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ABSTRACT. This paper deals with the mathematical and numerical analysis of fluid-structure 
interaction phenomena, and present some of the existence results that can be found on this 
subject. We explain the various approaches and review the technical tools required. In all 
cases we have a fluid interacting with a moving (rigid or deformable) structure. The fluid is 
supposed to be viscous (compressible or incompressible) and the fluid equations are set in an 
unknown, time dependent domain, determined by the structure deformations, itselves resulting 
from a stress applied by the fluid. 

RESUME. Nous presentons ici un panorama de resultats concernant ['analyse et l 'analyse nume­
rique de phenomenes d'interaction fluide-structure, nous donnons en particulier les resultats 
d'existence de solution aces problemes. ll s'agit dans tousles cas de ['interaction d'unflui­
de avec une structure rig ide ou deformable. Le fluide est suppose visqueux (compressible au 
incompressible) et modelise par une equation posee dans un domaine inconnu, dependant du 
temps et limite par La structure, elle-meme soumise aux contraintes exercees par le fluide. 

KEYWORDS: existence results, Navier-Stokes, rigid bodies, elasticity, fluid-structure interactions, 
time discretisation, space discretisation. 

MOTS·CLES : existence de solutions, Navier-Stokes, corps rig ides, elasticite, interactions fluide 
structure, discretisation en temps et en espace. 
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1. Introduction 

This paper deals with the mathematical and numerical analysis of problems dealing 
with unsteady fluid-structure interaction phenomena. These phenomena are of major 
importance for aerospace, mechanical or biomedical applications, and thus have been 
studied by many authors over the past few years from different point of view (theory, 
numerical analysis and simulations). The problem is to describe the evolution of a 
viscous fluid coupled with a moving structure. The fluid can be compressible or in­
compressible, and the structure can be rigid or elastic. Several conditions traduce the 
coupling between the two media at their interface. First, the kinematic condition states 
that the fluid velocity and the structure velocity are equal. The second coupling condi­
tion traduces the action-reaction principle. The interaction is not reduced to these only 
transmission conditions since, in most interesting cases where the deformations of the 
structure are large enough, one can not neglect the variation of the fluid domain. We 
thus have to solve a problem defined (at least for the fluid part) over a time dependent 
domain. We focus here on the analysis and numerical analysis of the fluid-structure 
interaction problems in case where the deformation of the fluid domain is actually 
part of the unknown. We refer to [MOR 92] for a study of the vibrations of coupled 
problems in which the domain is fixed. 

Section 2 is devoted to a general presentation of the problem. Energy estimates are 
formally derived. Then we expose some existence results: existence of weak solutions 
(section 3), existence of strong solutions (section 4). Finally in section 6, we give some 
results on the numerical analysis of the discretizations. 

2. Standard mathematical formulation 

In order to simplify the presentation we assume that the flow is viscous and ho­
mogeneous, incompressible or compressible and that its behaviour is described by the 
Navier-Stokes equations. We denote by v its constant viscosity, Pi its density. For 
the structure, we can consider several cases: rigid bodies immersed in fluid, full 3D 
elasticity or hyperelastic models. But we can also consider asymptotic models such 
as plates, shells, beams, that are used when the thickness or the section of the elas­
tic media is small with respect to its other dimensions. We can even consider that 
the displacement of the structure is a linear combinaison of a finite number of elastic 
eigenmodes. This latter modelization and the case of rigid bodies actually reduces the 
structure equations to ordinary differential equation (o.d.e). In the other cases, the par­
tial differential equations (p.d.e) describing the structure are classically set in a fixed 
domain Ds. The domain Ds is, in general, the reference configuration of the body 
(that will be assumed to coincide with its initial state for the sake of simplicity). The 
behaviour of the structure is described by the displacement d of each point x of the 
reference configuration. Consequently, each point x E Ds is, at time t, at the position 
x(t) = x + d(x, t). On the contrary, the fluid equations are set in Eulerian coordi­
nates and are thus defined in an unknown domain Dt(t) depending on the structure 
displacement d. All the unknowns linked to the fluid part are thus evaluated at each 
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point of the physical domain, at time t. The incompressible Navier-Stokes equations 
are: Find (u,p) in n,(t) such that 

au 
P! at + PJU.\lu- l/~U + \lp = P!ff in n,(t) [1] 

divu 0 inO,(t), [2] 

where u denotes the fluid velocity, p its pressure and f1 a given exterior force. These 
equations are completed by initial data 

u(t = 0, .) = uo(.) in n,(o) [3] 

and by boundary conditions. These boundary conditions are of two different types. 
We have to distinguish the part of an 1 ( t) which is not in contact with the structure 
from the fluid-structure interface that we will denote by r(t). On r 1 = an,(t) \ r(t), 
we consider standard boundary conditions and in order to simplify the presentation, 
we will suppose that they are of Dirichlet type: 

u(t,.)=O onr,. [4] 

On r(t), coupling conditions have to be considered and will be detailed later on. 

The compressible isentropic Navier Stokes model is: Find (u, P!) in n1(t) such 
that 

a':ftu + div (PJU ~ u) - v~u- (>. + v)Vdiv u + \7 Pt = PJfJ in !1/(t), [5] 

a;: + div (p,u) = 0 in n,(t), [6] 

where 'Y is a real number 2:: 2 is the parameter of the pressure law. Again, these 
equations are completed by initial data 

PJ(t = 0, .) = PJ,o, (p!u)(t = 0, .) = mo(.) in n,(O) [7] 

and by boundary conditions. 

