph of
figure 2 shows the evolution of Fk according to Vnum = [A, B, C, D]. The list of
variables in Fk are inside the bar k. The line above the graph indicates the intervals of
elementary steps corresponding to the assembling of each finite element.

The incorporation at an elementary step k of one unknown has an 0(1 Fk I) com­
plexity. The computing time for eliminating one unknown at an elementary step k has
an 0(1 H 12) complexity.

3. Estimators

To estimate the quality of a reordering we simulate the actual solution of the prob­
lem. According to a reordering Vnum, the virtual elimination consists in managing a
list of unknowns of the frontal matrix and counting the successive sizes of successive
fronts I Fk I·

The maximum frontwidth I Fmax I permits to estimate the storage requirement
and is defined by:

I Fmax I (Vnum) = max I Fk I
l~k~2 n

[1]

Improving the finite element ordering 921

The profile measures the total amount of the storage requirement:

P(Vnum) = [2]
kEincorporation

The computing time for the frontal solver is estimated [SLO 89] [DUF 89] by the
root-mean-squared wavefront, given by:

C(Vnum) =
n

kEincorporation

1
[3]

Here, we propose the modified estimator:

[4]
kEincorporation kEelimination

where coefficients a 1 and a 2 depend on the mechanical problem considered and on
the speed of the computer.

The cost of evaluating any of the above estimators may be estimated in the fol­
lowing way. Let us denote Ne the average number of nodes for each element, and
En the average number of elements connected to each node. For each node of the fi­
nite element of label Vnum[i], we check whether it is already incorporated into H
(giving Fk+1). For all finite elements, the complexity is 0(1 E I ·Ne). When
the finite element of label Vnum[i] has been assembled, we determine if nodes can
be removed from the list Fk. The virtual elimination of all the nodes of an ele­
ment takes O(Ne · En) operations. The cost of a complete virtual elimination is
0(1 E I ·Ne+ I E I ·(Ne ·En)) operations. For a given mesh, the cost is linear
with the number of element. A complete virtual elimination has to be performed for
evaluating a reordering vector Vnum·

4. Graph representation of the mesh

The finite element mesh is modelled by two graphs:

- the node graph, denoted G (Y, V), where Y is the set of vertices corresponding
to the nodes and V the set of edges. There is an edge between two vertices if the two
corresponding nodes belong to the same finite element;

-the element graph is denoted G(E, U), where E is the set of vertices corre­
sponding to the finite elements of the mesh and U is the set of edges. There is an edge
between two vertices if the two corresponding finite elements share at least one node.

Figure 3, 4 and 5 show respectively a mesh, the corresponding node graph G (Y, V)
and finite elements graph G(E, U). A reordering of the nodes of the mesh corresponds

922 Revue europtenne des ClCments finis Volume 9 - no 8/2000

Figure 3. An example of finite el-
ement mesh to illustrate the node
graph G(Y, V) and the element graph

Figure 4. The node graph G(Y, V)
corresponding to the mesh ofjigure 3

G (E , U)

to a reordering of the vertices of the node graph, while a reordering of the elements
corresponds to a reordering of the vertices of the element graph.

The number of vertices of the graph G(Y, V) is given by the number of nodes
n and the number of vertices of the graph G (E , U) is given by the number of finite
elements m. The number of edges connected to a vertex y is called the degree of the
vertex d(y). For instance, the degree of the node y of figure 4 is d(y) = 5.

The maximum degree of a graph is noted A = m ~ z , ~ ~ d (y) . For G(Y, V) of
figure 4 A = 8. We denote Ki a subgraph of a vertices in which every pair of vertices
is adjacent (Ki is a i-clique). The nodes of the finite element of label A of figure
3 correspond to a 4-clique in the G(Y, V) graph of figure 4. Most of reordering al-

S

Figure 5. Thejinite element graph G (E , U) corresponding to the mesh ofjigure 3

gorithms are based on the use of the information associated with the diameter of a
graph. We denote 6(y, z) as the length of the shortest path between the vertices y
and z . The diameter D = maxy,zEG,r#y b(y, z) is the value of the maximal shortest
path [BER 701. Two vertices s and t , such that the length of the shortest path from s
(the starting vertex) to t (the ending vertex) is equal to the value of the diameter, are
called peripheral vertices. Figure 5 shows an example of peripheral vertices. Because
the computation of the diameter is too time consuming, the authors generally com-
pute a pseudo-diameter Dpseudo, which approaches the diameter [SLO 831. Similarly,
two vertices s and t , denoted the pseudo-peripheral vertices, are associated with the
pseudo-diameter.

We define the eccentricity of the vertex y as 6, = max,EG,,#y S(y, z) . A level
structure rooted at y is a partition L(G,) of the graph G into 6, + 1 levels Lo(y),
Ll(y), Lz(y); . . , Ls,) such that:

Improving the finite element ordering 923

-Lo(Y) = {y};

- Li (y) is the set of vertices having their distance to y equal to i.

