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A tensorial-based mesh adaptation for a poisson problem
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ABSTRACT
This paper discusses anisotropic mesh adaptation, addressing
either a local interpolation error, or the error on a functional,
or the norm of the approximation error, the two last options
using an adjoint state. This is explained with a Poisson model
problem. We focus on metric-based mesh adaptation using a
priori errors. Continuous metric-based methods were developed
for this purpose. They propose a continuous statement of the
mesh optimisation problem, which need to be then discretised
and solved numerically. Tensorial metric-based methods produce
directly a discrete optimal metric for interpolation error
equirepartition. The novelty of the present paper is to extend
the tensorial discrete method to addressing (1) L1 errors and
(2) adjoint-based analyses, two functionalities already available
with continuous metric. A first interest is to be able to compare
tensorial and continuous methods when they are applied to the
reduction of approximation errors. Second, an interesting feature
of the new formulation is a potentially sharper analysis of the
approximation error. Indeed, the resulting optimal metric has a
different anisotropic component. The novel formulation is then
compared with the continuous formulation for a few test cases
involving high-gradient layers and gradient discontinuities.
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1. Introduction

Mesh adaptation is an important component in the research of a better control of
numerical error in Computational Mechanics. While the aim of our research is
to propose methods applying to the mesh adaption of various partial differential
equations (PDE’s), we start discussing here the case of a very simplified model
useful in computational structural mechanics (CSM) and computational fluid
dynamics (CFD), the Poisson problem. The two main ingredients for this will be
metric parametrisation of mesh and approximation error estimates.

We focus on methods which prescribe a somewhat anisotropic optimal mesh
under the form of a parametrisation of it by a Riemannianmetric. A Riemannian
metric is a continuous matrix field defined on the computational domain�:

M : � ⊂ R
d → R

d2 x �→ M(x)
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where M(x) is a symmetric matrix, in R
2:

M(x) = R(x)t
( 1
�ξ(x)2

1
�η(x)2

)
R(x)

defining two mesh stretching directions by its eigen vectors and to mesh sizes
�ξ(x),�η(x) in those directions.Manymesh generators are able to buildmeshes
in accordance with the specifications (stretching and sizes) of a given two metric
field. The Riemannianmetric should be obtained from an error analysis. One op-
tion is the solution of a continuous optimisation problem based on a continuous
extension of numerical error. This is proposed, among other works, in Loseille
and Alauzet (2011a), (2011b). Another option defines a discrete equation for a
discrete metric on each vertex of the current mesh. It is proposed in Coupez
(2011), Coupez et al. (2013) and relies on edge-based tensorial formalism. Both
methods can be equally applied to CFD (see many references in the sequel) and
to CSM, we refer to two recent typical works in elasticity, (Jensen, 2016) and for
fracture problems, (Artina, Fornasier, Micheletti, & Perotto, 2013).

Continuous and tensorialmetrics both rely on the parametrisation of themesh
by a spatial field defining in any point of the computational domain a matrix
giving information on mesh size in all the spatial directions.

Both methods solve an optimality system. The continuous metric builds a
continuous optimality systemwhich has, afterwards, to be discretised and solved,
while the tensorialmetric builds a discrete optimality system to be solved directly.
Also, the continuous metric theory defines the ideal metric to be choosen. The
resulting ideal mesh produced by metric optimisation is the so-called unit mesh.
It is defined from the optimal metric as a mesh with all its edges of unit length
with respect to the metric. In contrast, the tensorial metric obtained from an
optimisation step in Billon, Mesri, and Hachem (2016), Coupez (2011), Coupez
et al. (2013), is provided by the modification to apply to the current mesh in
order to obtain the ideal mesh. Then the way to parameterise the final mesh with
the two metrics is different, since the ideal mesh is with edges of unit length for
the continuous metric, while the tensorial metric defines the ideal mesh from
local directional amplifications of the background mesh. Further, the constraint
imposing a prescribed number of nodes is formulated on a vertex by vertexmode
for the continuousmetric and on an edge by edgemode for the tensorial method.

Let us consider nowwhich error functional is chosen in the twomethods. Both
methods apply to the minimisation of the P1-interpolation error committed on
one or several sensors depending on the PDE solution u, e.g.:

Find Mopt whichminimizes |u −�Mu|
where�M is the P1-interpolation operator on the current mesh, parameterised
by M. For a representative sample of Hessian-based methods, cf. (Agouzal,
Lipnikov, & Vasilevskii, 1999; Alauzet, 2003; Castro-Díaz, Hecht, Mohammadi,
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&Pironneau, 1997; Chen, Sun, &Xu, 2007; Dompierre, Vallet, Fortin, Bourgault,
& Habashi, 1997; Gruau & Coupez, 2005; Huang, 2005; Vasilevski & Lipnikov,
1999, 2005; Yano & Darmofal, 2012). Continuous and tensorial Hessian-based
methods involve the equi-distribution method, which turns out to finding the
metric which minimises a L∞ norm of the interpolation error:

Mopt = Argmin |u −�Mu|L∞ .

The continuous Hessian-based methods also involves the multiscale method,
defined as minimising the Lp interpolation error of the sensors for p �= ∞.

Mopt = Argmin |u −�Mu|Lp .
In order to minimise the interpolation error, it is replaced by an asymptotic
equivalent (when mesh get finer), which is expressed in terms of the Hessian
derivative of the sensor. These methods are refered as feature-based or Hessian-
based methods. While taking into account some features of the solution of the
PDE, they do not take into account the features of the PDE itself. Also, when
an interpolation-based adaptation is applied to a system, it is not always easy to
choose a set of sensors and their weights. However, if the sensors are cleverly
chosen, a good convergence of the whole approximate solution field to the exact
solution field is usually observed.

Goal-oriented methods allow to take into account the PDE under study. A
combination with anisotropic Hessian-based adaption is proposed in Venditti &
Darmofal (2003).Goal-orientedoptimalmethodsLoseille,Dervieux, andAlauzet
(2010), Belme,Dervieux, andAlauzet (2012), Yano&Darmofal (2012),minimise
with respect to the metric the approximation error committed on the evaluation
of a scalar functional J depending on the PDE solution:

Find Mopt whichminimizes |J(u)−J(uM)|, uM approximate solution of PDE.

They do take into account the features of the PDE, typically through the use of
an adjoint state. Goal-oriented methods needs also to rely on an error estimate
(and on its sensitivity to mesh). Further, the goal-oriented adaptation criterion
is mathematically derived from the functional chosen, and this delivers from the
difficult task of choosing sensors as for interpolation-based adaptation.

Several methods have been proposed for reducing the approximation error
through an estimate. A pioneering approach is thework of Becker andRannacher
Becker & Rannacher (1996) which relies, as many estimate-based work, on an a
posteriori estimate.

|J(u)− J(uM)| ≤ functionpost(M, uM).

