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ABSTRACT. Most formulations describing low speed large displacements fluid-structure interac-
tion problems use a totally lagrangian formulation for the structure, and an Arbitrary Euler
Lagrange (ALE) formulation for the fluid. The purpose of the present paper is to review the
derivation of such formulations, to describe different time discretisation strategies and to ex-
plain the type of numerical problems which arise when implementing these techniques. To
overcome all technical diff iculties arising when dealing with moving grids, we will also explain
how an adequate asympiotic expansion can reduce the problem to a standard problem written
on a fixed configuration, but using specific transpiration interface boundary conditions. This
last formulation is rather popular in the aeronautical community, and will be illustrated by
various numerical experiments.

RESUME. La plupart des formulations de problémes d’interaction fluide-structure en grands
déplacements et faible vitesse utilisent une formulation lagrangienne totale pour la structure,
et une formulation Arbitrairement Lagrangienne Eulerienne (ALE) pour le fluide. Le but de
ce travail est de revoir la dérivation de telles formulations, de décrire les différentes stratégies
de discrétisation en temps et d’éclaircir le type de problémes numériques apparaissant dans
Uimplémentation de ces techniques. Pour surmonter les difficultés techniques provenant de
Uutilisation de grilles mobiles, on montrera aussi comment un développement asymprotique
adéquat permet de se ramener a un probléme standard écrit en configuration fixe, mais avec
des conditions de transpiration spécifiques a l'interface. Cette derniére formulation, plutét en
vogue dans le domaine de I’aéronautique, sera illustrée avec quelques expériences numériques.
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1. Introduction

Low speed large displacement problems where a flexible elastic structure interacts
with the flow of an external or internal fluid occur frequently in practice, for example
when studying hydraulic shock absorbers, biomedical flows in flexible pipes, aero-
elastic instabilities of flexible aircrafts or tall bridges, or ocean flows around very long
risers. The numerical challenge is to predict the longterm time evolution and stability
of these coupled systems. It turns out that enforcing the kinematic compatibility at
the fluid-structure interface and updating the geometry of the fluid domain requires
a particular care, especially when this must be done within a numerical model which
has been discretised in time and space.

The key is to properly respect mass and momentum conservation laws for the
coupled fluid-structure system considered as a unique continuous medium sticking to-
gether because of a kinematic constraint mechanically imposed at the fluid-structure
interface I'*(¢). These conservation laws when transported on a global fixed reference
configuration define the mechanical problem to be solved (section 2). Consistent time
discretisations can then be introduced (section 3). The problem is that, as observed in
section 4, classical time integration schemes may loose their long term stability prop-
erties when used on moving domains, depending on the grid deformation smoothness
and on the discretisation error in the equation of mass.

To overcome all technical difficulties arising when dealing with moving grids, we
will then explain in section 5 how an adequate asymptotic expansion can reduce the
problem to a standard problem written on a fixed configuration, but using specific tran-
spiration interface boundary conditions. The efficiency of the resulting formulations
will be illustrated by several numerical experiments in three dimensional aeroelastic-
ity. Such transpirations boundary conditions formulations turn out to be quite popular
in the engineering community, but up to now they were missing proper mathematical
justifications and variational formulations.

2. Mechanical problem

The system under study occupies a moving domain §2(¢) in its present configura-
tion. It is made of a deformable structure Q2°(t) (aircraft, civil engineering structure)
and of a surrounding fluid in motion in the complement Q/ (t) of Q°(¢) in (t) (Figure
1). The problem consists in finding the time evolution of this configuration, of the
velocity U and Cauchy stress tensor ¢ within the fluid and the structure, and to assess
the long term stability of the system. The fluid may be inviscid which means that
the normal component of the velocity field must be continuous at the interface, but
that its tangential component may be discontinuous. Introducing the velocity field
U = Ujgs and Ul = U\qs within the structure and the fluid, and the unit normal
vector n(t) to the interface in its present deformed configuration (oriented towards the
structure) this kinematic assumption takes the form

Te(U®)jps - n(t) = Te(U7)jrs - n(2), (1
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Figure 1. Geometric configurations: the fixed reference configuration )y and the
physical configuration Q(t)

where Tr denotes the kinematic restriction (trace) of the different velocity fields on
the interface.