Before precising the proper boundary conditions over the interface r(t) for both 
modelizations, we have to specify the different models for the structure we consider: 
3D linearised elasticity, asymptotic model (many situations can be thought about, like 
beams, plate or shells equations ... ) or the equations of rigid body motion or even finite 
dimensional modal decomposition. 

First, we consider the 3D linearised elasticity. The constitutive law of the elastic 
media is supposed to be the Hooke law. The Lame constants of the media are >.. and 
1-Ls and Ps is its density, fs denotes the volumic force applied on the structure. The 
equations can be written as follows 

[8] 
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where the stress tensor u is given by 

u(d) = A8 trc(d)Id + 2J.L8 c(d), [9] 

and c( d) represents the linearised strain tensor and is equal to 

Initial conditions have to be added, for instance 

d(t = 0) = 0, [10] 

Boundary conditions on the part of the structure r 8 that is not in contact with the 
flow have also to be added (for instance homogeneous Dirichlet boundary conditions). 
Next boundary conditions on the interface have to be precised. Denoting by f the part 
of the boundary of ns which corresponds to the fluid-structure interface, we write that 
rand r(t) represent the same entity. 

'<It, 'Vx E f, x + d(t,x) E f(t), [ 11] 

and 

'<It, 'Vy E f(t), 3x E f, x + d(t,x) = y. [12] 

Next, we traduce the kinematic condition on the interface: on f(t) the fluid sticks 
to the structure, and thus the velocities of the fluid part and of the structure part are 
equal. Since the fluid is supposed to be viscous (in the case of an invicid flow only the 
continuity of the normal component of the velocities is required): 

'<It, Vx E f, 
8d 

u(t,x + d(t,x)) = at (t,x). [13] 

The other boundary condition corresponds to the action-reaction principle and can be 
written as follows: 

'<It, Vx E f, TF(u,p)(t,x) = u(d).n(t,x), [14] 

where TF ( u, p) stands for the expression of the normal component of the fluid stress 
tensor Uf (uf = 2vD(u) -pi in the incompressible case and Uf = 2vD(u) + 
(A divu - Pt )I in the compressible case with D(u) denoting the symmetric part of 
'Vu) written in the reference configuration. 

If the structure under consideration possesses a small section or thickness, then, 
asymptotic models can be proposed to describe its behaviour. The coupling condi­
tions are expressed again by the equality of the velocities at the interface and, present 
in the right hand side of the plate, beam or shell equations, since a forcing term ap­
pears that comes from the stress applied by the fluid to the structure. Let us consider, 
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for instance, a plate of thickness 2e and of average surface w. The elastic media is sup­
posed to be isotropic and homogeneous. E denotes its Young modulus, l!.. its Poisson 
ratio and Ps its volumic mass. With the previous notations we have 

fl 8 =wx]-e,e[. 

We only present here the equations satisfied by the transverse displacement of the 
plate d3 = d3(x1,x2). The equations can be written as follows using the Einstein 
convention, and considering that the Greek indices belong to { 1, 2}: 

fJ2 d3 2Ee3 
2 t 

2pse ot2 + 3(1 _ 1!..2) 6.x 1 ,x2 d3 = Yi + 93 + }_e fs3 

+e 9a 9a + X3~, inw, o( +- -) le of 
OXa -e OXa 

[15] 
where fs denotes a volumic force and g+, g- surfacic forces applied respectively on 
w x { e} and w x { -e}. The plate is moreover supposed to be clamped on ow x 
[ -e, +e]. The longitudinal displacement is given by 

Let us express the coupling conditions between this plate and the viscous flow on 
the interface which is supposed to be r = w X { -e} 0 We have, for all X E r, 

Furthermore, the structure is submitted to a surfacing force coming from the fluid, 
and thus g- depends on the fluid stress tensor written in the reference configuration. 
More details about plate, beam, shell equations can be found in [CIA 90], [DES 86], 
[BER 94]. 

The third case that has been considered is the rigid body motion or the reduced 
basis motion where the structure is deformable with displacements that are written as a 
linear combinaison of a finite number of modal functions associated to the continuous 
elastic operator. The first coupling condition is the equality of the velocities at the 
interface. The second coupling condition appears in the right hand side of the structure 
equations which are now o.d.e with respect to the position of the center of gravity 
xa and the rotation angle vector () and the coefficients of the modal decomposition. 
Considering a solid sphere immersed in a fluid, we have the Newton equations 

[16] 
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d
2

0 1 1 Jd2 = (x- xa(t)) 1\ (o'j-n) + Ps(X- xa(t)) 1\ r., 
t an,(t) n.(t) 

[17] 

where n.(t) is the rigid region at timet and m and J denote respectively the mass 
of the rigid body and its inertia momentum. The displacement of the structure can be 
recovered, writing 

d(t, x) = xa(t) + exp((O(t).B).(x- xa(O)))- x, [18] 

where O.B = L:::~=l Oi.Bi 

andB1 =(~ ~ ~1).B2=(~ 
0 1 0 -1 

2.1. Energy estimates 

First, we write the coupled problem in a variational formulation, assuming that the 
solution of the problem exists and is sufficiently smooth to justify all the manipula­
tions. Multiplying the fluid equations [1] by a divergence free function v, the trace of 
which over 80i(t) \ r(t) is equal to zero, and then integrating over Oi(t), it comes, 
after integration by parts 