A good synthesis concerning a posteriori estimates is Verfürth (2013). An inter-
esting feature of an a posteriori estimate is that it is directly expressed in terms
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of the approximate solution, assumed to be available in a mesh adaption loop. A
second interest is that it does not require the use of higher order (approximate)
derivatives, in contrast to truncation analyses. However, these works do not
address anisotropy. Adjoint-based and metric-based anisotropic mesh adaption
is a difficult topic. Before going into deeper details of the method we develop,
let us mention that an a priori analysis relying on element-mapping is proposed
in Formaggia, Micheletti, and Perotto (2004). In Yano and Darmofal (2012), a
metric optimisation is performed from local perturbation of the mesh and of the
solution.

A priori estimates depend on the exact solution:

|J(u)− J(uM)| ≤ functionprio(M, u).

They rely quasi-systematically on Taylor series, either through divided differ-
ences, or through polynomial approximation of functions. Then approximations
of higher order derivatives of solution need be recovered from the approximate
solution, typically: ∣∣∣∣∂2u∂x2

∣∣∣∣ ≡ DM
2 (uM).

This is a delicate job since nothing ensures that a higher-order derivative of
the approximate solution is a good approximation of the corresponding higher
order derivative of the exact solution, see Zienkiewicz and Zhu (1992) for a
fundamental paper on the question.Assuming thatwe have such a good recovery,
Taylor series can be easily used for proposing a somewhat optimal mesh. In the
present paper, we use the tensorial formulation in order to build a novel a priori
estimate for the Poisson equationwhich does not explicitly require the evaluation
of higher-order derivatives.

Thanks to the goal-oriented formulation, the metric-based mesh adaptation
becomes a well-posed optimisation problem for the reduction of a genuine
approximation error. However, goal-oriented optimal methods are specialised
to a given scalar output. Features of the solution field which are not related to this
outputmay be neglected by the automaticmesh improvement. As a consequence,
these methods do not systematically provide a globally convergent solution field.

In the present paper, we study a norm-oriented formulation (according to
Brèthe & Dervieux, 2016). In this third mesh adaptation method, the user can
prescribe a norm of error |u−uh|which the algorithmwill minimise with respect
to the metric parametrisation of the mesh.

Find Mopt whichminimizes |u − uM|, uM approximate solution of PDE.

As a consequence, with an adequate choice of the norm, the norm-orientedmesh
adaptation produces convergent solution fields.
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The continuous approach forHessian-based, goal-oriented andnorm-oriented
has been defined in papers like Belme et al. (2012), Brèthe and Dervieux (2016),
Loseille et al. (2010).

The purpose of this paper is to analyse the possible novelties which can be
derived from the extension and application of a tensorial method to L1 Hessian-
based, to goal-oriented, and to norm-oriented problematics.

Themain feature of tensorial approachwhich we shall exploit is the derivation
of the optimal metric thanks to a inversion using the tensorial calculus in the
main error term. In order to adapt this feature to L1-Hessian, to goal-oriented,
to norm-oriented problematics, we unify the parametrisation by choosing the
unit-mesh formulation and by measuring the number of nodes on a vertex basis.

Although the proposed method is a rather general method extending to
complex CFD or CSM models, see e.g. (Loseille, Dervieux, & Alauzet, 2015)
for CFD, we consider in this paper a 2D Poisson problem discretised by the
usual linear finite-element method. This choice is motivated first by the rather
complete set of theoretical works available for the finite-element approximation
of a Poisson problem. This amount of theoretical background reduces as much
as possible (although far from completely) the heuristics to introduce in building
the mesh adaptation analysis. A second motivation is the easy availability of
exact solutions defined in a simple way. This allows to build a kind of benchmark
allowing to compare mesh adaptation methods. The proposed approach extends
naturally from the Poisson problem to the standard elasticity models. On the
other hand, the Poisson problem with variable coefficient is a central equation in
CFD, and in particular for two-fluid models (see Guégan et al., 2010 for a mesh-
adaptive example). Let us finally mention that the proposed method extends
naturally to systems, which can be useful in case where the choice of sensors of
an interpolation-based adaptation is delicate.

Paper overview: in Section 2 we define the Poisson problem under study
and propose a simple corrector for the discrete solution, which will be used in
Section 6. Section 3 recall the main features of the continuous metric adaptation.
This assume that mesh and approximation errors are converted into continuous
fields, namely a continuousmetric, and a continuous approximate solution. Then
it is possible to formulate a continous optimisation problem, whichwe shall solve
analytically. The optimality conditions are then discretised and approximately
solved by introducing the mesh generator. Section 4 introduces the discrete
context for tensorial metric optimisation. A discrete error field is defined on
each edge of themesh. The optimisation of the dicretemetric is formulated edge-
by-edge and solved and put as parameter in the mesh generator. In Section 5,
we focalise on a particular family of errors, the edge-based second-order errors.
Three types of second-order errors are introduced: interpolation error, goal-
oriented error, norm-oriented error. Section 6 gives the optimal metric for the
family of errors. Numerical examples are presented in Section 7 and the paper is
concluded by Section 8.
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2. Poisson problem approximation

Let us introduce some notations: let V = H1
0 (�), � being a smooth enough

computational domain of R
2 or R

3. The continuous PDE system is written in
short:

u ∈ V , Au = f or u ∈ V , ∀ φ ∈ V , a(u,φ) = (f ,φ). (1)

To fix the ideas and simplify notations,

A = −
∑ ∂

∂xk
∂

∂xk
⇔ a(u,φ) =

∫
�

∇u · ∇φdx.

But the extension to a coercive general case where A = −∑ ∂
∂xk
(ak	(x) ∂∂x	 ) +

a0(x) (where ak	, a0 are scalar, possibly discontinuous, fields) is not difficult.
Let �h = � for simplicity, τh a triangulation of �h and Vh be the usual P1-
continuous finite-element approximation space related to τh:

Vh = {φh ∈ C0(�̄) ∩ V ,φh|T is affine ∀T ∈ τh}.

We denote by�h the usual interpolation operator:

�h : C0(�̄) → Vh �hφ(xi) = φ(xi)∀xi, vertex ofτh.

The finite-element discretisation of (1) is written:

uh ∈ Vh and ∀ φh ∈ Vh , a(uh,φh) = (fh,φh) (2)

with fh = �hf . We are interested first in getting estimates of the approximation
error uh − u. Let N be the dimension of Vh, that is the number of vertices in τh.
We observe that (2) is equivalent to computing the array uh of the degrees of
freedom of the discrete solution:

uh ∈ R
N ; Ahuh = fh. (3)

From the above array, we derive uh by

uh =
∑
i=1,N

uh,iNi(x)

where the Ni are the canonic finite-element basis of Vh:

Ni ∈ Vh, Ni(xj) = 1 if i = j, 0 else.

We also introduce the interpolation operator�h:

for v ∈ V ∩ H2(�), �hv ∈ Vh, (�hv − v)(xi) = 0 ∀xi vertex of τh.
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Let us now study the approximation error u − uh. We start from the discrete
above statement

a(uh,φh) = (fh,φh) ∀φh ∈ Vh.

and observe that for the exact solution satisfies:

a(u,φh) = (f ,φh) ∀φh ∈ Vh.

Then
a(uh,φh) = a(u,φh)+ (fh − f ,φh) ∀φh ∈ Vh.