The values of density, velocity and Cauchy stress tensor in the present configura-
tion Q(¢) are governed by basic conservation and constitutive laws. Because of the
large displacements which are involved, the configuration 2(¢) is time dependent. To
overcome this difficulty, and to evaluate the strain field or write the elastic constitutive
laws inside the structure, one can transport the conservation laws on a fixed reference
configuration g, delimited for example by a given equilibrium configuration of the
structure. For this purpose, one must introduce a continuous mapping

z : QoxRY — R3
(xo,t)  +— z(z0,1)

3

which maps any point zg of the fixed configuration Qg to its image z(zo,t) in the
present configuration Q(t). The choice of the configuration (g and of the map x may
be arbitrary, hence the name of Arbitrary Lagrangian Eulerian (ALE) formulation
which is given to the resulting equations. It is nevertheless more simple [LET 94],
[LET 99b] to impose that on the structure §}*, the point z(zp,t) corresponds to the
position z°(t) at time t of the material point which was located in zg at time ¢.
This implies then that the configuration (or grid) velocity U¢ = 8—j (with %
T Z

denoting the partial derivative of z with respect to time at a given fixeld (E)osition a:oJ i?l
the reference configuration) is always equal to the real velocity U? of the structure at
any point z of Q2°. On the fluid, the mapping z/ from Q(’; onto £ (t) is characterised
by its nodal values on the discretisation grid and can be any reasonable extension
zf = Ext(mlfré) of the material interface deformation

f 827f

l'f = EXt(lT‘FS), —a_tlF’
0

= TI‘(US)|F5.
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The weak form of the conservation laws can now be directly transported on the
fixed domain g yielding

/ {6—5]{—)| +le0 [JP(U_UG)F_T]}q‘dz(]:O, VquLZ(QO)’
Qo To

(Mass Conservation),

/ {8—{9’;—(]' + divg [JpU®(U—UG)F‘T]}-UdzO
Qo To

+ | JoF- :—deo+/ gr-(US—Uf)ﬂdaO: F-Udz
pa d(l() Q3

+/ g- Uda, VU = (Us, Uf) € V, (Momentum Conservation),
aQ

under the notation
F=_"=Voz, J=detF, nda=JF Tngda.

Above, the velocity test functions do not necessarily match at the interface, and are
taken in the product space

V:{l?:(US,fJf);QO—w@; U° e HY(9Q), Ufeﬂl(ng)}.

Moreover, the vectors f and g represent the external forces applied on the system (we
assume for simplicity that there are no body forces on the fluid) and the vector gr
denotes the interface stress vector in the present configuration. For an inviscid fluid,
the constitutive assumption imposes that the stress vector to be normal to the interface

gr = —pn,

the interface pressure being the Lagrange multiplier of the kinematic interface conti-
nuity condition [1]. For a viscous fluid, we have gr = on.

In the above variational formulation, our choice of reference configuration guar-
antees that we have U = U% on the structure. Hence the mass conservation equation
reduces there to the identity Jp = constant, and can be omitted in all further calcu-
lations. In other words, the conservation of mass is automatically satisfied inside the
structure, and must therefore be checked on the fluid domain only.

We must finally specify the different constitutive laws characterizing the materials
under study. On the fluid, the constitutive law is simple when written in the present
configuration Qf () = xf(Qg, t), where we have

/ divo [Jp (U = US) FT] qdzo = | divy [p(U7 ~ U%)] qda,
Q

0 Qr(t)
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/; divo [JpU ® (Uf = U®) F~T] - Udaz

QO

:/ div, [pU’ ® (Uf - U%)] - U da,
Qf(t)

r O f AR LU
y JoF": 2 doo = » {u [VIU +(V.U1) ] pI}. o da.