{ Pi 
0
0
uv + 2v { D(u): D(v) + { Pi(u.V')u.v 

ln,(t) t ln,(t) ln,(t) 

+ { (pn- v(2D(u).n)v = { Pifiv. [19] 
lr(t) ln, (t) 

For the structure part - for instance in the case of 3D linearised elasticity - we also 
multiply equation [8] by a test function b, satisfying homogeneous Dirichlet boundary 
conditions over 80 8 \ r, then integrate over D •. After integrating by parts, we obtain 

with 

{ Ps ~:~b + a(d, b) = { a(d).nb + 1 p8 f 8 b, [20] 
~. lr ~ 

a(d, b)= ( Ackk(d)cu(b) + 2J.tcij(d)cij(b). 
ln. 

If we choose the test functions such as 

v(t,x+d(t+x))=b(t,x), 'r:/x E f [21] 

then adding [20] to [19] and taking into account the coupling condition [14], we have 
for any band v satisfying [21] 

{ Pi 
0
0
uv + 2v { D(u): D(v) + { Piu.V'u.v 

ln,(t) t ln,(t) ln,(t) 

+ ( Ps ~:~b + a(d, b) = { Pifiv + ( Psfsb. [22] ln. ln,(t) ln. 
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Similarly, starting from equations [5], [6], we deduce for any band v satisfying [21] 

{ a':!u v + 2v { D(u) : D(v) + { PJU ® u : D(v) 
ln,(t) ut ln,(t) ln,(t) 

+ r (,\div u- p'Y)div u 
ln,(t) 

+ ( Ps ~:~b + a(d, b) = { P!ffv + ( p8 f 8 b. [23] 
ln. ln,(t) ln. 

REMARK. - The same kind of variational formulation can be obtained for the plate 
equations. Concerning the rigid body it is slightly different and we can obtain a global 
weak formulation where the unknown is the global velocity, obtained by extending the 
velocity of the fluid by a rigid body velocity in the domain occupied by the structure 
at timet. 

REMARK. - In all the cases, the test functions of the coupled problem depend on 
time (the problem is set in a non cylindrical domain). Moreover the test functions 
depend on the solution of the problem, which is not standard. 

Let us derive energy estimates. We choose (u, ~~) as test functions in [22]. Note 
that they are admissible test functions, in particular they satisfy [21]. This leads to 

{ -
2
1 

P! a:
2 

+ 2v { D(u) : D(u) + { PJU.\i'u.u 
ln,(t) ut ln,(t) ln,(t) 

1 d 1 (ad) 2 1 d J 1 ad +2dt. at +2dta(d,d)= P!fJu+. Psfsat' n. n1 (t) n. 
[24] 

We recall the Reynolds formula 

d J J a¢(x,t) 1 -d ¢(x, t)dx = a dx + ¢w.n, 
t n, (t) n, (t) t r(t) 

where n is the outer unit normal vector of DJ(t) and w is the velocity of each point 
u2 

of the interface f(t). Using it with¢ = 2 we derive (we recall that P! is a constant 

- the fluid is homogeneous-) 

t 1 au2 
1 d t 2 1 1 2 -PJ- = -- PJU -- PJU u.n. 

n, (t) 2 at 2 dt n, (t) 2 r(t) 

Considering the incompressibility [2], the convection term becomes, after integration 
by parts, 
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Thus taking into account these two equalities, [24] yields 

1 d h 2 h 1 d h (ad) 2 

--d PJU +2v D(u): D(u) + -
2

-d _ Ps -
8 2 t n1 (t) n1 (t) t n. t 

1 d i i {)d +-
2

-d a(d,d) = P1f1u+ _ Psfs-
0 

, 
t n1 (t) n. t 

[25] 

recalling the ellipticity of the bilinear form a over HJ r (08 ) (c.f [CIA 86]), an energy 
estimate can then be deduced if the solution of the c~~pled system [1], [2], [8], [13], 
[14] exists: 

lluiiL 00 (0,T;P(n1 (t)) + llull£2(o,T;H1 (n1 (t)) 

+lldllwl,oo(o,T;£2(fl.)) + lldiiLoo(o,T;HJ,r. (fl.)) ~ C(T, r,, fs, Vo, uo). 
[26] 

In case of compre11sible flows, we obtain, in a similar way from [23], if the solution 
of the coupled system [5], [6], [8], [13], [14] exists: 

IIPJIIL 00 (0,T;L"~(0 1 (t)) + II.JP1uiiL 00 (0,T;L2 (01(t))+ 

+lldllwl,oo(o,T;P(fl,)) + lldiiL00 (0,T;HJ,r. (fl.)) 

llull£2(o,T;H1 (n, (t)) 

~ C(T,ff,fs,Vo,mo,Pf,O). 
[27] 

The same type of energy estimate can also be obtained (at least formally) for the 
two other models presented before. Such estimates are the first step to prove the 
existence of weak solutions. 
REMARK.- As mentioned in [ERR 94], the convection term seems to be necessary, 
in most cases, in order to obtain energy estimates - without imposing supplemen­
tary conditions on the data (small enough data, small time .... ) - when dealing with 
unknown time dependent domains. Besides the theoretical analysis, this fact is impor­
tant to point out, especially for the numerical simulation of fluid-structure interaction. 
Indeed, as a starting point, the Stokes problem is often the first step of the implemen­
tation of the fluid discrete problem:the coupling of the Stokes model with the structure 
interaction may be unstable regardless of the presence of bugs, indeed the correspond­
ing continuous problem may not be stable either, to start with, as was exhibited in 
[ERR 94]. To simulate the coupling it is thus important to consider the full, nonlinear, 
Navier-Stokes problem. 