Assuming that the solution u is sufficiently smooth, we get:

a(�hu − uh,φh) = a(�hu − u,φh)+ (f − fh,φh) ∀φh ∈ Vh. (4)

We call �hu − uh the implicit error. It differs from the approximation error by
an interpolation error:

u − uh = u −�hu + �hu − uh.

The rest of the section is devoted to finding a corrector, i.e. a discrete field u′
prio

which would be rather easy to compute and would be an approximate of the
implicit error:

u′
prio ≡ �hu − uh.

Let us evaluate the RHS of (4). The second term of (4)’s RHS is easy to evaluate
(we know f and fh). The first term of (4)’s RHS can be transformed as follows:

a(�hu − u,φh) =
∑
T

∫
T

∇φh∇(�hu − u) dxdy

=
∑
T

∫
∂T
(�hu − u)∇φh · n dσ.

Then we get:

a(�hu − u,φh) = K(φ, uh) with

K(φ, uh) =
∑
∂Tij

∇(φh|Ti − φh|Tj) · nij
∫
∂Tij

(�hu − u) dσ (5)

where the last sum is taken for all edges ij = ∂Tij (2D case) separating triangles
T+
ij and T−

ij of the triangulation. The unit vector nij normal to ∂Tij is pointing
outward Ti.

Our corrector is defined by:

a(u′
prio,φh) = K(φh, uh)+ (f − fh,φh) with

K(φh, uh) =
∑
∂Tij

(∇φh|Ti − ∇φh|Tj) · nij
∫
∂Tij

(πhuh − uh) dσ (6)
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where the termπhuh−uh is built on the edgeTij as a quadratic function vanishing
at both extremities of Tij, and of second derivative in direction Tij equal to the
approximate second derivative in same direction of uh. The corrector u′

prio will
be used in Section 6.3.

3. Continuousmetric parametrisation

3.1. Mesh parametrisation

We recall the continuous mesh framework, introduced in Loseille and Alauzet
(2011a), (2011b). The main idea of this framework is to model discrete meshes
by Riemannian metric fields. It allows us to define a differentiable optimisation
problem (Absil, Mahony, & Sepulchre, 2008; Arsigny, Fillard, Pennec, &Ayache,
2006), i.e. to apply on the class continuous metrics a calculus of variations which
cannot be applied on the class of discrete meshes. This framework lies in the
class of metric-based methods. A continuous mesh M of the computational
domain � is identified to a Riemannian metric field (Berger, 2003) M =
(M(x))x∈�. For all x of �, M(x) is a symmetric 3 × 3 (in 3D, 2 × 2 in 2D)
matrix having (λi(x))i=1,3 as eigenvalues along the principal directions R(x) =
(vi(x))i=1,3. Sizes along these directions are denoted (hi(x))i=1,3 = (λ

− 1
2

i (x))i=1,3
and the three anisotropy quotients ri are defined by: ri = h3i

(
h1h2h3

)−1. The
diagonalisation of M(x) writes:

M(x) = d
2
3 (x)R(x)

⎛⎜⎜⎝
r−

2
3

1 (x)

r−
2
3

2 (x)

r−
2
3

3 (x)

⎞⎟⎟⎠ tR(x), (7)

The vertex density d is equal to: d = (
h1h2h3

)−1 = (
λ1λ2λ3

) 1
2 =

√
det (M). By

integrating it, we define the total number of vertices C:

C(M) =
∫
�

d(x) dx =
∫
�

√
det (M(x)) dx. (8)

Given a continuous mesh M, we shall say, following Loseille and Alauzet
(2011a), (2011b), that a discrete mesh H with edges xij = xjxi of the same
domain� is a unit mesh with respect to M, if each edge xij of H verifies:

∀i ∈ [1, 3], 	M(xij) ∈
[

1√
2
,
√
2
]
,

in which the length of an edge 	M(xij) is defined as follows:

	M(xij) =
∫ 1

0

√
txij M(xi + t xij) xij dt.
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We want to emphasise that the set of all the discrete meshes that are unit
meshes with respect to a unique M contains an infinite number of meshes,
but these meshes produce approximates solutions of (1) which are sufficiently
close to each others, so that we consider these meshes as an equivalence class of
meshes. We henceforward denote by xM a unit mesh for metric M. The unit
edge property of unit mesh writes in short:

For a unit mesh xM, any edge xM
ij satisfies

(
xM
ij ,MxM

ij

)
= 1.

3.2. Optimal continuousmetric

We recall, following Loseille and Alauzet (2011a), (2011b), the main features of
the metric-based analysis initiated in several papers like Agouzal et al. (1999),
Castro-Díaz et al. (1997), Dompierre et al. (1997). The continuous interpolation
error of a function u defined on the computational domain is denoted now:

u − πMu =
∣∣∣tr (M− 1

2 |Hu|M− 1
2

)∣∣∣ (9)

where Hu is the Hessian of u. Let denote also M a unit mesh for metric M. We
shall use the estimate ∣∣∣u −�Mu

∣∣∣ ≈ 1
8

∣∣∣u − πMu
∣∣∣. (10)

Once we have a continuous error kernel, we consider minimising:

jp(M) = ‖u − πMu‖Lp(�h) (11)

and we define as optimal metric the one which minimises the right-hand side
under the constraint of a total number of vertices equal to a parameter N . In the
case of a bounded p, after solving analytically this optimisation problem, we get
– without using the fact thatH is anything but a positive symmetric matrix – the
unique optimal (MLp(x))x∈� as:

MLp = Kp(1,H) (12)

where we use (throughout this paper) the following notation defined for a scalar
field k and for 1 < p ≤ ∞:

Kp(k,H) = DLp ( det (kH))
−1
2p+2 kH and DLp = N

2
2

(∫
�

( det (kH))
p

2p+2

)− 2
2
,

(13)

In this formulation,DLp is a real number imposing that the continuousmeshhas a
total number of verticesN . The scalar field ( det (H))

−1
2p+2 is a local normalisation
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term accounting for the sensitivity of the Lp norm. A particular case: L∞-
norm/iso-distribution. It is important to remark that error iso-distribution is
taken into account by setting p = ∞, a limiting case for which we get:

( det (H))
−1

2∞+2 = 1.

and

ML∞ = K∞(1,H) with K∞(1,H) = DL∞ H

whereDL∞ is defined from the specification of the number of nodes of the mesh.
Another way to see it is to write that the error is uniform, indeed:

ML∞(x) = const. (indep. of x) H

implies that:

trace
(

M− 1
2

L∞(x)H(x)M− 1
2

L∞(x)
)

= const. (indep. of x).

Main case under study: L1-norm optimisation. The rest of the paper concentrates
with the case:

p = 1.

Replacing the optimal metric ML1 in the L1 norm shows that second-order
convergence is obtained for smooth contexts. This can also be extended to
non-smooth ones, cf. (Loseille, Dervieux, Frey, & Alauzet, 2007).

