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ABSTRACT. The Time Domain Reflectometry -TDR- probe is a new technique applied to 
moisture measurement. It is a wave guide constituted by two or three parallel metallic rods 
stuck in the ground. An electromagnetic wave propagates all along the wave guide and 
crosses a variable electric properties medium. In that way the reflecting wave is disrupted 
and we detect the electric singularities. We study the transverse magneti- mode. We simulate 
this wave guide in this medium thanks to the Finite Element Method and present the used 
matricial structure. For time integration we compare a semi-implicit or Runge-Kutta method 
with variable time-step. This process is driven by the Automatic Multigrid System with an 
unknown time-dependent number .. 

RESUME. La sonde de reflectometrie temporelle est une nouvelle technique appliquee a La 
mesure d'humidite. C'est un guide d'ondes constitue par deux ou trois tiges metalliques 
paralleles plantees dans la terre. Une onde electromagnetique se propage le long du guide 
d'ondes dans un milieu a proprieres electriques variables. Dans ces conditions, la reflexion 
de l'onde est perturbee et detecte les singularites. Nous etudions le mode TM et nous simulons 
le guide d'ondes par la methode des Elements Finis dont nous donnons La fonnulation 
matricielle. Pour {'integration temporelle nous comparons une methode semi-implicite avec 
la methode de Runge-Kutta avec un pas de temps variable. Le calcul est pilote par AMS avec 
un nombre d'inconnuesfonction du temps. 
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1. Introduction 

Water resource management for plants is becoming an increasingly acute 
problem. This is associated with pollution phenomena usually caused by fertilizers. 
It is therefore essential to have a precise idea as to the soil's moisture content, both 
at surface and underground levels. Various techniques have been used to this effect, 
e.g. the uneasy technique of sampling. Then in the 60's and 70's neutron probes 
[VAN 63] were used, that - beyond the poor level of accuracy - offered the major 
drawback of appealing to a radioactive source. A number of current research 
program are investigating new technologies usually based on electrical measures. 
Resistive [FLE 85] and capacitive [GAU 93] probes can be offered as examples, that 
set problems of both reliability and accuracy. The latest generation of instruments 
[SPA 95] under development is based on Time Domain Reflectometry -TOR-. These 
instruments come as two or three parallel metal rods driven into the ground down to 
little over three feet - or 1 m -. An electrical impulse is applied to the end bit above 
ground surface. The impulse propagates along the rods. Measurement and 
processing of the signal obtained by reflection should theorically allow the 
determination of local moisture levels. The 10 model used up to now in the study of 
our device is that of the electric line represented in Figure 1 [TOO 98]. 

dz 
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v~l-------r--o~---+1--+-dz I --Zs o 

Figure 1. The electric line scheme 
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The line's lD mathematical model is governed by a partial differential system 
called "telegraphists equations". These equations are dealt with in a traditional way 
through time or frequency approach. In the case of Time Domain Reflectometry 
though, there is no specific problem. The difficulty in fact lies in the perfect 
knowledge of the values of parameters (R,L,C,G,Zs), in particular in their 
relationship with soil moisture profile [DOS 97]. The impedances ZO and Ze are 
given by the electric source properties. Besides, this simplified lD model neither, 
for example, takes into account the various propagation modes of electromagnetic 
waves, nor the cut frequency, nor again the local ratings of soil moisture. So to 
improve the model, an approach based on the Maxwell's equations appears 
necessary, so that we may have at hand a numerical tool that will provide the 
"telegraphists equations" with reliable data. In this way, we built a 2D model for the 
TDRprobe. 

2. General presentation of the model 

2.1. Geometrical model of the 2D TDRprobe 

L 

y 

X 
Figure 2. Geometrical model 

The electric line (Figure 2) is represented by two parallel plate electrodes and the 
electric conductivity of these is infinite. The free space around the electrodes can be 
an ohmic conductor. In the Transverse Magnetic mode -TM-, the electromagnetic 
field is : 
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2.2. Maxwell's equations 

With the usual notations the Maxwell's equations are formulated as follows 
[FLE 91]: 

-- aB -curiE=-- divB =0 [1] 
at 

..... 
--- .. ao 

divD=p [2] curlH=J+-
at 

If we are inside a material, we have the following laws: 

j = [yJE = YO·[Yr JE (Ohm's law) 

D = [eJE = EQ.[Er JE [3] 

B = ~Jii = 1-lO·~r Jii 
Notation[.] can be a space dependent tensor. 