The number of vertices ILi(Y)I of each level Li(Y) defines a width. The width of
the level structure L(Gy) is defined by: ILmax(Y)I = m.ax ILi(y)j. The root-mean­

D:S•:S<~'y

squared width of the level structure L(Gy) is defined by:

R(y) = [5]

Figure 5 shows the partition L(Gt) of the finite element graph G(E, U). The num­
ber inside each vertex indicates the level number it belongs to. The pseudo-peripheral
vertices have a maximum eccentricity and we compute level structures to select them
[CUT 69] [GIB 76][SLO 86]. When selecting a pair (s, t) of pseudo-peripheral ver­
tices, we obtain a kind of axis of the mesh from a graph point of view. Then we
may reorder the vertices in the direction of the axis. This reduces the width of the
associated level structure and consequently the half bandwidth of the matrix.

5. The Sloan, DRS and S.A. methods

In order to introduce the improvements we propose, we present the outline of a
greedy method for reordering and the detail of the original Sloan and DRS methods.
We illustrate this presentation with numerical results obtained with our implementa­
tion. We also present the adaptation of the Similated Annealing (S.A.) optimization
technique carried out by B.A. Armstrong for minimizing the profile and we report
the results obtained. This technique is a metaheuristics, and we propose in section 7
the adaptation of the Tabu Search optimization technique which is an another meta­
heuristics widely used by the operation research community for finding high quality
solutions for hard combinatorial problems. We use the standard classification intro­
duced by Duff et al. [DUF 89]: an indirect method reorders the node graph while a
direct one reorders the element graph.

5.1. Outline of a greedy method for reordering

The outline of most greedy algorithms can be presented as in table 1.

At the end of the algorithm the vector Vnum contains the reordering. The quantity
number _of _vertices_o f _G equals n or m depending on the choice of the G (Y, V)
or G (E, U) graphs. The methods in the literature differ in the choices of the starting
vertex s and of the ending vertex t (line 4), and in the management of Cj the priority
list of candidate vertices (lines 7 and 11), defining the greedy strategy applied.

924 Revue europeenne des elements finis. Volume 9- no 8/2000

1 compute a pseudo-diameter Dpseudo in the graph G;
2 compute L. the list of starting vertices;
3 compute Le the list of ending vertices;
4 selects E Ls and t E Le;
5 for all vertex y of G compute 8 (t, y);
6 Vnum[l] +- s;
7 compute C1 the priority list of candidate vertices;
8 for j +- 2 to number _of _vertices_of _G do

9 selects y E Cj-1 with the highest priority;
10 Vnum[j] +- y;
11 compute Ci by updating Ci- 1 .

Table 1. The outline of a greedy algorithm for reordering problems

5.1.1. The Sloan method ,
The Sloan method is an indirect one. The starting vertex s of algorithm of table

I is the vertex having the minimum degree and t is arbitrarily chosen. Let us now
consider an iteration j. We denote Hi the list of the already reordered nodes. The list
Ci of candidate vertices is composed of the vertices k fl. Hi having a distance to the
nodes of Hi smaller than or equal to 2. This distance is used to update the priorities
of the vertices in the list Ci. Let us consider a vertex y E Cj. The vertex y has an
initial degree d(y). We define:

- c-1 as the set of neighbours of y that are already reordered;

- c-2 as the set of neighbours of y that are also adjacent to H1 vertices;

- deg(y) = d(y) -lei U c2l·

A priority Py is computed as follows:

Py =-WI· deg(y) + w2 · 8(t,y) [6]

The list c1 and the associated priorities are updated at each iteration j. The first
part of the priority expression (6) corresponds to a local consideration. It avoids an
excessive growth of the frontwidth. The second part of the expression (6) corresponds
to a global view of the finite element mesh. The objective is to build a level by level
reordering orthogonal to a path from s tot.

The weights WI and w2 are set experimentally. Sloan suggests the weights WI = 2
and w2 = 1.

We denote S LO our implementation of the Sloan method. Figures 6 and 7 show
respectively the profile P(Vnum) and the computing time estimator Q(Vnum) for each
mesh of the test set using the Sloan method.