Let k a sufficiently smooth scalar function defined on �. We shall be, in the
sequel, interested in minimising the right-hand side of:

|(k, u −�Mu)�| ≈
∫
�

trace
(M− 1

2 (x)|k(x)H(x)|M− 1
2 (x)

)
dx. (14)

The optimum metric is given by:

M1,k
opt = K1(k,H) with Kp(k,H) defined in (13). (15)

It is interesting to compare this result with the result of equi-distribution, at
least for the particular case of an interpolation error. We observe that:

M1,k
opt = const. |k| 34 |( det |H|)− 1

4 |H| = const. |Hk|
Hk = |k| 34 |( det |H|)− 1

4H. (16)

This means that the error minimisation in L1 weighted by k is equivalent to an
equi-distribution process with a matrix H corrected by a scalar factor
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|k| 34 |( det |H|)− 1
4 :

M1,k
opt = const. K∞

(
|k| 34 |( det |H|)− 1

4 ,H
)
.

In order to evaluate approximativelyH , it is necessary tonumerically differentiate
the approximate solution using a recovery as introduced in Zienkiewicz and Zhu
(1992). The precise recovery which we use in this paper is described in Alauzet
and Loseille (2010).

To synthetise, the continuous metric method yields the mesh adaptation
solution under the form of a continuous optimality system involving:

• The continuous initial PDE,
• Its continuous adjoint and
• A stationarity condition explicitly solved by (15).

In practice, this optimality system is discretised and then numerically solved.

4. Edge-based tensorial approach

This section recalls in short the main features of the length distribution tensor
method using edge-based errors. This method is introduced in Coupez (2011).
We concentrate on the more recent formulation of Coupez et al. (2013). Let us
consider a mesh x described by its edges xij between vertex i and vertex j. We
call a unit metric of this arbitrary mesh a metric M1(x) defined on each vertex
of the mesh x which measures the mesh x as a unit mesh, in other words which
satisfies (approximatively in practice) the relation:

∀ (i, j) (M1(x)xij, xij
) = 1.

Let �(i) be the set of vertices which are neigbors if vertex i. We can write at
vertex i:∑

j∈�(i)

(
M1(x)xij, xij

) =
∑
j∈�(i)

1 ⇒ M1(x) :
( ∑
j∈�(i)

xij ⊗ xij
)

= |�(i)|,

where |�(i)| is the cardinality of �(i). When there exists at least d non-aligned
edges around i, we can solve for the value M

i of unit metric M1(x) at vertex i as
follows:

M
i = M1(x)i = 1

d

( ∑
j∈�(i)

1
|�(i)|x

ij ⊗ xij
)−1

.

This metric, when applied for transforming the initial mesh xij into a new mesh,
gives a new mesh with uniform edge length ||x̃ij|| = 1.

An second-order approximation with local edge error

e|xij = eij
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equal to eij on the edge of length ||xij|| would have its error changed as follows if
the length of xij is changed:

x̂ij = sij xij ⇒ e|x̂ij = s2ij eij.

Looking for a uniform error e|x̂ij = 1 we have to impose sij = (1/eij)1/2, that is
to transform the initial mesh with the metric:

M
i = 1

d

( ∑
j∈�(i)

1
|�(i)|e

−1
ij xij ⊗ xij

)−1
. (17)

Then it remains to multiply the metric by a constant allowing to control the total
number of vertices in the new mesh (see Coupez et al., 2013).

When comparing this formulation with the previous one, we observe a couple
of differences.

• Formulation (17) is a discrete one, while the continuous metric (12) is not.
• Formulation (17) takes into account errors which are defined along mesh
edges while continuous metric (12) takes into account error fields which
can then be integrated into Lp norms.

• Formulation (17) provides a corrected mesh from the initial one instead of,
like the continuous metric method (12), giving the novel mesh as the unit
mesh of an optimal metric.

In the sequel, we show that edge-based errors can also model error fields, and
we unify the mesh parametrisation to an optimal metric formulation.

5. Approximation of metric properties

The optimality system of the tensorial formulation relies on an edge-based error
modelling. Then most of the important discrete fields need to be cast in an
edge-based format. We introduce a few notations for this.

5.1. Generic mesh notations

Given a mesh Hx , we can define the following notations.

• A mesh-vertex is a vertex of numero i and coordinates xi of an element of
the mesh.

• When there is an edge between vertex i and vertex j, we denote xij = xj −xi.
• Two tetrahedram and n having a common face have facemn or face nm as
common face.

• Elements: triangles (i, j, k) or tetrahedra (i, j, k, l). Elements are divided in
sub-elements: 6 subtriangles using medians and 24 subtetrahedra using
median plans. The vertices of a subtetrahedron are : a mesh-vertex i , a
centre Iij of an edge ij having i as extremity, the centroid gijk of a face ijk
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containing vertices i and j, the element centroid Gijkl . The measure of a
subtetrahedron of the tetrahedron T is 1/24 meas(T).

• Cell i: for a vertex i of the mesh, cell i is union of sub-elements having i as
vertex of the sub-element. A cell measure is defined as

measx(i) = 1
dim + 1

∑
Tx�i

meas(Tx)

where Tx are elements of Hx containing vertex i.
• 2D-diamond Dij : union of the four subtriangles (of triangles ijk and ijl)
having a side included in edge ij.

• Face-diamond D̄mn, where m and n are two tetrahedra having a common
face ijk : union of six subtetrahedra having a subtriangle of the common
face ijk as face.

• Edge-diamond Dij: union of subtetrahedra having having a side included in
edge ij.

The integral of a function eij defined on the edges can be approximated by:

errL1 =
∑
i

measx(i)�(i)−1
∑
j

eij

where the sum is taken over vertices (=cells), or introducing the diamond
partition� = ∪D̄mn wherem and n are elements with a common face:

errL1 = 1
3

∑
D̄mn

measx(D̄mn) (eij + eik + ejk).

where i, j, k are vertices of the facemn.

5.2. Discretising an arbitrary continuousmetric on a backgroundmesh

In order to find the optimal metric, we are given a background mesh x. We
assume that the unknown metric M is defined on the vertices M(xi) = Mi

of the background mesh and that it is P1-continuously interpolated. The total
number of nodes can be approximated on the mesh x by a quadrature of (8) as
follows:

C(M) =
∑
i

measx(i)
√
det (Mi).

To simplify, we assume that the unit mesh is a deformation of x, and that
xM
ij and xij are colinear. Then we can derive from the unit-mesh property a
relation between the edge lengths of unknown mesh and the edge lengths of the
background mesh:

(
xM
ij ,MxM

ij

)
= 1 =

(
xij

|xM
ij |

|xij| ,Mxij
|xM

ij |
|xij|

)
= (xij,Mxij)

|xM
ij |2

|xij|2



258 G. BRÈTHES AND A. DERVIEUX

⇒ xM
ij ≈ xij(xij,Mxij)−

1
2 .

In order now to evaluate the approximation error provoked by the application
of the unit mesh, we need to define a generic error model.