For a numerical model we prefer to use adimensional equations. In this way we 
define reference quantities : 

reference length 
1 

c = reference velocity 
~EQ.!JO 

Ho =Eo. ~ reference magnetic field v;o 
The characteristic time is T = ..!.. 

c 

The variables of the Maxwell's equations become: 
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x· 
Xi =-1 

1 
I 

H· 
Hi=-• 

Ho 

t 
t=-

't 
I 

E· 
Ei=-• 

Eo 

The Maxwell's equations show a non dimensional parameter: 

called the magnetic Reynolds' number. 
The non dimensional Maxwell's equations become: 

-oH --Utr }-=-curl E ot [4] 

By using the canonical scalar product equations [4] and [5] are as follows 
[FLE 91]: 

(-- --) a BH DE --- --- --- -·-+-·- = -H.curlE+E.curlH-Rm.Qyr lE.E} 
Ot 2 2 

[6] 

(-- --) a BH DE - .... --- -· +-· =-div(ExH}-Rm.QyrJE.E) 
Ot 2 2 

iiJ 

where 

(s.ii riB) w= --+--
2 2 

and 
~ - .... 
S=ExH [8] 

are respectively the adimensional volumic energy and the Poynting vector. 

2.3. Boundary conditions 

The boundary conditions at the electric conductor - i.e. electrodes - can be 
written: 
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Exn =0 

or 

{ 

~ Aan gential = 0 } 

(E)normal =:(free value) 

In that way we can also calculate surfacic charge density cr. 

At initial time, we apply a constant electric potential difference between the 
electrodes. The electric loading can be written : 

where Eo is in this case a constant value. 

For the other boundary conditions a long way away from the electric line, we 
must choose : 

-+ ... .. 

Exn=O 

In all cases of TDR procedure, the electromagnetic wave never reaches that 
boundary because we only study the first reflection in the wave guide for electric 
properties detection. 

The magnetic field value is free because the Maxwell's equations are an 
hyperbolic system. At the electrodes, we can calculate line current I by the 
Ampere's theorem with the superficial current density Js: 

..... ... . 
Hxn=Js and 

The initial condition is zero. 

3. Finite Element formulation 

The Galerkin's Finite Element method is applied to Maxwell's equations in an 
isotropic medium. In our formulation, the electric properties of the medium can be 
written: 
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3.1. Weak formulation [ASS 93] 

Let (Q) an open regular space of Rn_dim with a regular boundary (r) C0 or C1 for 
example. If T is a positive real number we define : 

QT = Qx]O,T[ 

rr = rx]O,T[ 

We define also the Hilbert's space (V): 

( 
1 )2.n_dim 

(v) = H(n) 

where H1 (Q) is the following Sobolev's space: 

Let the vectors of space (V): 

(w.;, \%) and (E, li) 
With the previous scalar product, the weighted residual method can be written: 

- aH _ __. ... 

I ..... I (n) WH ·1-lr·-at·dn =- (n) WH .curl E.dn [9] 

[10] 

For the electromagnetic problem we choose the Galerkin's ponderation. We use 
the vector: 

(Mi,BE)e (v) 
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The integral formulation becomes: 

- aH ---l - l (n} &H.~r·&·dn=- (n}&H.curiE.dn [11] 

[12] 

The equations [11] and [12] constitute the first formulation. The integrals ofthe 
right hand side of [11] can be transformed by formula [13]: 

[13] 

We can use this capacity for the introduction of the natural boundary conditions. 
In that way we obtain the second formulation by transformation of the equation [ 11]: 

l - l l - 8H _ _._...._ - ........ &H.~r .-.dn =- E.curl &H.dQ + (&H x E )n.dr 
(n} at (n} (r} 

[14] 

[15] 

3.2. Finite Element formulation [DHA 81] 

Element i is called (Q;) and the principal properties are: 

In that way, we can formulate the geometrical discretization. For the analytical 
discretization we search an approximative solution in a subspace of (V) with finite 
dimensions (Vh). Let n;(x) a base of (Vh) and index n denotes the elementary nodal 
values. The approximate function can be written for an isoparametrical element 
[DHA 81]: 
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H~ - n · H!! and E1~ = nJ·.E1P 
I - r lJ 

The discretization of the electric fields is as follows: 

So the discretization of the curl operator is easy and we have: 

(o) _/ani) /ani) 
\az \ay {En} -- an· an· x l 

curlEh = (a;) (o) -(a:) E~ =[RJ~n J 

-(a;:) (~) (o) Ez 

[16] 

[17] 

We have a similar relation for the magnetic field. This curl formulation denotes 
an anti-symmetrical operator [R]. 