The viscosity coefficient p is set to zero when dealing with inviscid fluids.

The integrals on the structure are evaluated on the reference material configuration
Q0 and use objective (frame invariant) elastic constitutive laws. When dealing with
three dimensional massive hyperelastic structures, the second Piola Kirchhoff stress

tensor S = JF~'oF~T is obtained by differentiating the free energy function with
respect to the Green Lagrange strain tensor £ [LET 94]

oY Jz
S = —(xg, =—)-
(7o) ag (wo amo)
For such structures, the mass and stiffness integrals take the usual abstract form

/ Tpg" - U day = m* (&, D),
2

U oY Or PN .
F = = —_ — ) = s s
/Q S Ozg dap a3 62(270’33;0) EU)dz :=a’(z°,U),

3
[d]

under the notation

5 o A AT
pope = 22 g(U):1<FT8—U+a—U F).

ot? |zo’ 2

Similar integrals appear when dealing with more general structures such as elastic
beams or shells in large displacements [CAR 95]. Altogether, the conservation laws,
kinematic constraints and constitutive laws governing the evolution of a fluid-structure
system take the final form

9Jp (jdxo+/ div, [p (U = U%)] §dz =0,
af Ot |ao 2(Q4 1)
Vg:Qy —» R, (Mass), 2]
aJpUf .
/ Sl -Ud:zo+/ {diva [pU! & (UF -U%)] -0
af Ot |z 2! (24 1)

+o: VzU}dz +m*(&,0) 4 a*(z*,U)

_/ (JUF—Tno) . [Tr(Uf)IFS — Tr([js)u*a} day
r

s
Q



686 Revue européenne des éléments finis. Volume 9 — n° 6-7/2000

= I U dzy + / g- Uda, VYU € V, (Momentum), [3]
Q3 aQ(t)
[Tr(Uf),pg — Tr(Us)’[‘s] -JF~Tny =0, (kinematic continuity), [4]
ozt Ozt
I =Ext(zh), -  =Te(U%r;, U%=—7-
z xt(2ies)s 5 - r(U*)irg. B (o)
(fluid configuration map). [5]

These equations completely characterize the evolution of the structural deforma-
tion z° € V', of the fluid density p/.J in initial configuration, of the pressure
p € Q = L2(Q{;), of the fluid velocity U/ € V/, of the interface force
JoF~Tny € Wr = (H'Y2(T'§))", and of the fluid configuration mapping zf € V/
when complemented by a state law p = g(p, T') relating the pressure p to the density
p and temperature T inside the fluid, and by adequate initial and boundary conditions.
Specific choices of state law or of boundary conditions to be imposed on the external
boundary 9Q(¢t) will depend on the physical problem under consideration.

The above formulation is very general. It reduces the fluid-structure interaction to
the kinematic condition [4] and to the associated kinetic Lagrange multiplier (interface
force) JoF~Tng, appearing in the global momentum conservation equation when
using non kinematically admissible test functions.

REMARK. — The above formulation reduces in fact to three coupled subproblems,
which are characteristic of fluid-structure interaction problems.

— Solving the mass conservation equation, and choosing Us=0and U’ arbitrary
in the momentum conservation equation [3] while taking into account the kinematic
interface boundary condition [4] as specified by the structural problem, we first obtain
a standard fluid equation written in ALE form on the moving domain Q/(t). The
corresponding solution U7 defines then the interface load Linter face as the residual
of these fluid equations on the interface

Linterface(U“"S) = _/ (JUFVTTlo) . Udao
I3
N f R
:/ g-Ulda— &]i U dxg
891)NA% (¢) af Ot |u

—/ {divz [pr®(Uf—UG)]-Uf+a:Vsz}dz,
I (Qf 1)

where U is any extension of U[p defined inside Qf(¢). This expression computing
the interface load from the fluid equation residual has the major advantage of still
making sense after finite element discretisation, and of leading to somewhat more
stable numerical results [FAR 98a].
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— Choosing in [3] Uf = 0and U* arbitrary in V¢ yields a standard structural
problem with imposed traction forces Linterface On the interface (specified by the
fluid problem)

m® (25, U°) +a®(z°,U%) = f-Usdz +/ g-Utda
7N 80(E)NHN (t)

+Linterface(U|s[‘a), VIAJS c Vs.