6. Second-order error of a metric on a backgroundmesh

To any givenmetric, i.e. to any givenmesh, should correspond a numerical error
field. Let us define a generic family of error field with values on mesh edges. We
restrict to second-order i.e. quadratic errors, on the model of P1-interpolation
error.
Definition:An edge-based second-order (or quadratic) error produced by the use
of the unit mesh xM of metric M has an intensity defined on edge xM

ij by:

eMij = ēij |xM
ij |2.

in which ēij depends only on location and direction of xM
ij , and is O(1) when

mesh becomes finer. Typically:

eMij = |xM
ij |2 ēij

(
1
2
(xM

i + xM
j ),

xM
ij

|xM
ij |

)
.�

Since we a priori know neither the optimal metric nor its mesh, it is useful to
evaluate this error on a given backgroundmesh x. We use that the unit mesh is a
deformation of x in such a way that xM

ij and xij are colinear. Then the intensity
eMij of the error with the unit mesh evaluated at middle of xij of the background
mesh writes:

eMij = |xij|2 (xij,Mijxij)−1 ēij
(
1
2
(xi + xj),

xij
|xij|

)
(18)

where Mij is evaluated on 1
2(xi + xj). The mesh adaptation problem will be

set as the research of the discrete metric, defined on mesh vertices and linearly
interpolated, of a given number of nodes N

C(M) = N ,

and minimising the discrete error norm:

j(M) =
∑
i

measx(i)
1
�(i)

∑
ij�i

eMij . (19)

In Section 7.6, we determine the optimal mesh for this type of error, as far as
ēij is identified. The rest of the present section is devoted to the description of
three examples of quadratic errors.
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6.1. First example: interpolation error

The error committed in interpolating a smooth function on a P1 mesh is a
quadratic error. Indeed, theweightedP1-interpolation error of a smooth function
u on xM

ij can be estimated similarly to (9), (10) as follows:∫
�

|g ||u −�hu|d� � 1
8

∑
i

measx(i)�(i)−1
∑
j

eM,g ,u
ij (xij)

with:

eM,g ,u
ij = |xM

ij |2 |gij| |Hij| · xM
ij

|xM
ij | · xM

ij

|xM
ij | ,

and where Hij = H(12(x
M
i + xM

j )), H(x) being the Hessian of u at point x, and
gij = g(12(x

M
i + xM

j )). Here� holds for an inequality applying for a sufficiently
fine mesh, with a multiplicative constant close to 1. The error can be evaluated
on a background mesh as follows:

eM,g ,u
ij (xij) = |xM

ij |2 ēij(xij) = (xij,Mxij)−1 |xij|2 ēij(xij)

with:

ēij(xij) = |gij(xij)| |Hij(xij)| · xM
ij

|xM
ij | · xM

ij

|xM
ij | = |gij(xij)| |Hij(xij)| · xij

|xij| · xij
|xij| .

We observe that ēij(xij) is O(1) when mesh gets finer. Then this first example
of error takes place into the context of (18), (19).

6.2. Goal-oriented error

Let u be the solution of (1) and uM the discrete solution of (2) where the mesh
is an unit mesh for metric M. A typical goal-oriented analysis relies on the
minimisation of the error δjgoal(M) committed in the evaluation of the scalar
output j = (g , u), error which we write as follows:

δjgoal(M) = |(g , u − uM)| = |(g ,�Mu − uM + u −�Mu)|. (20)

According to the Aubin–Nitsche analysis (Aubin, 1967; Nitsche, 1968), this error
is second-order with respect to mesh size. Let us define the discrete adjoint state
u∗
goal:

∀ψM ∈ VM, a(ψM, u∗
goal) = (ψM, g). (21)

In the sequel, we use a fixed point in which the adjoint is frozen with respect to
the metric M. Injecting (21) in (20) we get:

(g ,�Mu − uM + u −�Mu) = a(�Mu − uM, u∗
goal)+ (g , u −�Mu)
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and, using (4),

(g ,�Mu − uM + u −�Mu) = a(�Mu − u, u∗
goal)+ (f −�Mf , u∗

goal)

+ (g , u −�Mu)

thus

δjgoal(M) ≈ |a(�Mu − u, u∗
goal)+ (f −�Mf , u∗

goal)+ (g , u −�Mu)|

or:

δjgoal(M) � |a(�Mu − u, u∗
goal)| + |(f −�Mf , u∗

goal)|
+ |g ||u −�Mu| (22)

TheRHSof (22) involves three terms. The second and third terms giveHessian-

like quadratic errors e
M,u∗

goal,f
ij and eM,g ,u

ij :

|(f −�Mf , u∗
goal)| + |g ||πMuM − uM|

�
∑
i

measx(i)�(i)−1
∑
ij�i

(
e
M,u∗

goal,f
ij + eM,g ,u

ij

)
�

∑
i

measx(i)�(i)−1
∑
ij�i

(xij,Mxij)−1 |xij|2
(
ēij

u∗
goal,f + ēijg ,u

)
with

ēij
u∗
goal,f (xij) = |u∗

goal,ij| |Hf
ij| · xij

|xij| · xij
|xij| ; ēijg ,u(xij) = |gij| |Hu

ij | · xij
|xij| · xij

|xij|
and

u∗
goal,ij = u∗

goal(
xi + xj

2
)

gij = g
(xi + xj

2

)
; Hf

ij = Hf
(xi + xj

2

)
; Hu

ij = Hu
(xi + xj

2

)
.

The first term of (22)’s RHS is more complex. It can be estimated in a different
way from the continuous method presented in Belme (2011) and used in Brèthe
and Dervieux (2016). Indeed,

|a(�Mu − u, u∗
goal)| = |

∫
�

∇(�Mu − u)∇�Mu∗
g ,Mdx|

�
∑
∂Tmn

| [ ∇u∗
goal|Tm − ∇u∗

goal|Tn] · nmn |∫
∂Tmn

|�Mu − u| dσ. (23)
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Study of the 2D case. In the 2D case, ∂Tmn is exactly an edge ij. We introduce the
interpolation error estimate on ij, and its measure . We get from (23):

|a(�Mu − u, u∗
goal)| �

∑
ij

κij(u∗
goal) |xij|3(xij,Mxij)ēuij

where the sum is taken over the edges and with, for any edge ij

κij(u∗
goal) = |[ ∇u∗

goal|Tij − ∇u∗
goal|Tji ] · nij|

in which Tij and Tji are the triangles having ij as common edge and nij is the
normal to edge ij. We need know to identify the local intensity of the error term
by comparing the RHS with an integral over the computational domain. This
integral is taken as a sum over the diamond cells Dij around each edge ij:

|a(�Mu − u, u∗
goal)| �

∑
ij

|Dij||Dij|−1κij(u∗
goal) |xij|3(xij,Mxij)ēuij

which shows that |Dij|−1κij(u∗
goal) |xij|3(xij,Mxij)ēuij is the local error intensity.

The cellwise error integral then writes:

EM,a =
∑
i

1
�(i)

∑
ij�i

|xij|2(xij,Mxij)ēaij

with

ēaij = |xij||Dij|−1κij(u∗
goal)ē

u
ij.

We observe that for a Cartesian mesh of mesh size�x, term |xij| is O(�x), term
|Dij|−1 is O(�x)−2, term κij(u∗

goal) is O(�x) (non-divided difference of normal
gradient) and ēuij, which is a directional second derivative, is O(1). The error
intensity ēaij is then O(1) when mesh size gets finer.