Figure 6. Global storage requirement as
measured by the profile P(Vnum) with
Sloan reorderingsfor the set of test prob­
lems

5.1.2. The DRS methods

Improving the finite element ordering 925

Figure 7. The computing time estimator
Q(Vnum) with Sloan reorderingsfor the
set of test problems

The two DRS methods are direct ones. The strategy is adapted from Sloan to take
into account the finite element graph G (E, U). In both algorithms the starting vertex 8

is chosen using the same criterion as used by Sloan. Instead of choosing t arbitrarily,
the vertex t is chosen in the set of nodes L0• (8) of the last level according to the
following criterion. For each vertex ti E Lo. (8), a level structure is computed and
the ending vertex that gives the minimum width ILmaz(ti)l is selected. Considering
a reordering iteration j, we denote Hi as the list of the already reordered vertices
(finite elements). A list Ci of candidate vertices is composed of the vertices adjacent
to vertices of Hi. Let us consider a vertex y E Ci. The priority of the first DRS
method is computed as:

Py = -w1 · deg(y) + w2 · t5(t, y) + W3 · var(y) [7]

The value deg(y) is the same computed as in the Sloan method (6), except that here
y corresponds to a vertex of G (E, U). The value var(y) is the number of nodes (nodal
points) of the considered finite element y. This term permits selecting between two
elements having the same priority according to the first two terms of (7). [DUF 89]
argues that it is better to select the element having more nodal points because it permits
the elimination of more unknowns during future steps without increasing the front.
However, the results of this strategy are not as good as expected.

For this reason, the second greedy algorithm differs by a change in the local strat­
egy. Its objective is to reduce both the number of active elements and the number of
active unknowns. The priority is now computed as follows:

926 Revue europeenne des elements finis. Volume 9- no 8/2000

Figure 8. Global storage requirement as
measured by the profile P(Vnum) with
DRSA and DRSB for the set of test
problems

X 101

4.5

4·
e r:.
J2.5 ..

I,.: ••··
8 1.

0.5

%~~~~~~~~~~~~~

Figure 9. Computing time estimator
Q(Vnum) with DRSA and DRSB for
the set of test problems

Py = -Wl · dif f(y) + W2 • 8(t, y) - W3 · deg(y) [8]

The quantity di f f (y) corresponds to the difference between the number of new
unknowns assembled into the frontal matrix and the number of unknowns that can
be eliminated after assembling the finite element y. The value deg(y) represents the
degree of vertex y minus the number of its adjacent vertices that have so far been
reordered. The values suggested for the weights w1, w2 , and w3 for both strategies
are respectively 12, 6 and 1. The third criterion is useful for breaking ties. We have
implemented both greedy algorithms in order to compare with our methods.

In the figures, we denote DRS A the first method and DRS B the second one.
Figures 8 and 9 show respectively the P(Vnum) and the Q(Vnum) estimators for each
mesh of the test set problems. The DRS B method provides better results.

5.2. The Simulated Annealing method

A Simulated Annealing method has been proposed by B. A. Armstrong to reorder
the nodes for minimizing the profile. It can be used as an indirect method for the
frontal problem. Simulated Annealing is an iterative improvement technique exploring
successively the neighbourhood of a current solution.

A parameter, analogous to the temperature of a physical system to be cooled, con­
trols which perturbations to the system will be allowed visiting the feasible solutions.
Using it requires defining and tuning of several parameters and functions. The neigh­
bourhood function used is the classical 2-0PT neighbourhood that exchanges two

Figure 10. Global storage requirement
as measured by the profile P(Vnum)
with ARM for the set of test problems
[ARM 85]

Improving the finite element ordering 927

Figure 11. Computing time estimator
Q(Vnum) with ARM for the set of test
problems [ARM 85]

nodes. The initial temperature is defined in [ARM 85], but some other parameters are
insufficiently specified and the experiment is not reproducible.

This method produces very good solutions and [ARM 85] argues they are optimal
or near optimal. However it is too slow for a practical use. Figures 1 0 and 11 show the
original results obtained by [ARM 85] for the P(Vnum) and the Q(Vnum) estimators
for each mesh of the test set. We refer to this method as ARM.

6. Two improvements of greedy algorithms

The weights suggested in Sloan and DRS methods favour the local criterion over
the global one, the first term in (6), (7) and (8) is significatively larger than the second.
However, the choice of the ending vertex t among the list of ending vertices influences
the quality of the results because it represents the basis of the global criterion in the
greedy strategies. [SLO 89] chooses it arbitrarily, but [DUF 89] improves the previous
results by choosing a vertex t E Lli. (s) minimizing the width ILmao:(t)J.

We propose to choose the vertex t that gives the level structure having the smallest
root-mean-squared width (see formula (5) in section 4). Thus we take into account
the sizes of each level (not only the largest one). We denote respectively SLOl and
DRSBl the modified versions of SLO and DRSB.

The second improvement consists in computing the 8 (t, y) in a specific way. Fig­
ure 12 shows a node graph and illustrates our idea. We have four nodes for each square
finite element. Let us consider the set of ending vertices { h, t2 , t3 , t4 , t 5 }. Figure 12
shows the behavior of the computation of 8 (t 1 , y). The vertices that are linked by

928 Revue europeenne des elements finis. Volume 9- no 8/2000

II

t3

14

L-~--~~L-~~~~~~~~. ~

set of ending vertices,__,.;r -

Figure 12. Node graph G (Y, V) with successive layers of 8 (t1 , y) when considering
a single root vertex tt

a dotted bold line represent a set of vertices having the same value of t5 (tt. y) that
corresponds to an isovalue layer.