— The grid configuration map inside the fluid is finally defined by

ox! ozt
e s _ (s 6=
T = Ext(zlrs); Bt - (U )|F87 U o 6t ‘l‘o’

and is coupled to the other subproblems by the condition relating the fluid grid velocity
on the interface to the local value of the structural velocity.

For compressible flows, the above conservation laws must be complemented
by an energy equation expressing the conservation of the total energy of the fluid
E = pe + —pU?. Neglecting any external load acting on the fluid and any exchange
of heat between the fluid and the structure, this equation takes the weak form

dJE . 9q
= Gda - E(UT -U®) -oUf +¢]- =d
/Qé ot |zoq o /z/(Q[/;yt)l: ( ) 7 g] ox *

+/ [E(Uf -U®) —oU! +¢] -ngda
A()NOQ (t)

—/ gr -Tr(Uf)|psjda0 =0, V§: Qg — R, (Energy). [6]
I'g

The finite volume approximation of this equation is then obtained by restricting the
test functions ¢ to be piecewise constant.

Total energy conservation is obtained either before or after discretisation by writ-
ing this energy equation with ¢ = 1, and by adding to it the structural equation mul-
tiplied by the structural velocity U?. This cancels the action of the interface force gr,
and leads to an energy balance of the type

d

1 L
— E S s s
" [/QgJEdzo-i- Qf)l/)(:)dzo—k2m (z5,1%)

= f~Usdzo+/ g-U’da
03 BQE)NIN (1)

+/ [E(U? -U®) —oU’ +q] -nda.
8Q(t)NANY (t)
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3. Time discretisation

We now need to construct a time discretisation scheme respecting the compatibil-
ity condition [4] at the fluid-structure interface, and conserving energy. The simplest
choice is to use a first order staggered time integration scheme where the fluid prob-
lem is first solved with the explicit kinematic structural interface boundary condition
obtained at the previous structural iteration yielding new fluid velocity Un+1 and in-

terface traction Ly (U) and where the structural problem is then solved with this
imposed traction L,y yielding the final prediction of the interface velocity (U3, ) r

and position m£+1. In this choice, the works developed by the fluid to structure and
structure to fluid interface traction forces during the present time step do not cancel
because they do not act on the same velocity field. On the fluid side, they act on
the structural velocity UT{ 41 = U attime t,; on the structural side, they act on the
present structural velocity U ;. This error can be reduced to second order by replac-
ing as in [PIP 95b], [PIP 95a), [FAR 98b] the predicted structural velocity (Tr UII‘)
by a higher order extrapolation.

An alternate way for getting a better energy conservation [LET 96, LET 99b] is
to solve the full system (including the kinematic compatibility condition [4]) at a se-
quence of discrete times t,,n = 1,..., using independent finite difference approxi-
mations of the various time derivatives. Good accuracy and dissipation properties are
obtained by approximating the structural acceleration by a generalised mid point rule
(with governing unknown $i+1/2) [SIM 92], [KUH 99]

§ s
Tt T

S
n 2 ?