Study of the 3D case. The intersection ∂Tmn of two elements Tm and Tn is a
common face with vertices i, j, k and an area area(mn). The following quantity
is again known:

κmn(u∗
goal) = |

(
∇u∗

goal

)
|Tm · nmn −

(
∇u∗

goal

)
|Tn · nmn|.

The remaining expression can be expressed in terms of interpolation errors:∫
∂Tmn

|�Mu − u| ≈ 1
3
area(mn)(eM,u

ij + eM,u
ik + eM,u

kj )

with (for αβ=ij,ik, and kj):

eM,u
αβ = (xαβ ,Mxαβ)−1 |xαβ |2 ēuαβ
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and:
ēuαβ(xαβ) = |Hu

αβ | · xαβ
|xαβ | · xαβ

|xαβ | .
We get:

|a(�Mu − u, u∗
goal)| �

∑
D̄mn

area(mn)
3

(eM,u
ij + eM,u

ik + eM,u
jk ) κmn(u∗

goal)

Let us convert the RHS into an edge-by-edge sum:

|a(�Mu − u, u∗
goal)| �

∑
D̄mn

∑
αβ=ij,ik,jk

area (mn)
1
3
eM,u
αβ κmn(u∗

goal)

=
∑

edges ij

∑
D̄mn�ij

area(mn)
1
3
eM,u
ij κmn(u∗

goal) =
∑

edges ij

eM,a
ij |Dij|

where we recognise the edge-by-edge integral of a field eM,a
ij defined on edges,

with the notation:

eM,a
ij = 1

3
1

|Dij| e
M,u
ij

∑
D̄mn�ij

area(mn) κmn(u∗
goal). (24)

Equivalently (at the second order), we get the (18), (19) format:

|a(�Mu − u, u∗
goal)| �

∑
i

measx(i)
1
�(i)

∑
ij�i

eM,a
ij .

We can then define:

ēaij = (xij,Mxij) |xij|−2 eM,a
ij = 1

3
1

|Dij| ē
u
ij

∑
D̄mn�ij

area(mn) κmn(u∗
goal)

which does not depend on M.
Synthesis. Finally, gathering the estimate of the three RHS, we get:

δjgoal(M) �∑
i

measx(i)�(i)−1
∑
ij�i

(xij,Mxij)−1 |xij|2
(
ēaij + ē

u∗
goal,f

ij + ēg ,uij

)

which takes place in the context of (18), (19).
Remark: The a priori estimates at the starting of this analysis relies on edge-
based terms which are essentially products of : κmn

(
u∗
goal

)
, a second-order

directional derivative, normal to edge in 2D, of the adjoint, times ēuij, a second-
order directional derivative in edge direction (in 2D). In the analysis proposed
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in Belme (2011) and used in Brèthe and Dervieux (2016), the majoration of the
directional adjoint derivative consists in using the largest eigenvalue ρ(Hu∗) of
its Hessian. Further, the demonstration is obtained thanks to the assumption
that the mesh stretching is bounded. In the present study, the second directional
derivative of u∗

goal is directly taken into account, and gives without any extra
assumption a more accurate estimate.

6.3. Norm-oriented error

The norm-oriented analysis is defined in details in the case of the continuous
metric method in Brèthes (2015). In short, this method focusses on the minimi-
sation of the following norm with respect to the mesh M:

δj(M) = ||u − uM||2L2(�). (25)

Introducing gM = u − uM, we get a formulation similar to the goal-oriented
formulation:

δj(M) = (gM, u − uM). (26)

But in the practical application u − uM is not known. We approximate it by a
function close to it, which we call a corrector. Let us define:

gM = ū′
prio,M − (πMuM − uM)

in which πMuM − uM is a Hessian-based approximation of the interpolation
error and in which ū′

prio,M is the solution of:

a(ū′
prio,M,φ) =∑

∂Tij

(∇φ|Ti − ∇φ|Tj) · nij
∫
∂Tij

(πMuM − uM) dσ − (φ,πMfM − fM).

(27)

Another example with a RHS evaluated on a two-times finer grid is given in
Brèthes (2015).

Let us define the discrete adjoint state u∗
norm:

∀ψM ∈ VM, a(ψM, u∗
norm) = (ψM, gM). (28)

Then, similarly to previous section we shall minimise:

δjnorm(M) ≈ |a(�Mu − u, u∗
norm)+ (f −�Mf , u∗

norm)+ (gM, u −�Mu)|.



264 G. BRÈTHES AND A. DERVIEUX

Turning now to the tensorial formulation, we minimise:

E(M) =
∑
i

measx(i)�(i)−1
∑
ij�i

(xij,Mxij)−1 |xij|2
(
ēijM,a + ēu

∗
norm,f

ij + ēg ,uij

)
with

ēiju
∗
norm,f = |u∗

norm,ij| |Hf
ij| · xij

|xij| · xij
|xij|

ēijg ,u = |gij| |Hu
ij | · xij

|xij| · xij
|xij|

ēijM,a = |xij| |Dij|−1κij(u∗
norm) ē

u
ij (29)

and with κmn(u∗
norm) = | (∇u∗

norm
) |Tm · nmn − (∇u∗

norm
) |Tn · nmn|. The error

intensities ēiju
∗
norm,f , ēijg ,u, ēijM,a are O(1) when mesh gets finer. This again takes

place in the context of (18), (19).

7. Optimal metric

The purpose is to minimise with respect to the metric for a given number of
vertices N a functional of the form:

E(M) =
∑
i

measx(i)�(i)−1
∑
xij

(xij)2(xij,Mxij)−1 ēij

which is a discrete model for the L1 norm of a generic quadratic error. We solve
this in two steps as in Loseille and Alauzet (2011a), (2011b): first we minimise
the functional in a point of the computational domain and get a first property
of the optimal solution, second we finish determining the optimum by solving a
sub-problem on the whole domain.

7.1. Pointwise optimalmetric

The purpose of the pointwise metric optimisation is to look for the optimal
stretching of the metric, independantly of mesh density. The number of vertices
is fixed. We consider metric M0 such that the determinant, or product of
eigenvalues is equal to unity, i.e. λ1λ2λ2 = 1 or, equivalently det (M0) = 1.
We know that:

(xij)2 (xij,Mxij)−1 ēij = eMij ∀j.
In that expression, (xij)2 and (xij,Mxij)−1 are not vanishing for any couple of
neighbouring vertices i and j, which implies

eMij = 0 ⇔ ēij = 0.
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Now, for any i and any j belonging to �(i) such that ēij �= 0,

(xij)−2 (xij,Mxij) (ēij)−1 = (eMij )
−1.

Summing around the vertex i, it gives:∑
j∈�(i)
|ēij �=0

(xij)−2 (ēij)−1 (xij,Mxij) =
∑
j∈�(i)
|ēij �=0

(eMij )
−1

For the sake of simplicity, let us denote: Di = ∑
j∈�(i)
|ēij �=0

(eMij )
−1.