Let us now present some of the theoretical results that can be found on such mod­
els. In a first section we review the results dealing with the existence of weak solutions, 
then look at the question of existence of strong solutions. 
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3. Weak solution 

3.1. Elasticity 

For the time being, as far as we are aware of, no result is available on the full 
interaction problem: Navier-Stokes coupled with the 3D elasticity in time dependent 
domain. Nevertheless, we refer to [GRA OOa] for an existence result on a similar but 
steady state problem. 

For the time being, the rigid body case seems to be the most accessible one. 

Note however that, in the case of weak perturbations of the interface, one can 
assume that the fluid occupies a fixed domain: n,(t) :: n,. Numerically, when 
this assumption is made, other interface boundary conditions are often considered in 
order to take into account the interface motion: these are the transpiration techniques 
(see [BAR 94], [FAN 00]). From a theoretical point of view, J.L. Lions [LIO 69] 
proves the existence of a unique weak solution "ala Leray" using the Galer kin method 
for the coupled problem: Navier-Stokes coupled with the linearised elasticity. Since 
n f ( t) = n f' the convection term does not disappear when the energy estimates are 
derived. Consequently, the interface condition [13] is modified in order to obtain a 
bound of the solution. If we want to keep [13], existence of weak solutions can be 
proven considering the Stokes equations instead of the Navier-Stokes equations. 

3.2. Rigid Body 

Several papers treat of the model of rigid bodies immersed in a viscous, incom­
pressible or compressible flow from the theoretical point of view and answer the ques­
tion of the existence of weak solutions. We tell about three of them, where quite the 
same weak formulation is used but where the techniques to prove the solvability are 
different. The unknown is the global velocity u equal to the fluid velocity in n,(t) 

and to the rigid bodies velocity in n.(t) (d;: + ~~ 1\ (x- xa)). Let us denote by 

p the global density: p = PJln1 (t) + p8 ln,(t) where le denotes the characteristic 
function of a given part E. In view of the conservation of mass [2] or [6], p satisfies a 
linear transport equation 

8tP + div(pu) = 0 in 0. [28] 

Now, we consider a test function w that is rigid in O.(t) and divergence free in the 
incompressible case, which is the case exposed below. The fact that w is rigid in 
O.(t) can be written as follows ln,(tJD(w) = 0. Let us introduce the space of test 
functions 

V ={wE H 1 ([0,T] x 0), ln,(t)D(w) = O,divw = 0}. 
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Note that the space of test functions depends on the continuous solutions. Starting 
from equations [2], [16], [17], one can derive the following variational formulation 
for all wE V and a. e. t, 

Ia pu(t)w(t) -lot Ia pu8tW- lot Ia pu ® u: D(w) 

+2v lot Ia D(u): D(w) = Ia pouow(O) +lot Ia pfw, 

where f = fs in the structure part and f = r, in the fluid part. 

[29] 

REMARK. - Such a global formulation can be used for the numerical simulation of 
particles in flow, and enables one to employ fixed mesh. The fictitious domain method 
relies also on such a formulation. We refer to [GLO 94a], [GLO 94b] for more details 
on the fictitious domain method. 

The fact that this problem is a weak form of the original coupled frame is standard 
in regard to the fluid domain, indeed, we recover [1] by using a test function w = 0 
on 0 8 (t). Let us assume now enough regularity on the solutions, then we first observe 
that over 0 8 (t), the functions u and w correspond to a rigid motion and thus have the 
form 

u(x, t) = a(t) + w(t) 1\ (x- xa(t)) 

w(x, t) = b(t) + ((t)J 1\ (x- xa(t)) 

where b and ( are arbitrary functions oft and a(t) = dx~p) using first ( = 0 then 
b = 0, we obtain [16] and [17]. 

In [DES 99], [DES OOa], [CON 99] and [HOP 99] this weak formulation (or a 
quite similar one) is introduced. There are mainly three non standard features in those 
type of problems: 