. T
ox? A 1 aU  au
w=o2 B (0)=5|FTo=+ 2= F,
E dry’ :"(U) 2 (F dzo +8z0 F)’

x

_(S( n+]/2)+5 ( n— 1/2))

s $n+1/2 _zfz—l/2 s s
Un = Atn = 5( n+1/2 + Un—1/2)7
(i) = U131+1/2 - U‘ri—l/?
T At,, '

The acceleration of the fluid on the other hand can be approximated by a wide
variety of discretisation schemes such as a standard first order backward Euler scheme

pJUIN _ (pJU)n = (pJUY )y
ot ), At, ’

a second order Gear backward difference [MAR 96]

opJU* 3 f
( ot )n 2At( JU )n——(/’JU In— 1+K(PJU Jn—2,
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or a second order Crank Nicolson formula

3PJUf . (PJUf)n+1/2 - (pJUf)n—l/Z
ot ), At, '

The relevant unknown in this last choice is U T{ +1/2°

4. Energy conservation

Energy conservation is a key point in studying fluid-structure interactions. In par-
ticular, the evolution of the kinetic energy must be carefully controlled. A time inte-
gration of the principle of conservation of momentum taking the real velocity field as
test function indicates that the variation of the sum of the kinetic energy of the sys-
tem and of the elastic energy of the structure must be equal to the difference between
the energy introduced by the external boundary conditions and the energy dissipated
by viscous effects inside the fluid or developed by the pressure field inside the fluid
through compressibility effects. Respecting this energy principle is crucial for pre-
serving stability, and for ensuring the long term accuracy of the numerical predictions.
Moreover, this bound on the energy is the major tool in the theoretical and numerical
analysis of the linearised version of the fluid structure interaction problem [LET 99a]
following the steps of [DAU 84, chapter X VIII].

Most time integration schemes do violate this principle of energy conservation
when dealing with deformable domains. More precisely, for fully coupled schemes
using conservative formulations and non volume preserving grid configuration maps
x{, a small pollution term appears in the kinetic energy conservation principle, which
may grow exponentially in time.

To study this energy conservation for the time discrete case, we multiply at each
time ¢" the variational equation [3] by U/ on the fluid, and by U? on the structure.
This choice cancels the action of the interface traction forces pr because the imposed
kinematic compatibility condition [4] is exactly satisfied at time ¢,, when using totally
coupled schemes.

On the structure, the action of U on the inertia terms produces the correct varia-
tion of kinetic energy

(3U) U= Un Ui T Uaip

“Un At, 2

|U’:,+1/2|2 - |Ufz-1/2[2
2At, '

ot

On stiffness terms, it produces the right variation of elastic energy

S (zhpi2) + Ss(xi—uz)E (UTSL+1/2 + :—1/2)
2 =n 2
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_ S*(@h41/2) + Ss(mfz—l/Q) £n+1/2 B gn—l/?

2 At,
1 ) %y 3
= Ay (Vi) ~VE, ) F g EIE,, —E, )

On the fluid, a direct integration of the inertia terms yields finally

! .
1,{:/ (M> -U,{+/ div, [pU! @ (UF —U®)] U]
ot \ Ot J, 2! (Q0,tn)

Using direct algebraic manipulations and subtracting the weak equation of mass re-
duces this integral to

o= / 1 (0JplU’ |
" - 952 at n
oJpU! i sz (8Jp 1 (0Jp|lUS|?
*/K 5) v gt (5 G .

1 1 [dJp )
WP -9 = (= f_qC
+~/zf(Qo,tn)(2|Un| Q) (Jn ( 51 )n + div,[p(Uf - U )]n> _

We do not recover here the exact variation of kinetic energy inside the fluid. Two error
terms appear. The last line corresponds to a truncation error

At 1 1 [/dJp )
- = Z1gfi2 — — {ZZ£ f_
eh—/m(tn inf (5IUAI° = an) (Jn ( o >n+dwz (U UG>}H>,

) 2 queQn

which can be made very small by a careful choice of the space of pressure test func-
tions (). This error disappears for the space continuous problem, and for spatially
uniform flows approximated by schemes satisfying the Discrete Geometric Conserva-
tion Law (that is exactly satisfying the local conservation of mass for spatially uniform
fluids).