In the Finite Element Method we try and secure an approximative solution of the 
weak formulation. We have the convergence in space (V): 

3.3. Matricial formulation 

We define the following matrices: 

~J.l ]= f NT ·llr .N.dQ the magnetic mass matrix 
J(n) 
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The elementary electric loading { fd where the electric field is known and is 
given by natural boundary conditions: 

J {
{nd.Eo(y, t)} 

{fd= o .dr 
(ro) o 

All mass matrices are symmetrical. 

For the full domain (Q) the weak formulations [9] and [10] in the first case can 
be written: 

[18] 

In that way we have a block-symmetrical electric stiffness matrix for the first 
formulation. For the second formulation, by discretization of equations [14] and [15] 
we obtain: 

[19] 

In that way we build a symmetrical elementary electric stiffness matrix. 

After a classical assembling operation where index (G) denotes the global 
values, the differential system is as follows: 
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where global matrix [M] is symmetrical. If the second formulation is used the global 
matrix [K] is also symmetrical. For the first formulation, the global electric loading 
is provided by the Dirichlet's conditions. Natural boundary conditions are also 
added for the second formulation. 

3.4. Numerical resolution 

The general formulation of the differential system is: 

[M].j_{U}={F}- [K].{U} where {U}= {H(G) ,E(G)} 
dt 

j_{U}= [M]-1. {'P{U, t)} where {'P{U, t)}= {F}- [K]. {u} 
dt 

For the numerical time-resolution, several methods are tested [SOD 78]. 

For numerical quadrature points the nodes of the elements are chosen. 
Consequently, the mass matrix [M] is diagonal. This inversion is an easy procedure. 
It is a necessary condition for the efficiency of the methods above. Under these 
conditions we can test the explicit and implicit methods. In both cases we use a 
matrix-free technique, the mass matrix and the stiffness matrix never being built. We 
note a high performance level for the CPU and the storage costs. 

3.4.1. Semi-implicit method 

The corresponding algorithm is as follows: 

while ( tk :s; tmax): 
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tk+t=tk+Atk 
end while 

where a is the upward time-parameter. 

The first method requires inner iterations for each time-step with index i for AU 
determination and the convergence criteria can be written [AND 84] : 

But we always find a time-step value for the convergence of the process. We 
note the good stability of the scheme in the implicit case. If a<O.S a CFL condition 
is also required [DHA 81]. In this way we choose a time step as follows: 

At ~Min(Ato, AtcFL) 

In usual numerical tests these time step are similar. 

We note specific cases : 

-a=O 

-a=l 

explicit method 

implicit method 

- a=O.S Crank-Nicholson scheme 

The advantage of this method is the matrix free technique associated with an 
iterative method. The initial solution of each time step is close to the next solution. 
For the semi-implicit method the number of iterations is very low, two or three in 
practice. 

3.4.2. Runge-Kutta method 

The Runge-Kutta algorithm can be written: 

tk =0 

while(tk ~tmax}: 

end while 

where A.P and J.lp are the Runge-Kutta coefficients. 

Ifthe CFL condition is verified [AND 84], the Runge-Kutta method also gives 
satisfactory results. Both methods give similar numerical results. In practice, for the 



Finite element formulation for Maxwell's equations 953 

numerical test, we use a semi implicit method and the Runge-Kutta method of 4th 
order. In the latter case, we have the following stability condition: 

for the propagation phenomenon. The choice of the time-step presents several 
difficulties, because the CFL condition is complex especially if the spatial 
discretization is not uniform. Consequently a variable time-step is associated with 
the AMS technique described below. 

3.5. The code and the Automatic Multigrid System (AMS) 

We use efficient C++ Object Oriented Programming for the Finite Element code 
called FAFEMO (Fast Adaptive Finite Element Modular Object) developed by A. 
CHAMBAREL [CHA 97]. In this context, our numerical calculus uses a technique 
called the AMS. For all iterative or step-by-step processes, an expert system chooses 
the unknown degrees of freedom for the update of the solution, and the size of the 
unknown vector is optimized. The applications of this capability are very large: 

-multiprocessor computing [CHA 97], 

- wave front (in this paper), 

- multidomain calculus (in this paper), 

-moving boundary, 

- multigrid simulation ... 