Figure 13. Node graph with successive layers when considering a virtual supervertex

If we only consider the criterion t5(t, y) in the expressions of priority (6), (7) and
(8), the reordering shall have a layer by layer behavior. Each layer corresponds to a
level Li(t1) of the level structure considering the vertex t1 as the root. Now consider
figure 13. We artificially create the virtual super-vertex T and we compute t5(T, y). It
is clearly seen that ILmaz(T)I is lower than ILmaz(tt)l.

We denote respectively SL02 and DRSB2 the modified version of SLO and
DRSB.

Figure 14 and 15 show respectively the percentage of improvement of the profile
P(Vnum) and the computing time estimator Q(Vnum).

The results obtained with SL01 and SL02 are expressed in percentage of im­
provement comparing with the result of SLO. Results of DRSB1 and DRSB2 are
also relatively compared with results of DRSB. We observe on figures 14 to 17 that
the first improvement provides better or equivalent solutions for the majority of the
meshes of the test set. In few cases we obtain a slight degradation. Considering the
computing time estimator Q(Vnum). figure 15 shows for SL01 that one improvement
reaches 12.5% (mesh number 24) and four other are larger than 3%. Figure 17 shows
forD RS B1 an improvement of up to 19% (mesh number 11). This first improvement

10 15 20 30
mesh number

Figure 14. Percentage of improvement
for global storage requirement as mea­
sured by the profile P(Vnum) with S£01
and S£02 relative to SLO

Figure 16. Percentage of improvement
for the global storage requirement
as measured by the profile P(Vnum)
with DRSBl and DRSB2 relative to
DRSB

Improving the finite element ordering 929

Figure 15. Percentage of improve­
ment for the computing time estimator
Q(Vnum) with SLOl and S£02
relative to SLO

20 ..

e
::0

$ 15
0

I_; r~~~~~;~L li]J.)
10 15 20 25 30

mesh number

Figure 17. Percentage of improve­
ment for the computing time estimator
Q(Vnum) with DRSBl and DRSB2
relative to DRSB

can be applied with benefit because it rarely degrades, it generally provides equivalent
solutions and allows to compute better solutions with a similar computing time.

In figure 15 we observe roughly the same behaviour for S£02 as for SLOl, ex­
cept for a case where S £02 improves (mesh number 28). Figure 17 shows important
degradations using DRSB2 for two cases (meshes number 25 and 27), although one
can remark that the number of meshes where the reorderings are improved increases.
The second improvement applied with DRS B method also provides good results but,
on few cases, the degradation can be significative.

930 Revue europeenne des elements finis. Volume 9- no 8/2000

7. Wave Reordering Methods

[KUM 97], [REI 99] and [SCO 99] studied the effect of adjusting the weights in
the priority functions of the SLO or DRS algorithms. The authors observe that the
set of weights giving minimum wavefronts differs with the problem and the method.
Our feeling is that the set of weights has to be adapted during the reordering process
itself. Weights efficient at one part of the mesh may not be optimal for another part.
Consecutively, we propose building a wave reordering method that spreads waves of
reorderings on the mesh. We apply the same heuristics with nbm sets of weights
from the same starting vertex so, until a number siz of vertices has been reordered.
Then we evaluate the nbm partial reorderings obtained and we choose the best one
according to our estimation Q(Vnum). Hence, the Vnum[l : siz] vector is computed.
This partial solution has a frontier with the vertices that are not yet reordered. We
have to choose another starting vertex s1 on this frontier and to repeat the process
(see figure 18). Then, using the same process, we compute the Vnum vector between
indices siz + 1 to 2 · siz. By repeatedly applying this principle, we finally obtain an
element reordering vector Vnum·

II

•
Figure 18. Two reordered areas of siz = 36 elements on a grid mesh

This method can be viewed as a succession of waves of reorderings on the graph.
Figure 18 illustrates our idea on a simple grid mesh: two frontiers are obtained by
applying a reordering method with two sets of weights (the value of siz is 36). The
gray patterns inside the finite elements s0 and s1 show the equivalent starting ver­
tices in G(E, U). We assume that the dotted line is the frontier obtained by the best
local reordering. The vertex s1 is chosen on this frontier and the process is applied
again. Indeed, the subsets of reordered elements are determined by the number siz of
elements to reorder and by the set of weights.

The behavior of this method depends on the value of the parameter siz. This value
can be constant or it can be modified between two consecutive waves, leading to an
adaptative method. The principle can be applied on the node graph G(Y, V) or on the
element graph G(E, U).

We focus here on constant sizes of packets. The variable siz denotes the number
of elements to be reordered at each step, and nb = r W: l the number of packets. The
last packet has (I E I -(nb- l).siz) elements. This particular case does not appear
in the outline of the algorithm we present below, however it is easy to take it into
account.