The second line is proportional to the truncation error induced by the time discreti-
sation scheme, but the coefficient of proportionality depends on the regularity in time
of the map pJ , that is in particular on the time regularity of the grid configuration 27 .
In other words, any abrupt changes of J can lead to large local errors. Actually, this
second line can be studied in more details. For a backward Euler scheme, we have

oJpU* |Uf| aJp _1 aJp|UT|?
5 ), ). 2\ e ),

= g 0 Nn-tlUL = UL 1
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This term is in fact positive. It can be considered as an additional numerical dissipation
and will not affect the stability properties of the scheme. The situation is a bit different
for a Crank Nicolson scheme, where the error

f fl2
oJpU -U,{—1|U,{|2 0Jp\ 1 (8Jp|U/]|
ot ). 2 ot ), 2 ot "

1
~ga

(0D nsrs2 = (0)nery2) UL, 1y = U7

is of smaller order, but where we can no longer control its sign.

REMARK. — The time regularity of the grid configuration =/ also appears in a stan-
dard truncation error analysis of the ALE formulation. The map =/ must satisfy the
minimal regularity requirements needed to preserve the accuracy of the time integra-
tion scheme.

5. Transpiration
5.1. Motivation

The ALE formulation studied up to now has two practical drawbacks. First, at
each time step, a new grid z/ must be built inside the fluid domain, and the associated
grid velocity U¢ must be computed. We have just seen that both fields must follow
the deformation of the structure and be smooth in time and space. Second, the flux
vectors ¢(W, o) (those appearing inside the divergence terms in the conservation laws)
are modified by the ALE formulation, and thus the corresponding flow solvers must
be changed in depth.

In order to overcome these drawbacks, and to be able to solve at low cost fluid
structure interaction problems at moderate deformation, aeronautical engineers have
developed transpiration techniques, from an idea of Lighthill [LIG 58]. These formu-
lations do not require to update the computational grid or the flux solvers subroutines,
but only involve modifications of the interface boundary conditions. They will now be
derived and justified mathematically. The main mathematical principle is to write the
fluid problem in variational form on the present configuration 24 (z¢) = x¢ + 6z(z0),
working with the fundamental unknown

SW (z0) = W (27 (20)) — Wol(zo) — VoWo(zo)dz(z0), (7]

where W, represents the steady state reached by the fluid, when it flows around the
structure at rest corresponding to a structural map given by z(xo) = zo. At first order
with respect to the interface displacement, this new unknown describes the difference
between the reference flow and the present flow at the same physical point 4 (zo).
More precisely, we are now interested in the linearisation of the coupled problem of
fluid-structure interaction introduced in section 2, around a steady state corresponding
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to the reference structural configuration ¢ = I in {)p, taking as new unknowns the
displacement dx of the domain and the fluctuation W of the fluid state variables, as
defined in [7].

In order to ensure that the reference configuration is at equilibrium under the ac-
tion of the external fluid, we will assume that the residual stress oj (Piola-Kirchoff’s
first stress tensor) in this configuration equilibrates the steady state stress field on the
interface.

In such a general setting, the unknowns z and W satisfy the conservation laws [2],
[3] and [6]. Integrating the convective terms by parts, these laws reduce to the abstract
variational form: find W : Qf x Rt — R and z : Q9 x R* — R? such that

aJWw
Qé ot |zo

8 ~8§

m®(Z%,05) + o dap

- /f J [¢(W,0) =W @ U] F~T : Voi! dzg + a® (2%, 03)
Q0

)

+/ US - FSngd] dag, Vo = (9°,9%) € D(Q0)® x D(N)°, (8]
r

s
0

JUF—TnO-(a{—ﬁ;)dao:/Q f - 95 dzg
0

3
0

with boundary condition at farfield

dEWYIF Tng = F(W,JF Tng,Ws,), on TJ. [91
Here, we have used the notation
Wi p 0y
W=\ Wy | =1 puf |, 9=1{ 02 | :0 — R xR,
Ws E 3
d(W,0) =W QU —I,0 —I30(cU’), (10]
with
00 0 0
1 00 0
I, = 010 y I; = 0 )
0 0 1 0
000 1

and o given by an adequate state and constitutive law. The flux ¢¥ (W) corresponds
to the inviscid constitutive law 0 = —p1.