1. The Navier-Stokes equations are set in a non cylindrical domain, so classical 
Galerkin method does not apply. 

2. The test functions depend on the solution. 

3. The convection term requires compactness results on the velocity. 

In [DES 99], [DES OOa] the existence of weak solutions for all T > 0 is proven, 
assuming that there is no collision (i.e. the body does not touch the exterior boundary 
80 or if there are several particles they do not enter in collision). In the incompressible 
case, the velocity belongs to £ 2 ((0, T), HJ (0)) x L 00 ((0, T), £ 2 (0)) and the density 
belongs to L00 ((0, T), L00 (0)), provided that u 0 E £ 2 (0), f E £ 2 ((0, T) x 0) 
and p0 E £ 00 (0). In the compressible isentropic case the velocity is such that 
..;pu E L00 ((0,T),L2 (0)) andu E L2 ((0,T),HJ(O)) andthedensitybelongsto 
L00 ((0, T), £1'(0)), provided suitable assumptions on the data. The proof is based on 
Schauder fixed point theorem and compactness results. 
Step 1 
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The motion of the rigid body is supposed to be given, together with a global ve­
locity v satisfying a nonlinear constraint (that we denote by ( * )) stating that v cor­
responds to the rigid body motion in the given rigid body region. This velocity is 
regularized in space and time through an operator Rc: that preserves the constraint ( *). 
Then the original problem is linearised using this regularized velocity v c: = Rc: ( v). 
For c: fixed, the problem is now linear and the test functions depends on v c:. The equa­
tions are next written, thanks to a change of variables, in Lagrangian coordinates. A 
Galerkin method is then used to solve them. The basis functions considered are of 
two types: first the eigenfunctions of a Stokes-like problem defined in the initial fluid 
domain, where the coefficients depend on v c:, and a basis of the set of rigid motion 
extended in the fluid part. At this step, the assumption that there are no collision is 
required. 
Step 2 

Knowing that the previous linearized problem is well posed, we obtain a new ve­
locity Uc:, that gives us a new rigid body motion. The Schauder fixed point theorem is 
applied on the mappingS that associates with v, S(v) = Uc: (which has been actually 
slightly modified in order to satisfy the nonlinear constraint ( *) ). The compactness is 
obtained because of regularity results on uc:. 

Step 3 

Next, one has to pass to the limit when c: goes to zero, using an a priori energy 
bound that states that ...;p;uc: E L 00 ((0,T),L2 (0)) and Uc: E L 2 ((0,T),HJ(O)) 
(and also in the compressible case that Pc: E L00 ((0, T), £"1(0))). One can then pass 
to the limit in the mass equation thanks to DiPerna-Lions compactness results for lin­
ear transport equations [DIP 89] (the case of isentropic compressible flow is slightly 
more complicated). Next, one has to study the momentum equation. At this step, com­
pactness results on the velocity are required: it is shown that the velocity is compact 
in L2 ((0, T) x 0), thanks to Riesz-Fn!chet-Kolmogorov compactness theorem in LP 
(see [BRE 83], p. 72). In order to pass to the limit in the weak equation, considering 
w E V, a test function We: E Vc: is built such as We: converges in the good spaces 
though w. At this step the assumption that no collision occurs is needed again. 

Note that more recently, M. Tucknak has proven in [TUC 00] a compactness result 
stating that the weak limit of any weakly convergent sequence of solution of a fluid­
structure interaction problem is still a solution of such a problem using basic theory 
on Navier-Stokes, thus simplifying the approach based on the use of renormalized 
solutions involved in the previous approach. 

These types of methods can be extended to tackle a structure described by a fi­
nite number of modal functions (see [DES OOb]). It seems difficult to apply them to 
more general structure models since one needs space and time regularity of the fluid­
structure interface, and 3D elastic models do not provide the required regularity. 

The next articles deal with the incompressible model. 

In [CON 99], the same result is proven but for only one rigid body. The problem 
is written in a new system of coordinates moving together with the body (thus making 
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difficult the generalization of the approach to more than one rigid body). This tools 
had been already used by D. Serre in [SER 87] where he studies a ball in a viscous 
fluid that occupies the whole space IR3 . So the ball is then fixed inside a domain 
O(t) whose exterior boundary is moving (and over which a homogeneous Dirichlet 
boundary condition is set). They embed this moving domain inside a fixed larger one 
E and extend the functions defined over O(t) by 0 over the complementary set noted 
as f2c(t). As in [FUJ 70] a penalizing term is added to the translated-rotated equation 
[29] corresponding to a mass term on the velocity over f2c(t), so that, in the limit, 
the velocity will be zero over f2c(t). This allow to suppress the difficulty induced by 
the time dependent domain. A standard Faedo-Galerkin method is used to prove that 
the penalized problem is well posed and the a priori bounds on the solution are then 
used to pass to the limit following the same compactness arguments as the ones used 
in [FUJ 70]. 

In [HOF 99], the problem of the motion of a solid body i18 (t) in a bounded domain 
filled with a viscous incompressible fluid is adressed. The approach is again to write 
the problem over the whole domain but the equation over p is replaced by an equa­
tion over¢ = 1n.(t) that belongs to the space Char(Q) the class of characteristic 
functions of subsets of Q. The problem reads as follows: flnd ( u, ¢) with 

v E L00 (0, T; L 2 (D)) n L2 (0, T; V) 

¢ E Char(Q) n C11P(Q, T; LP(D)), 1 ::; p < oo 

such that [29] is satisfied together with 

~ ¢('r!t + u.Vry)dxdt 

holds for any ryE C 1 (Q), ry(T) = 0. 