Improving the finite element ordering 931

1 compute a pseudo-diameter Dpseudo;
2 compute Ls the list of starting vertices;
3 compute Le the list of ending vertices;
4 Vt E Le compute R(t);
5 select i E Le minimizing R(t);

6 V vertex y of G compute J (i, y);

7 nb t- rWzll;
8 for i t- 0 to nb - 1 do
9 for j t- 1 to nbm do

10 reorder siz elements using the set of weigths j;
11 estimate the partial reordering number j obtained;
12 if the partial reordering is the best found so far memorise;
13 enfor
14 insert the best partial reordering in Vnum[i · siz + 1 : (i + 1) · siz];
15 endfor
16 return Vnum

Table 2. The outline of the wave reordering algorithm

In order to study the behavior of our wave method, we have tried in tum all the
possible values of the variable siz from 1 to lEI. Obviously, choosing siz = lEI is
equivalent to reorder the mesh nbm times using a given set of weights at a time. We
rarely obtain the best result with this particular value of siz that confirms the interest
of our approach. The outline of our algorithm is reported in table 2. Note that we
use the first improvement (see section 6) to select the ending vertex i. This outlined
algorithm has to be adapted if we design an indirect method that reorders the node
graph.

Two wave reordering algorithms have been designed and tested. The first one
is based on SLO algorithm with four sets of weights (nbm = 4). The second one
is based on the DRSB algorithm and seven sets of weights are tried for each wave
(nbm = 7). The subscripts used to present the two wave methods are respectively
W S LO for Wave SLOan method and W DRS B for Wave Duff Reid Scott method.

Figures 19 to 22 show the best results we obtain for each mesh of the test set by
scanning the different value of siz, the size of waves. Figure 19 shows the percentages
of improvement obtained with WSLO for P(Vnum) comparing with the results of
SLO while figure 20 concerns the Q(Vnum) criterion. Similarly, figure 21 shows the
percentages of improvement obtained with W DRSB for P(Vnum) comparing with
the results of W DRSB while figure 22 concerns the Q(Vnum) criterion. We observe
that figure 19 follows the same trend as figure 20 while figure 21 follows the same
trend as figure 22.

932 Revue europeenne des elements finis. Volume 9- no 812000

Figure 19. Percentage of improvement
for the global storage requirement
measured as the profile P(Vnum) with
W S LO relative to S LO

10 15 20 25 30
mesh number

Figure 21. Percentage of improvement
for the global storage requirement
measured as the profile P(Vnum) with
WDRSB relative to DRSB

Figure 20. Percentage of improve­
ment for the computing time estima­
tor Q(Vnum) with WSLO relative to
SLO

10 15 20 25 30
meshiOJmber

Figure 22. Percentage of improve­
ment for the computing time estima­
tor Q(Vnum) with WDRSB relative
toDRSB

Considering the computing time estimator Q(Vnum), the gain is larger than 10%
for seven meshes with WSLO (see figure 20) and the gain is larger than 20% for
ten meshes with W DRSB (see figure 22). The sets of weights have been chosen to
favour, in tum, a part of the priority expression (6) or (8) over the others.

For a given value of the parameter siz, we experimentally observe that the succes­
sive best partial reorderings are not obtained with a unique set of weights. The wave
reordering method chooses the best local reordering during the process. However, we
don't know a priori the optimal value of the size of waves. For some value of the
parameter siz, the solution we found is worst than those obtained with the original
Sloan or DRS methods using the same sets of weights. We think that it is due to the
choice of the starting vertex at the beginning of each wave. A bad choice can brake
the continuity of the reordering. Further investigations are also in progress in order to
determine good values for the parameter siz.

Improving the finite element ordering 933

8. Applying Tabu Search for finite element reordering

We first present an overview of the Tabu Search (TS) optimization technique. Then
we propose a TS version for minimizing Q(Vnum). and discuss our results.

8.1. Overview of the Tabu Search metaheuristics

TS has been applied successfully to numerous combinatorial optimization prob­
lems [AAR 97]. It is a local search algorithm which starts with an initial solution a,
and then iteratively replaces it by another solution a in the neighbourhood N (a) of
a. Any neighbour of a is obtained by a licit move J.L: a =a$ J.L (J.L E M(a), where
M (a) is the set of licit moves from a). Generally, moves consist in exchanging some
elements of a sequence associated with a.

1 Choose an initial solution a E S;
2 a* +-- a and l +-- 0;

3
Set l +-- l + 1 and generate a subset V* of solutions in N(a) such that the
tabu conditions are not violated (a E V* and J.L ~ 7);

4
Choose the best a = a ffi J.L E V* with respect to f, or some solution a
satisfying the aspiration condition;

5 a+-- a;
6 If f(a) < f(a*), then a* +--a;
7 Update the tabu list 7 and aspiration conditions;
8 If a stopping condition is met, then stop. Else return Step 3.