The flux F(W, JF~Tng, W4,) at farfield is defined by flux vector splitting

FW,JF o, Weo) = Y MRe® Lk W+ Y ARk ® Li Wo,
A >0 AR <0

/

N~ v~

At A-
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with an outgoing flux A*, governed by the local value W, and an ingoing flux A,
governed by the farfield state W,,. The vectors R and L are respectively the right
and left eigenvectors, and A the eigenvalues, of the inviscid jacobian matrix

94F
%(W)JF‘TnO,

with W = W, or W = W depending on the implementation.
By integration by parts of the variational problem used with
of
=10 |,
0

and ©° = 0, we get in particular that the unknown satisfies the kinematic boundary
condition )
Wy -JF Tng =péx- JF Tng, on T§.

Recall that, in Q{; , 0z is arbitrary and can be any reasonable extension of the
structural motion inside the fluid domain.

Now we focus on the linearisation of the above problem around the equilibrium
steady state corresponding to z = I. The structure being at equilibrium in this steady
state, we have

- /, d(Wo, 00) : Voo dag +/ oy Vot dag — oong (f)ée — ¥5) dag
ol Q

3 K]
0 I‘0

= [ f-03dz, Vo= (0°,97) € D()® x D(N)®, [L1]
g

together with the kinematic boundary condition
T (Wo)no = F(W,no,Ws), on TP
In particular, [11] implies
Woo-ng = poU({ ‘ng =0, on TI%. [12]

In this linearisation process, the unknowns are the fluctuations (W, §z) of the fluid
and of the structure around the reference state (Wy, I), as induced by given small
perturbations of data. Such fluctuations are defined as in [7] by

z= I+ bz, in Q,
[13]
W(I +6z) = W+ VoWodz + W, in Q.

and describe the variation of state variables taken at the same frozen physical point
To + &z, and hence at two different lagrangian points (I + éz) ! (zg) # Zo.
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5.2. The steady state problem after transport

The variation being taken at lagrangian point (I + §z)~!(zo), we first need to
transport the steady state equation

/f ¢(Wy,00) : Vowdry =0, Ywe D(Q{;)S, [14]
QO

back to this auxiliary configuration.

This is the purpose of the next lemma.

Lemma 1 For any smooth displacement 6x € Cl(ﬁ({)S and solution (Wy,09) €
ct (ﬁg)‘r’ x (1 (65)3” of the equilibrium steady state problem [14], we have

/Qf [¢(Wo,ao) (Idivo Sz — V05$T> n Voqb(Wo,Uo)éx] - Vowdzy = 0,

N\—

G
Yw € D). [15]

Proof: Consider a given test functionw € D(Q£)5 with support K = supp w. We can
then construct a compact set Kg C Q(’;, and a bound eg, such that the map z° = I+edzx
is one to one when ¢ is sufficiently small, and satisfies

QF = (zF) Y (K) C Ko, z5(Ko) C O, V0 <e<e,.

By changing variables in the different integrals, we have from [14]

o
I

/ ¢(Wo,00) : Vewde
K

t

/ dp(Wo, 00) : Vywdz®
z€(Q*)

€

¢ (Wo(a* (20)), 00 (3% (20)) - vzw(zf(m))j; dao

Qs
&

/ ¢ (Wo(z® (0)), 00(2° (20))) : Vow(zf(xo))(vozs)_ljz do
Qs P

. ¢ (Wola* (20)),oo(w*(20) (Vos") 7 Vow(f(xo))ji a0

I

/ [0 (Wo(I + 6z),00(I + e6z)) Vo(I +6z)™ " : Vow(I + bz)
Ko

det Vo(I + e6z)] day,
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the last equality coming from the fact that w(z(xq)) is identically equal to zero out-
side ()71 (K) since the support of w is included in K. At first order in &, the above
expression takes the form