0 

[30] 

[31] 

[32] 

The analysis of problem [29], [32] then proceeds by using a penalized method 

that consists in adding the term !n(v)D('l/J) in [29], since the rigid body motion 
c 

belongs to the kernel of D(.). An additional ingredient is required that consists in 
regularizing the equations by adding the term JV ~ v V ~ '1/J. It is not hard to check that 
this resulting problem is well posed, providing a solution v e ,6 and that the following 
a priori estimate holds 

r 2 1t r 2 1 2 Jn lve,6(x, t)i + 
0 

Jn IVvE,6(x, t)i + €¢1D(ve,6)(x, s)l 

+JIV ~Ve,6(x, sWdxds::; C. [33] 

The proof proceeds by passing to the limit first in c: second in J using a generalized 
Aubin compactness theorem. In their paper, the authors also investigate the behaviour 
of the body near the wall and prove that if the body comes to the wall, its speed must 
vanish, which proves the limit of the modelization of the phenomenon in this extreme 
situation by the Navier-Stokes equation. 
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3.3. Asymptotic models 

By asymptotic models we mean models of plates, beams or shells. In [FLO 00], 
the authors study a three-dimensional problem where a plate interacts with a linear 
compressible fluid. The plate equations are the ones described previously, with an ad­
ditional term which represents the rotation inertia(= D. a;ll ). This term regularizes 
the plate equation. The existence of weak solutions (in the energy spaces) is obtained 
thanks to a fixed point procedure (Kakutani fixed point theorem), provided that the 
data are small enough. The fluid equations are studied for a given geometry of the 
fluid domain. In order to deal with the non cylindrical domain an elliptic regular­
ization of the equation is performed. These tools have been used in [SAL 85], where 
Navier-Stokes equations defined in a given time dependent geometry were considered. 
The structure equations are studied for a given forcing (coming from the regularized 
fluid equations). These are linear equations defined in a fixed domain, so there is no 
particular difficulty. Then the problem is recoupled thanks to a fixed point procedure. 
The final step is the convergence of the regularized problem through the real one. 
We refer also to [FLO 99], where the same problem in 2D is treated, and where the 
existence of a smooth solution is proven. 

4. Strong solution 

In [GRA OOb], we study the existence of strong solutions for rigid bodies im­
mersed in a viscous incompressible fluid contained in a bounded domain. To handle 
the problem of the time dependent domain the Navier-Stokes equations are written in 
Lagrangian coordinates, and thus the new unknowns are the lagrangian velocity and 
pressure (still denoted by u and p). The space KT(O) in which we search the solution 
is defined as follows: we set forT > 0, 

The main result is the following: 

Let r be a real number, 1 < r < 3/2. We assume that u0 E Hr+l (0,(0)), ft and 
f8 are sufficiently smooth and that the mass and the momentum of inertia of the body 
is sufficiently large, then there exists a time T1 > 0 depending on the data (Ot(O), 
lluollw+t(n,((O)))' r, ... ) such that the problem has a unique solution with u E 

Ky;-2 (0! ((0)), 'Vp E Kf
1 
(Ot((O)), xa E Hr/2+2(0, T1) and() E Hr/2+2 (0, TI). 

The proof is based on several fixed point procedures. We study, in a first step, a 
fluid problem with a given velocity over 80 8 • For such equations we prove that there 
exists a smooth solution with the help of a fixed point theorem (contraction mapping 
principle). The ideas are the same that one can find in the papers [ALL 83], [ALL 87], 
[BEA 81], [SOL 77], [SOL 88a] where the authors have studied the solvability of the 
Navier-Stokes equations with free surface in bounded or unbounded domains. The 
approach is the following: the equations are rewritten in Lagrangian coordinates (this 
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change of variable enables to solve the difficulties linked to the time dependent do­
main) and it is shown that solutions for the initial value problem exist locally in time, 
in smooth functions spaces KT(O). This first step enables us, for a given velocity 
of the rigid body, to define a fluid velocity and a fluid pressure. This gives us the 
fluid constraints. The next step is to solve the structure equations for given exterior 
forces (coming from the fluid constraints). A new velocity of the interface is derived. 
The problem is recoupled thanks to a fixed point procedure. It is at this step that we 
need to add the constraint on the size of the mass and inertia momentum of the rigid 
body. Nevertheless, this additional condition that seems unnatural, allows to obtain an 
uniqueness statement on the solution of the coupled problem. 

Theses results can also be extended to a deformable structure whose displacement 
is a linear combinaison of a finite number of modal functions associated to the contin­
uous elastic operator. The equations that described the evolution of the structure are 
o.d.e. and admit sufficiently smooth solutions in order to apply the same techniques 
described above (see [GRA OOc]). 

5. Summary 

Let's summarize the different techniques and strategies used in those type of prob-
lems. The question of time dependent domain can be solve as follows: 

-Considering the fluid equations written in Lagrangian coordinates; 

-Penalization techniques; 

- Elliptic regularization of the equations. 

We have also seen that one can try to find a global formulation of the fluid-structure in­
teraction problem or look at the fluid equations and the structure equations separately 
and used a fixed point procedure to recoupled the problem. 

Numerically, the dependence in time of the fluid domain requires also special pro­
cedures and can be treated thanks to different techniques. One has to deal with moving 
mesh or to develop special formulations in order to work on a fixed mesh. Neverthe­
less, in the latter case one has to find a way to track the moving interface. For flows 
in time dependent domains, the ALE (Arbitrary Lagrangian Eulerian) formulation is 
often used. It consists in working on a moving mesh whose motion is determined by a 
mesh velocity whose only constraint is to be equal to the fluid velocity at the interface. 
We refer to [HUG 81], [DOE 82] for more details. Other approaches have also been 
proposed among which we note the space-time formulations [TEZ 92]. 