Thble 3. Overview of a Tabu Search method

In order to escape from a local minimum, it is necessary to prevent cycles. TS
keeps a tabu list r of recent moves: if a move belongs to the list r. it is considered
as illicit. It is also costly to explore the full neighbourhood and to evaluate for each
move the objective function f. So, we often only generate a subset V* of solutions in
N (a) such that the tabu conditions are not violated.

Because we only manage forbidden moves in the tabu list r instead of full so­
lutions, it may happen that one of illicit moves improves the search process. If a
tabu move has an aspiration level higher than a threshold value, then its tabu status is
dropped. Usually this aspiration threshold corresponds to the value of the objective
function f (a*) of the best solution visited so far.

The stopping conditions may be:

- the neighbourhood of N (a) is empty;

- the number of iterations is larger than the maximum number of iterations al- ·
lowed;

934 Revue europeenne des elements finis Volume 9- no 8/2000

- the number of iterations since the last improvement of a* is larger than a thresh­
old;

- evidence can be given that an optimum has been obtained.

An overview of a Tabu Search (TS) metaheuristics is presented in table 3.

8.2. Adaptation of Tabu Search for the frontal solver

We have used two basic neighbourhoods for defining our T S methods:

-the classical 2 - OPT neighbourhood introduced for the Traveling Salesman
Problem [AAR 97]. The idea is to exchange the labels of the finite elements at indices
i and j in Vnum (see the left part of figure 23).

- the second neighbourhood consists in removing the label of finite element
Vnum[i], shifting left the content of Vnum from i to j - 1 and inserting the stored
label before the index j (see the right part of figure 23).

Figure 23. Transposition and insertion neighbourhood examples

The preliminary results [NEG 97] show that the insertion neighbourhood leads to
better results and we here present this version.

Using the basic insertion neighbourhood, the total number of neighbours of a so­
lution is 0(1 E 12). We propose to reduce the size of neighbourhood to explore. We
have experimentally observed that it is rarely interesting to develop simultaneously
disconnected fronts. Hence, we introduce the interval [i, j] associated with the finite
element of label e that defines its life span. This finite element has a list of variables
Le where:

- the index i is the minimum index of Vnum where a variable x E Le appears at
the first time in the front;

- the index j is the maximum index of Vnum where all the variables of Le have
been eliminated.

Now, we consider the insertion moves of this element only in the interval [i,j].
In this way we avoid creating disconnected fronts. If we denote DE the average life
span of the elements, the number of insertion moves is now OCI E I ·DE) instead of
O(j E j2). We have defined the Nins(a) neighbourhood function.

ThecomputationofQ(Vnum) is bounded by O(j E I ·(Ne·En)), but it is too costly
to compute this evaluation for each move. We can reduce this time if we compute only
the modifications of the evolution of the front from the current solution. For each index
i of Vnum. we manage:

Improving the finite element ordering 935

- the list Ft of frontal nodes after the assembling of the finite element of label
Vnum[i];

- the successive sizes 1Ft I of the frontal matrix :F corresponding to the assembling
of the finite element of label Vnum [i];

-the local value of the estimation Q(Vnum[l:iJ) corresponding to the evaluation
of Q from Vnum[1] to Vnum[i].

Let us assume now that we insert the finite element of label Vnum[i] before the
finite element of label Vnum[j] (with i < j). Using Q(Vnum[l:{i-l)J) we need only
to compute a partial virtual elimination between index i - 1 and index j of Vnum.

Then, using the stored sizes of lists Fk of frontal variables, we simply sum I Fk I when
a new variable is added and IFk 12 when a variable is eliminated from index j to index
m. Experimentally, this refinement halves the computing times of the Tabu Search
methods.

The tabu list 7 for this initial version ofT S REins is managed using the FIFO rule
and its sizes have been set to 7.

We use two stopping conditions:

- a maximum number of iterations;

- a maximum number of iterations since the last improvement of a*.

The first one has been experimentally set to 1000 and the second one to 15.

The tabu status of a move can be dropped, if an aspiration condition is satisfied.
This is done as follows: if there is no improving move, and if there is a tabu move that
improves the best objective function found so far, then the tabu status of this move is
dropped. This defines our aspiration condition.

Experimentally, the algorithms stops before 1000 iterations. But we have noticed
that, if we use an initial solution with low quality, the number of iterations increases.
For this reason, the W S LO and W DRS B algorithms are used to generate initial
solutions.

8.3. Further improvements of the Tabu Search

We observe large computing times using the T RSEins method. The neighbour­
hood is poorly exploited compared with the cost of its generation and evaluation. Let
us consider a neighbourhood Nina (a) and the subset of improving solutions Mmv (a) c
Mns (a). Since even the best improving move may have a negligible effect, it makes
sense to apply several improving moves of Mmv(a) simultaneously at iteration l.