An expert system should be built for each problem. Mathematical, numerical and 
physical considerations can be used. Our example is easy and with the adimensional 
parameters we construct the expert system by the following method: 

-first stage (t<l) 

The wave front propagates with a celerity which is overvalued by 1. It stays in 
the wave guide and only the degrees of freedom between the electrodes are active: 

-second stage (t>l) 

The wave front propagates in the free space. The celerity of the electromagnetic 
wave preserves the same properties. The end of the line behaves like a source which 
emits in the free space. 

full electric line active 

if ((d + 1) ~ t) =>active degrees of freedom 
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In our case the active degrees of freedom number increases with time. 

The working of the AMS can be described by a matricial formulation. If the 
AMS expert system detects a constant domain (uam5), the differential system 
becomes: 

[
Mams 0 ] a {Dams} {{fams} [Karns Kt ] {Dams}} 
0 Munk . at Dunk = funk - K2 Kunk . Dunk 

The 'ams' index concerns the choice of the expert system and the 'unk' index 
concerns the unknowns. After development, the differential system is as follows : 

FAFEMO Object-Oriented Programming allows an easy building of the matricial 
system for each time-step. In that way we obtain a low size system. 

These considerations are used for the implementation of the expert system. 
Initially the electromagnetic field is zero. Then the propagation starts. At that time, 
the AMS is active and the degrees of freedom in front of the wave front are 
disactivated. We obtain a range of time-dependent unknowns, and the process 
manages a low size problem. For time tko the time step Atk can be changed at each 
step with the CFL condition. 

This constitutes a general Finite Element formulation for the Maxwell's 
equations with a symmetrical electric stiffness matrix. 

4. Numerical results for 2D-TDR probe 

4.1. Space discretization 

The 2D model is presented in Figure 3. We discretize with triangular linear 
elements. They are described in literature references [DHA 81]. We refine the mesh 
near the electrodes (Figures 3, 4 and 5), so we have 13,985 triangular elements and 
7,300 nodes. 29,200 differential equations are generated by the above Finite Element 
process. For time integration, we use a Runge-Kutta explicit method and a semi­
implicit scheme for which the better upward parameter is a=0.75. This alpha value 
is a good compromise for the stability control of the scheme [SOD 78]. 



Figure 3. Global mesh 
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n node=7300 

n elem=13985 

n node=7300 n elem= 13985 

Figure 4. Local mesh 
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Figure 5. Outlet zoom 

4.2. Numerical results 

4.2.1. Case of homogeneous space 

In this case, the electric properties are constant and isotropic ( e0,J.1o). This case is 
considered as a benchmark for the calculus verification. In the following figures and 
for different times, the solution of the adimensional magnetic field or the 
adimensional electromagnetic energy are presented. 

In Figures 6 and 7, the electromagnetic solution is presented at adimensional 
time t=0.5. We notice that the wave has reached the middle of the electric line. This 
is in accordance with the electromagnetic wave celerity. We also note a little 
spreading of the wave front because of the wave guide cut frequency, and also 
probably because of the numerical scheme. 
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t=0.5 

Figure 6. Magnetic field iso-value 

Figure 7. Energy iso-value. 
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Figure 8. Full wave guide 

Figure 8 shows the adimensional electromagnetic energy at time t= 1. We notice 
that the electromagnetic field fills the full electric line. It is still in accordance with 
the electromagnetic wave celerity c. 

Figure 9. Energy diffraction 
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Figure 10. Magnetic field 

Figure 11. Point effect 
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At time t=l.5, coming of the electromagnetic wave in the external medium 
begins. The different results are presented in Figures 9 and 10. We note that the end 
of the line behaves like an electromagnetic source and the approximate wave front is 
a circle with a 0.5 radius. Figures 9 and 10 present only the low intensity of the 
electromagnetic energy and the magnetic field in order to highlight the external 
electromagnetic field. It focuses on the numerical values. In these conditions the 
stationary waves in the wave guide are here not visible. 

The electromagnetic energy at the end of the line is presented in Figure 11. We 
note the well-known point effect at both internal angles because of the high 
intensity of the electric field. 