We have already mentioned the fictitious domain techniques that has been used in 
the case of a fluid interacting with rigid bodies (to simulate sedimentation phenom­
ena). The mesh is fixed and a global formulation on the global velocity is used for the 
fluid-structure problem. A Lagrange multiplier is introduced in order to enforce the 
rigid motion in the rigid region. One can also refer to the level set techniques used in a 
different context: modelization of the evolution of nonmiscible flows, where a global 
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formulation is used and solved on a fixed mesh and where the interface is tracked 
thanks to a level set function satisfying a transport equation [CHA 96]. 

Nevertheless, in most cases, one has a fluid code able to solve the fluid equations 
(on a moving mesh) and a different structure code that treats the structure part. The 
question is then how to couple these two codes in order to obtain efficient algorithms, 
the advantage is that the fluid or structure models can be easily modified in such a 
"black-box" approach. In the next section, we focus on the numerical problems en­
countered for fluid-structure interaction simulation and more particularly: the time 
discretization and the spatial discretization. 

6. Numerical analysis 

6.1. Time discretization 

In order to propose a time discretization of the model, we have to choose between 
different strategies for the treatment of the interaction. Many different schemes from 
fully implicit to fully explicit can be investigated. When the structure and the fluid are 
represented by models having the same dimension, there are numerous strategies that 
can be though about. 

The first one is a complete implicit treatment where at each time step, the geom­
etry, the interaction and the fluid and structural data (velocities and stresses) are all 
balanced. This highly nonlinear algorithm has to be solved iteratively. It is naturally 
stable but may require a special procedure (relaxation) to ensure the convergence at 
each iteration [MOU 96]. In this article, the authors prove -on a linear fluid-structure 
interaction problem- that an iterative process, based on the separated resolution of a 
fluid problem and a structure problem, converges through the coupled problem, pro­
vided a relaxation procedure is used. 

A less implicit scheme is the one where we treat explicitly the behaviour of the 
geometry while retaining the coupling implicit. Thus, knowing the approximations 
of velocity, displacement and geometry at the time ntit, we begin to extrapolate the 
geometry at the time (n + l)tit. We then have to discretize the fluid part and the 
structure part and we can propose to solve (iteratively again) the fluid and the struc­
ture equations so that the interface conditions (velocities and stresses) are balanced at 
time (n + l)tit. Another possibility is to make the coupling more explicit by solving 
at each time step the fluid and the structure parts only once and independently. This 
leads to the so-called staggered or partitioned strategies. We can compute the fluid 
equation with Dirichlet boundary conditions (provided from the previous time steps) 
and then the structure equation with Neumann boundary conditions (obtained from the 
recently computed fluid motion) or the opposite, first the fluid with Neumann bound­
ary conditions and then structure with Dirichlet boundary conditions or first structure 
with either Dirichlet or Neumann boundary conditions. We can also compute first the 
structure part and the fluid part with the same possibilities for the interface conditions. 
In the case of a 3D fluid interacting with a plate, a shell or a structure modelled by 
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modal functions then the only possible staggered strategy is to treat the fluid part 
with Dirichlet boundary conditions and compute the displacement knowing the ap­
plied fluid efforts. There are numerous variations for all those strategies depending 
on the choice of the time integrators for the fluid and the structure part, on the choice 
of the evaluation of the load applied by the fluid to the structure.... One can also 
think of prediction-correction procedures. Here, we review few articles that discuss 
the efficiency and stability properties of some of those strategies. 

In [PIP 95], the authors introduce a criterion that ensures the stability of the nu­
merical solution. This criterion expresses the energy balance at the fluid-structure in­
terface. Next, they built and study few staggered procedures applied to a lD linearized 
fluid-structure interaction problem (an Euler compressible flow interacting with a pis­
ton). The basic and popular staggered algorithm denoted by CSS (Conventional Serial 
Staggered) they consider is the following: (1) predict the motion of the interface, (2) 
update the fluid mesh, (3) compute the fluid part with a given velocity, (4) compute 
the new force applied to the structure, (5) advance the structural system. In partic­
ular, they prove that the basic CSS method completed with a well-chosen correction 
procedure provides an unconditionally stable and time-accurate scheme. Their the­
oretical linear analysis is confirmed by numerical simulations on a two-dimensional 
aeroelastic problem. 

In the part II of the previous article [PIP 99], the authors develop a new criterion 
that predicts the performance of the considered partitioned procedure. They consider 
a three field formulation - the fluid, the structure and the dynamic of the mesh- to 
describe the fluid-structure interaction problem. They estimate the energy that is in­
troduced at the interface of the two media by the various staggered schemes, assuming 
that the structure and the pressure induced by the flow are vibrating with constant am­
plitudes at the same frequency but assuming that they are not in phase. This gives 
an estimate of the created energy with respect to the time step. They validated their 
approach on two-dimensional and three-dimensional aeroelastic applications (super­
sonic and transonic flow/ panel and wing). 