However, we experimentally observe that mutually exclusive moves sometimes
lead to an important increase of the objective function. We have to take into account
the order to carry out the moves. They are sorted in decreasing order of improvements
of the objective function. Then, considering this order, the moves are evaluated in

936 Revue europeenne des elements finis. Volume 9- no 8/2000

tum. If the evaluated move still improves the objective function after the previous
moves have been performed, it is accepted, otherwise it is rejected.

The management of the tabu list r is now different because many moves are per­
formed at each TS iteration. We do not store moves but we use a vector e of size lEI.
When an element is moved to Vnum [i], the e [i) is set to a number that corresponds to
a tabu-active status during this number of iterations. It is called the tabu tenure of the
move. These values are updated at each iteration. After several experimental tries, the
tabu tenure has been fixed to 5 because the neighbourhood is often empty for larger
values.

Figure 24. Tabu Search: Percentage of improvement for the computing time estimator
Q(Vnum) with TAB!, TAB2 and ARM relative to DRSB

However, it is still difficult to escape from a local optimum because the metaheuris­
tics still ambles along a flat valley. When this happens, we perform all the moves that
have the same evaluation as the current solution a in order to escape from the local
optimum more quickly.

The subscripts are TAB! for the TS metaheuristics initialized with a solution
provided by W S LO, and T AB2 if the initial solution is provided by W DRS B.

Figure 24 shows the percentage of improvement for the computing time estimator
Q(Vnum) relative to DRSB for each mesh of the test set using T ABl, T AB2 and
ARM.

The gains we obtain are substantial. We observe that we haven't an important dif­
ference between T ABl and T AB2 because the initial solutions provided by W SLO

Improving the finite element ordering 937

or W DRS B are similar and the improvements are carried out from these initial so­
lutions. We have set the maximum number of iterations to 1000 in order to study the
behaviour of the T S, but the optimization process stops well before 1000 iterations
because the threshold of maximum number of iterations since the last improvement
of u* is reached. The gain is near or larger than 20% for 19 meshes and can reach
50% that potentially halves the condensation time. Figure 24 also shows the gain of
the Simulated Annealing ARM and one can see that the solutions we obtain are near.
The Simulated Annealing has a stochastic behaviour but Tabu Search doesn't, so if
a Simulated Annealing runs a very long time it can find better solutions. We don't
obtain equivalent solutions because the exploring process stops because the thresh­
old of iterations is overtaken before an improving solution has been found. We have
significantly reduced the cost of the first version of our Tabu Search by reducing the
neighbouring, by performing many moves in tum and by evaluating the criterion by
difference to the previous solution. However, the optimization process is too time­
consuming for a practical use. But we observe that the major part of the gains is
obtained during the first ten iterations of the TS. This is a promising observation for
testing more efficient search techniques that can lead to efficient practical methods.

9. Conclusion and outlines

The Everstine collection has been used for our tests. The collection includes very
different types of structures from simple regular two-dimensional meshes to complex
three-dimensional ones. Their relatively small size is well suited for exploring new
approaches which is the subject of the present paper. One has to be careful when
applying the conclusions to real cases. The large scale examples were not treated in
the present work and will be dealt with in forthcoming publications. The Everstine test
examples are not available in element form. In order to perform our test on the element
graph, we have used an algorithm to build it from the node graph (see appendix A).

The improvements proposed in this paper may be easily implemented in existing
software. The gains are significative on relatively small finite element meshes of the
explored collection of benchmark tests. Due to the nature of the proposed improve­
ment one may expect that the relative gains will decrease with the problem size. For
this reason the developped approaches are better suited for parallel solvers with de­
composition into large number of subdomains. At the actual stage, standard domain
decomposition tools may be used. One of the aspects of our future work concerns a
mixed approach of simultaneous domain decomposition and optimal numbering.

The presented results are based on estimations of CPU time. However, when com­
paring with real computation, our modified CPU estimator involving a quadratic term
provides a precise estimation. The alternative approches by wave reordering and Tabu
Search are still too costly for practical use, but in our opinion they merit further inves­
tigation.

938 Revue europeenne des elements finis Volume 9- no 8/2000

10. References

[AAR 97] AARTS E., LENSTRA J. K., Local search in combinatorial optimization, John
Wiley and Sons, 1997, Series in Discrete Mathematics and Optimization.

[ARM 84] ARMSTRONG B. A., "A Hybrid Algorithm for Reducing Matrix Bandwidth", Int.
J. for Num. Meth. in Eng., vol. 20, 1984, p. 1929-1940.

[ARM 85] ARMSTRONG B. A., "Near-Minimal Matrix Profiles and Wavefronts for Testing
Nodal Resequencing Algorithms", Int. J.for Num. Meth. in Eng., vol. 21, 1985, p. 1785-
1790.

[BER 70] BERGE C., Graphes et Hypergraphes, Dunod, 1970.

[CUT 69] CUTHILL E., MCKEE J., "Reducing the bandwidth of sparse symmetric matrices",
Proc. 24th National Conference of the Association for Computing Machinery, 1969, p. 157-
172, New Jersey.