We note that each eMij is positive and therefore so is Di. This implies:

Di =
∑
j∈�(i)

(M ē−
1
2

ij |xij|xij, ē−
1
2

ij |xij|xij) = M :
∑
j∈�(i)

ē−
1
2

ij |xij|xij ⊗ ē−
1
2

ij |xij|xij.

Now, remembering that A : B = tr(tA.B), it is interesting to choose (among
other solutions):

Mi = Di

dim

⎛⎝∑
j∈�(i)

ē−1
ij |xij|−2xij ⊗ xij

⎞⎠−1

. (30)

The optimal pointwise metric is then defined as:

Mi
0 = ( det (Mi))−

1
2Mi. (31)

7.2. Global optimalmetric

The global optimal metric will be obtained by multiplying the pointwise metric
by a scalar field Ci defined on any vertex i and which remains to be determined:

Mi
opt = Ci Mi

0.

We search (Ci)i which minimises

errL1 =
∑
i

measx(i)�(i)−1
∑
xij

(xij)2(xij,CiMi
0xij)

−1 ēij

or

errL1 =
∑
i

αi C−1
i ; with αi = measx(i)�(i)−1

∑
xij

(xij)2(xij,Mi
0xij)

−1 ēij
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while satisfying to the constraint:
∑

i measx(i)
√
det (CiMi

0) = N or:

∑
i

μi C
dim
2

i = N with μi = measx(i)
√
det (Mi

0).

This can be simply solved by applying the variable change di = μiC
dim
2

i , which
gives:

Min
∑
i

ηid
−2
dim
i under the constraint

∑
i

di = N , (32)

with ηi = αiμ
2

dim
i . The solution of (32) writes:

di =
⎛⎝∑

j

η
dim

2+dim
j

⎞⎠−1

η
dim

2+dim
i N .

Lemma: The optimal metric is defined by:

Mi = Ci Mi
0

with

Mi
0 = (det (Mi

1))
− 1

2Mi
1, Mi

1 = 1
dim

⎛⎝∑
j∈�(i)

ē−1
ij |xij|−2xij ⊗ xij

⎞⎠−1

,

Ci = μ
− 2

dim
i

⎛⎝∑
j

η
dim

2+dim
j

⎞⎠− 2
dim

η
2

2+dim
i N

2
dim ,

ηi = αiμ
2

dim
i ; αi = measx(i)

�(i)

∑
xij

(xij)2

(xij,Mi
0xij)

ēij ; μi = measx(i)√
det (Mi

0).�

8. Numerical examples

The analysis developed in this paper gives a purely discrete answer to the
same mesh adaptation problems as in Brèthe and Dervieux (2016) in which the
continuous approach were introduced and a series of test cases were presented
for its evaluation. Our evaluation of the new method will apply it to recompute
these test cases and compare the results with the results of Brèthe and Dervieux
(2016). We refer to Brèthe and Dervieux (2016) for a more detailed presentation
of each test case.
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8.1. A 2D boundary layer test case

This test case is taken from Formaggia and Perotto (2003). We solve the Poisson
problem −�u = f in [0, 1] × [0, 1] with Dirichlet boundary conditions and a
right-hand side f chosen for having:

u(x, y) = [1 − e−αx − (1 − e−α)x]4y(1 − y).

The coefficient α is chosen equal to 100. The graph of the solution is depicted
in Figure 1. We study the 2D boundary layer test case for five different methods:
uniformly refined full multi-grid (FMG), continuous Hessian-based adapta-
tive FMG, tensorial Hessian-based adaptative FMG, continuous norm-oriented
adaptative FMG and tensorial norm-oriented adaptative FMG. We can first
compare the meshes obtained with the four different adaptative methods. At
the begining, we have the uniform mesh given by Figure 2, right. Using this
mesh, we compute an approximate solution and we use it to create an adapted
mesh with the four methods:

• Continuous Hessian-based adaptation gives Figure 2, centre,
• Tensorial Hessian-based adaptation gives Figure 2, right,
• Continuous norm-oriented adaptation gives Figure 3, right,
• Tensorial norm-oriented adaptation gives Figure 3, left.

We have computed the results for the continuous case and for the tensorial
case. For both options, five FMG phases corresponding to 5 numbers of nodes,

Figure 1. Fully 2D Boundary layer test case : sketch of the solution.
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Figure 3. 2D boundary layer test case: adapted mesh obtained with continuous norm-oriented
adaptation (left) and tensorial norm-oriented adaptation (right).

Figure 4. 2D boundary layer test case, Hessian-based methods: error convergence in terms of
number of vertices.

from 128 to 20, 000 are applied. During each FMG phase, the number of nodes is
fixed, and 10mesh adaptations are applied interleaved with a fewMG cycles. The
approximation error convergence curves of the differentmethods are depicted in
Figures 4 and 5 in function of the number of nodes. We can observe the uniform
case in red, the Hessian-based continuous and tensoriel, respectively, in green
and dark blue and the norm-oriented continuous and tensorial, respectively, in
pink and clear blue, the black line being simply the order 2 (legends with symbols
are also given in figures). The two Hessian-based cases are very similar and, in
the same way, the two norm-oriented cases are very similar too. This tends to
indicate that our tensorial method is good, at least for this test case.
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Figure 5. 2D boundary layer test case, norm-orientedmethods: approximation error convergence
in terms of number of vertices.

Figure 6. Circular-test-case-domain: sketch of the solution u.
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Figure 7. Bubble-like test case with thick interface, Hessian-based methods: approximation error
convergence in terms of number of vertices.

Figure 8. Bubble-like test case with thick interface, norm-oriented methods: approximation error
convergence in terms of number of vertices.

8.2. Bubble-like test case with thick interface

We are interested by a Poisson problem the solution of which is a function u
equal to 1 on a disc and to 0 in the rest of the domain. This function is the
prototype of the pressure in a multi-fluid flow involving capillary forces. The



272 G. BRÈTHES AND A. DERVIEUX

Figure 9. Bubble-like test case with thin interface, Hessian-based methods: approximation error
convergence in terms of number of vertices.

Figure 10. Bubble-like test case with thin interface, norm-orientedmethods: approximation error
convergence in terms of number of vertices.

source term is a Dirac derivative. We smooth this computation by defining
a thickness ε for defining an annular region separating the two subdomains
(outside the disc, inside the disc) and in which u is smoothly varying from 0 to
1: if (x, y) is located inside the annular region, u(x, y) is given by the formula:
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Figure 11. Bubble-like test case with thin interface, norm-oriented methods, sketch of meshes:
top, global views of continuous option, left and tensorial option, right. Bottom, zooms near the
point of discontinuity of maximal abscissa, of continuous option (left) and tensorial option (right).

u(x, y) = 1
2 + 1

2 sin (
πψ
ε
) with ψ = 0.25 − √

(xC − x)2 + (yC − y)2. From
this solution, a right-hand side f is computed. Given a mesh, vertex values of
fh(xi) are prescribed as the analytic values f (xi). As a result, for rather coarse
meshes, the zone where f is not zero can be simply missed and fh can be zero
even in the neighbourhood of the high values of f . We consider first a quite large
thickness of ε = .1. An approximate solution uh is shown in as shown in Figure 6.
Applying the four abovemethods, give convergence curves which are depicted in
Figures 7 and8. Like in the previous test case,we observe that the tensorial version
and the continuous version produce very similar results.