In [GRA 98b], three different strategies are studied, applied on a one-dimensional 
nonlinear problem where a modified BUrger equation in an unknown time dependent 
domain (written in ALE formulation) is coupled with a wave equation. In all those 
strategies the geometry is predicted. In the first one the interface conditions are treated 
implicitly, in the two others the treatment of the interface conditions is explicit. The 
first explicit strategy consists in solving the fluid part with Neumann boundary con­
dition and then the structure part with Dirichlet boundary condition, and the second 
one corresponds to the so-called CSS procedure. The considered schemes are first or­
der in time. We prove, provided that the time step and the data are sufficiently small, 
that the implicit strategy is stable and convergent with a rate of convergence of 6.t314 . 

Concerning the explicit schemes, the first one is stable with a stability constant that 
can explode as time increases. Moreover if the equations are also discretized in space 
using a finite element discretization, then the scheme is stable under CFL-like condi­
tions. Under more constraining CFL-like conditions, stability estimates are derived for 
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the second explicit scheme but we are not able to derive stability without considering 
space discretization. These latter results seem to confirm the well-known limitation of 
CSS procedure. 

6.2. Spatial discretization 

We now consider the question of spatial discretization of the fluid-structure inter­
action problem [22]. In most of the applications and because one has -in most of 
the cases- at its disposal a fluid code and a structure code built independently, the 
fluid mesh and the structure mesh may be non-matching or incompatible (even if the 
meshes match, the partial differential equations describing the two media may require 
different types of discrete functions). In this framework, the question is how to couple 
these two codes, how to transfer the information at the interface of the two media, in 
a reliable and energy-consistant way. In most of the cases the structure solver is based 
on a finite element discretization, and we will denote by hs the associated spatial mesh 
size. Concerning the fluid one can consider either finite element discretization or finite 
volume discretization. At the fluid-structure interface one has to traduce the equality 
of the velocities and the load balance. Nevertheless, at the discrete level, when the dis­
cretizations are incompatible, this can not be done in a strong way. The weak equality 
(all the quantities are now discrete ones) can be written as follows: 

a) u = Q(8td), 

b) a8 .n = P(at.n), 

where Q and P are two linear operators (possibly depending on time if dealing with 
moving boundary) and a8 (resp. a f) represents the numerical structure (resp. fluid) 
stress tensor. The question is how to define Q and P in order to be conservative? 

If Q (depending for instance on the fluid discretization) is fixed the balance of 
the fluid and structure virtual works requires that P = QT (see [GRA 98c] and 
[GRA 98a]. This is what is underlined in [FAR 98] where the authors present a conser­
vative algorithm where the operator Q is the fluid interpolation operator and compare 
the choice P = QT to the non conservative interpolation based methods where Q and 
P are both interpolation operators. Thanks to some numerical simulations, they show 
that these non-conforming methods can be accurate, in some cases (when the fluid 
and the structure interface share the same geometrical support) and that the conform­
ing methods are accurate in all the considered cases. Considering finite element dis­
cretizations for the structure part they also discuss the accuracy of the mortar element 
approach introduce by Bernadi, Maday, Patera [BE 90]. This method is conserva­
tive and (as we shall see) mathematically optimal, in the sense that the error estimate 
for the fluid-structure interaction problem obtained when considering incompatible 
meshes is the same that the one obtained when the meshes match. Nevertheless, it 
can be noted that, considering P1 finite element discretization for the fluid part, and if 
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the fluid mesh size h 1 is chosen of the order of h; then the conservative interpolation 
method is also accurate. 

For a numerical analysis, we refer to [GRA 98a], where error estimates are derived 
for a steady-state limit model interaction problem. On the one hand, for the fluid part, 
a two-dimensional second-order equation is considered discretized with a Pk finite 
element discretization. On the other hand, for the structure part, several cases can be 
considered: a 2D structure, a beam (modelized by two decoupled one-dimensional 
equations: a fourth-order equation for the transverse displacement and a second-order 
equation for the longitudinal displacement), or a structure modelized by a finite num­
ber of modal functions. In this article, two different types of matching are considered: 
a pointwise matching, i.e. Q is equal to the Pk finite element interpolation operator 
associated to the fluid part, and an integral matching, i.e. the mortar element method. 
In all the cases, the error estimate will be of the form O(hj) + O(h~). where /3 is 
optimal in regard to the discretization associated to the structure part. The possible 
lack of optimality will come from a. The following results hold ( with no assumption 
made on the relative size of h1 with respect to h8 ) 

1. For 2D structure modelized by second order elliptic equation then the standard 
conclusion holds (see [BE 90]) i.e.: 

(a) the mortar method is optimal, Vk (a= k), 

(b) the pointwise matching is not optimal (a= 1/2). 

2. For a ID fourth-order equation : 

(a) the mortar method is optimal, Vk (a= k), 

(b) the pointwise matching is optimal fork :::; 2 (a= max(k, 2)). 

3. For a 1D second-order equation: 

(a) the mortar method is optimal, Vk (a= k), 

(b) the pointwise matching is optimal fork :::; 1 (a= max(k, 1)). 

4. For a finite number of model functions (then the motion of the structure is 
modelized by an o.d.e) 

(a) the mortar method is optimal, Vk (a = k), 

(b) the pointwise matching is also optimal, Vk. 

As we see the optimality of the pointwise matching is linked to the regularity of the 
displacement at the interface of the two media. 
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