[DUF 89] DUFF I. S., REID J. K., SCOTT J. A., ''The Use of Profile Reduction Algorithms
with a Frontal Code", Int. J.for Num. Meth. in Eng., vol. 28, 1989, p. 2555-2568.

[ESC 92] ESCAIG Y., "Decomposition de domaines multiniveaux et traitement distribue pour
la resolution de problemes de grande tailles", PhD thesis, Universite de Technologie de
Compiegne, 1992.

[EVE 79] EVERS TINE G. C., "A Comparison of Three Resequencing Algorithms for theRe­
duction of Matrix Profile and Wavefront", Int. J. for Num. Meth. in Eng., vol. 14, 1979,
p. 837-853.

[GIB 76] GIBBS N. E., JR W. P., STOCKMEYER P. K., "An Algorithm for Reducing the
Bandwidth and the Profile of a Sparse Matrix", SIAM J. Numer. Anal., vol. 13, num. 2,
1976, p. 236-250.

[GLO 98] GLOVER F., LAGUNA M., Tabu Search, Kluwer Academic Publishers, 1998.

[IR.O 70] IRONS B. M., "A Frontal Solution Program for Finite Element Analysis", Int. J.for
Num. Meth. in Eng., vol. 2, 1970, p. 5-32.

[KUM 97] KUMFERT G., POTHEN A., ''Two Improved Algorithms for Envelope and Wave­
front Reduction", BIT nordisk tidskrift for informationsbehandling, vol. 37, 1997, p. 559-
590.

[NEG 97] NEGRE S., BOUFFLET J.P., CARLIER J ., "Reordering finite elements for the frontal
method", Second Metaheuristics International Conference, MIC'97, July 1997, Sophia
Antipolis, France.

[RAZ 80] RAZZAQUE A., "Automatic Reduction of Frontwidth for Finite Element Analysis",
Int. J.for Num. Meth. in Eng., vol. 15, 1980, p. 1315-1324.

[REI 99] REID J. K., SCOTT J ., "Ordering Symmetric Sparse Matrices for Small Profile and
Wavefront", Int. J.for Num. Meth. in Eng., vol. 45, 1999, p. 1737-1755.

[SCO 99] SCOTT J., "On Ordering Elements for a Frontal Solver", Commun. Numer. Meth.
Engng., vol. 15, 1999, p. 309-323.

[SLO 83] SLOANS. W., "Automatic Element Reordering for Finite Element Analysis with
Frontal Solution Schemes", Int. J.for Num. Meth. in Eng., vol. 19, 1983, p. 1153-1181.

[SLO 86] SLOANS. W., "An Algorithm for Profile and Wavefront Reduction of Sparse Ma­
trices", Int. J. for Num. Meth. in Eng., vol. 23, 1986, p. 239-251.

ImproVing the finite element ordering 939

[SLO 89] SLOANS. W., "A FORTRAN Program for Profile and Wavefront Reduction", Int.
J.for Num. Meth. in Eng., vol. 28, 1989, p. 2651-2679.

Appendix A

The Everstine test examples are not available in element form. Only the matrix
form are given from which the node graph may be constructed in a unique manner.
We compute the G(E, U) graph from the G(Y, V) graph by building and filtering sets
of cliques. Let us denote Ci the list of cliques of size i. Initially each edge of G(Y, V)
corresponds to a 2-clique that gives c2.

Figure 25. A G(Y, V) graph and the corresponding 2-cliques

Figure 25 shows on the left part the node graph G(Y, V) of a mesh composed of
two triangular and one quadrilateral finite elements. On the right part we have the
2-cliques corresponding to the edges.

Consider K4 E C2 the clique number j. For each vertex y fl. K4 but adjacent to
a vertex of K4, we check if it is adjacent to every vertex of K4. If it is, we add the
corresponding K 3 in the Ca list. Then we scan C2: if a K4 belongs to an element
of Ca, it is removed from C2. By repeatedly applying this process, we compute an
'equivalent' finite element scheme. The process is stopped, either when we cannot
build a Ci+l list or when C fl. has been computed. Each clique corresponds to an
'equivalent' finite element. -

Figure 26. The 3-cliques and the 'equivalent' finite elements

940 Revue europeenne des elements finis. Volume 9- n° 8/2000

On the left part of figure 26 we show the 3-cliques obtained by applying an iteration
of the algorithm and we obtain in our example the initial finite elements on the right
part. However, in some cases, the 'equivalent' finite element doesn't fit the original
finite element model but corresponds to an 'equivalent' scheme from a computing
point of view. For instance triangular finite elements are obtained in our example
but the original model would be composed of 'edge' finite elements. We also can't
obtain the original model when some equations have been eliminated by taking into
account boundary conditions. However, this method allows to split examples given
in global matrix form into sequence of elementary matrices convenient for evaluating
reordering techniques for an element-by-element frontal solver.