4.2.2. An example of variable electric properties 

In this case, we choose an example of variable electric properties. Around point 
(y0, z0) is a spot of electric singularity and the E value is modified by the following 
mathematical model: 

We also have : 

Jlr=l and Rm=O 

The gaussian profile of E is chosen. The example is presented in Figure 12 and 
we note the asymmetrical dielectric spot. Indeed, we are here considering a 
mathematical model in which there are no dissipative terms. We stand in the most 
unfavorable case from the viewpoint of stability of the numerical solution. In this 
case, there are no diagonal terms for the electric stiffness matrix. 
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electrode dielectric spot 

Figure 12. Electric singularity 

Figures 13, 14 and 15 present the magnetic field at different times (1.5, 2.0, 3.0). 
If the time is greater than 1, then the electromagnetic field is at the end of the 
electric line. We notice stationary waves in the wave guide (Figure 15). This figure 
shows the coming out of the electromagnetic wave in the free space. We note a large 
dissymmetry because of the electric particularity of the medium. The celerity of the 
electromagnetic wave decreases strongly in that zone and a more important part of 
the wave is reflected toward the entrance of the wave guide. It therefore provokes a 
variation in the impedance of the electric line, in particular, as seen at the entrance. 

Figure 16 show the AMS efficiency. The AMS disactivated boundary follows 
the wave front. In that way we have an increasing number unknowns. 
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Figure 13. Magnetic field asymmetry 

Figure 14. Magnetic field asymmetry 
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Figure 15. Magnetic field asymmetry 
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t = 2 mean unknown= 12300 
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AMS efficiency= 85 % 
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waveguide 
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outside of the wave guide 

time 
0~------~------~------~--------~------~------_j 

0 0.5 1.5 2 2.5 3 

Figure 16. AMS running 
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The intensity at the top-end of the line is presented in Figure 17. The asymmetry 
of the electromagnetic field is also evident. We compare here the case of 
homogeneous electric properties with the existence of a dielectric spot. For the 
homogeneous medium with electric properties of the vacuum we note a spreading of 
the intensity signal because of the wave guide cut frequency. It is a low-frequency 
filter. If the time is lower than 1.5, we have a same line intensity after which the 
dotted curve shows the gap between the two cases. The two curves are first 
confounded until the wave, undergoing a reflection from the electric peculiarity 
comes back to the entrance. Measurement of this time gap allows the determination 
the distance of the dielectric singularity. Then, the analysis of the distorsion of the 
signal completes the knowledge of the peculiarity. At any rate through this analysis 
we have achieved a tool allowing the determination of a characteristic singularity 
catalog met in this type of problems. 
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Figure 17. Line intensity 

5. Conclusion 

2.5 

litO 

3 3.5 4 4.5 5 

The TOR probe can be simulated by a Galerkin Finite Element approach. We 
present a general Finite Element formulation for Maxwell's equations in the case of 
propagation phenomenon and introduce the matricial structure of space 
discretization. We find and obtain a symmetrical matrix formulation. An 
electromagnetic wave propagates along the wave guide with the object determining 
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the variable electric properties of the space crossed. The electric loading is given by 
a natural boundary conditions. This process is performed by the AMS with a time 
dependent number of unknowns. The calculus are performed with a usual PC 
Pentium 200 MHz. In this way the CPU and memory cost are reasonable. Generally 
the wave propagation is always a difficult numerical problem. We do not detect 
instabilities [ASS 93] and this set of methods give good results. This paper show 
that the Finite Element Method is a good alternative to the FDTD (Finite 
Differences Time Domain) method that is currently used for this class of problems. 
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NOMENCLATURE 

R lineic resistance 

L lineic self induction 

c lineic capacitance 

G lineic conductance 

v scalar potential of electric field 

I electric intensity 

:k impedance 

E electric field -D electric induction field 

B magnetic induction field -H magnetic field .. 
s Poynting vector 

A vector potential of magnetic induction .. 
J courant density 

n normal vector 

w volumic energy 

p volumic density of electric charges 
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cr surfacic density of electric charges 

Yr·YO ohmic conductivity 

Rm magnetic Reynolds number 

Er,EO electric permitivity 

~r·~O magnetic permeability 

c light celerity 

(Q) integration domain 

x,y,z cartesian coordinates 

{·) line matrix 

.} column matrix 

At time-step 

(Oi) element i 

(n) lagrangian polynomial base 

(I) identity matrix 

[md elementary mass matrix 

[M] global mass matrix 

[kd elementary stiffness matrix 

(~l 
stiffness matrix 
elementary loading 

{F} global loading 

a upward parameter 