8.3. Bubble-like test case with thin interface

In order to evaluate the robustness of the methods with respect to steeper gradi-
ents, we consider the same test case with a thinner transition: ε = .02. Figures 9
and 10 give us the results. In this case, the tensorial version and the continuous
version perform with very similar efficiency. Hessian-based methods give now
a notable improvement with respect to uniform refining. Norm-oriented are
much better, but adaptation phases appear still rather noisy, since the adaptation
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Figure 12. Poisson problem with discontinuous coefficient: view of the solution.

Figure 13. Poisson problem with discontinuous coefficient, Hessian-based methods: approxima-
tion error convergence in terms of number of vertices.

stabilises only after 10 remeshings. For both norm-oriented algorithms, the
improvement is of two orders of magnitude with the 30, 000 nodes calcula-
tions. Some differences appear when the resulting meshes are compared, see
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Figure 14. Poisson problem with discontinuous coefficient, norm-oriented methods:
approximation error convergence in terms of number of vertices.

Figures 11. On global mesh views, we observe that the quasi-uniform inner and
outer regions containmuchmore vertices with the tensorial version, in particular
close to the boundary. This can be related to the fact that for one case, the non-
refined region took about 2000 nodes from the total of 30, 000 while the other
option tooks only 700. On the annular region of high variation, the behaviour
of both method are very similar, and produce stretched meshes with streching
ratios both of order 10.

8.4. Poisson problemwith discontinuous coefficient Brèthe andDervieux
(2016)

This test case exemplifies the singularity which is met in the simulation of
multi-fluid flows with a large deviation between the densities ρ1 and ρ2 of each
phase. In the case where a projection algorithm is applied to solve the Navier–
Stokes equations for incompressible flow, a Poisson problemwith discontinuous
coefficients has to be solved. An example can be found in Guégan, Allain,
Dervieux, and Alauzet (2010). The present case does not satisfy the smoothness
assumptions introduced for deriving our method. However, a usual expectation
in mesh adaptation is that the methods should also apply well on non-smooth
contexts. We consider the equation of Poisson −div

(
1
ρ
∇u
)

= rhs with a
discontinuous coefficient taking two different values 1/ρ1 and 1/ρ2 on two sub-
domains �1 and �2 separated by an interface which is a sufficiently smooth
curve for having a normal vector. This PDE is mathematically referred as a
transmission problem and the solution is continuous across the interface but of
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Figure 15. Poisson problemwith discontinuous coefficient, sketch ofmeshes: top, global views of
continuous option, left and tensorial option, right. Bottom, zooms near the point of discontinuity
of maximal abscissa, of continuous norm-oriented option (left) and tensorial norm-oriented
option, right.

discontinuous normal derivatives since:

1/ρ1∇u1 · n = 1/ρ2∇u2 · n

where u1 and u2 are the restrictions of the solution u on �1 and �2. In our
example, we define them as follows

u|�i = ui = αi + βi(x2 + y2) i = 1, 2.

Further, �2 is the disc of centre (.5, .5) and of radius .2 in the computational
domain [0, 1] × [0, 1] and we have:

1/ρ1 = 1000. ; α1 = 1.23579... ; β1 = −2.47158 . . .
1/ρ2 = 1. ; α2 = 100. ; β2 = −2471.58 . . . (33)

This is sketched in Figure 12. In the discrete model, the interface appears only as
values of 1/ρ evaluated on the vertices of each grid.
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Figure 16. 1D boundary layer, Hessian-based methods: approximation error convergence in
terms of number of vertices.

Figure 17. 1D boundary layer, norm-oriented methods: approximation error convergence in
terms of number of vertices.

Results of Figure 13 are also good but Figure 14 shows results which are
disappointing. The two Hessian-based cases and the continuous norm-oriented
cases present very good results, of order two. Unfortunately, the tensorial norm-
oriented case present a result very different, of order one, whereas it should look
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very much like the continuous norm-oriented. An examination of the meshes
generated and displayed in Figures 15 shows that while the continuous option
keeps a good anisotropy in the generatedmeshes, anisotropy is completely lost by
the tensorial option. Note however that in practical applications related to level
set calculations, the Heaviside coefficient is generally replaced by a smoother
one, see e.g. (Guégan et al., 2010).

8.5. A 1D boundary layer test case

Figures 16 and 17 give us the results in the case of the 1D boundary layer. The
twoHessian-based results are similar but we can observe an important difference
bewteen the two norm-oriented results. The continuous norm-oriented gives a
bad convergencewhich loses the order two at the end of the computationwhereas
the tensorial norm-oriented remains of order two. Because of that, the tensorial
norm-oriented is better than the continuous norm-oriented.

9. Conclusion

We have proposed several extensions of the discrete tensorial metric method for
the metric-based mesh adaptation of a Poisson problem.

The choice of a simplified model, the Poisson equation, allows to analyse in
details the different steps in adaptation and to rely on a well-established set of
solution-smooothness and approximation-error analyses.

The extensions done here concern first its formulation in terms of an equation
defining an intrinseque optimalmetric, giving the optimal adaptedmesh as a unit
mesh of the optimal metric. Second, the method is extended to the minimisation
of Lp norms. Third, it is extended to anisotropic goal-oriented mesh adaptation.
It is also extended to the norm-oriented analysis.

The proposed novel tensorial approach assumes, like the initial tensorial
formulations, that the iterated mesh is locally of same edge directions as the
background mesh while the continuous metric never uses this assumption, but
this assumption is just a way of reasoning and not a constraint in adaptation.
This is illustrated by the fact that the tensorial method produces optimality
systems which are essentially discretisations of the optimality systems given by
the continuous metric method.

The novel tensorial method shows different features from the continuous
metric method. In the continuous metric method, discrete fields are theoreti-
cally mapped into a continuous one in order to define a continuous optimality
system for the metric. In the tensorial treatment of Hessian-based, goal-oriented
and norm-oriented error analysis, no continuous context needs to be invoked.
Further, the error analysis in the tensorial case does not require any anisotropy
bound while the continuous analysis does (at least in theoretical arguments).

Two-dimensional numerical experiments on a benchmark already used for
continuous Hessian-based, goal- and norm-oriented adaptation show that both
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continuous approach and tensorial approach behave similarly on smooth test
cases. In particular, both methods produce anisotropic meshes. The tensorial
method appears just slightly less smooth than the continuous one. The com-
parison will in the next future be continued with strongly anisotropic mesh
adaptation test cases (shape aspect ratio much larger than 100) by introducing
new versions of the mesh generator. In contrast, when applied to a strictly
discontinuous context, the tensorial method looses its anisotropy. We have not
found yet a simple parameter-free improvement to this defect, and further studies
are necessary.

This work also proposes a 3D analysis. 3D experiments will soon be produced.
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