0= d(Wo,00) : Vow dzg
Ko

+e &(Wo,00) : Vo(Vowdz) dag
Ko

; 3}
+e /Ko [¢(Wo,00) (Ileo dz — Vo5zT) + %(WO,UO)(VOWO&U)

99
8
In this expression, the first and second terms correspond to [14] written with test

functions w and Vowdz respectively, and therefore cancel. The lemma [15] then
follows after division by € and by making ¢ tend to zero. ]

—(Wo,00) (Voagéz)J : Vow dzg + o(e).

After integration by parts, the above lemma can also be written under the strong

form
diveG =0, in Q.

By multiplying now this expression by ©/ € D())® and by integrating by parts on
Qg, we finally obtain

/ G :Vot! day = Gno of dag, VoI € D(Q)°.

In other words, after transport, the solution of the steady state problem satisfies the
linearised convected problem

// [¢(W0,ao) (I divo 6z — VoémT) + V0¢>(Wo,ao)6z] . Voo dzp
QU

= / [¢(Wo,0‘0) (I diVo ot — Vo(S:L‘T) + VOQS(Wo,O'())(sx] ng - ﬁf da()
I‘.!

]

=/, [6(Wo, 00)n(0z) — (Vod(Wo, 00)dz) no] - 7 dag,

vof € D(Q)°.  [16]

Here 7(dz) = — (I divg 6z — Vo(SxT) ng represents, at first order, the variation

ndayg = —nda — ngdag of surface vector n§ dag = —ngdag (where nf denotes
the unit normal vector to I'§, pointing towards the fluid domain). In two dimensions,

we have simply
0:9
ten) = (G ),

with J, representing the tangential derivative along I'j.
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5.3. Linearisation method

The linearisation is performed with respect to the fluctuations [7] by subtracting
the steady state problem [11] and the linearised convected problem [16] from the initial
problem [8] and by neglecting high order terms,

(8] — [11} - [16].

Let us first consider the time derivatives. Taking into account the definition [7] of
the fluctuations, we get

aJWl 5/ dag = /i 0J(Wo + VoWodz + W) dzo,
g QO

At first order in dz, the jacobian J reduces to J = 1 + divg dz, and the above expres-
sion becomes

/BJ_W o dry = W - o7 dxy
af Ot |ao Qf

+ / (divo SzWo + Vowoa'z) - of dxg
of

§W - of dap + / dive (WO ®5'z) .o/ dag
of of

JW-ﬁfdzo—/ Wo ® 6z : Vb dxo
f Qf
4] 4]

+ | Wo®dzng -9 dao.
r3

Plugging this expression into the variational problem [8], and using the definition of
UG =z, we get at first order

/! W -0l doo + | Wo ® 8xong - 9f dag + m® (6z2,03)
Q3 r3

- /Qf J [d’(Wo,Uo) + Voop(Wo, 00)dz + g—lf,(WO,UO)&W

0

+g§(Wo,ao)6o] FT . Voof dag + a® (I + 62°,95)

— | JoF Tng- (8 — 05)day = / foo3dm+ | 6z - FSnodd dao,
rs ) rs

Vo = (9°,97) € D(R)® x D(Qp)®.
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By subtracting the steady state problem {11] from this, and by developing the expres-
sions for F' and J, we get simply at first order

) W - of dzo + m®(6z°, 05)
QO

_/ ((;9;; (Wo,00)0W + g¢(WO,UO)50> . Voﬁf dap

—/Qf [¢(W0,ao) (Idivo Sz — voézT) +V0¢(Wg,ao)5z] - Voo dap

]

- / [(Voooda® +d0) no — con(da*)] - (8 — 3) da

+ | Wo®6zong -0 dag + a°(62°,08) = [ 6z° - ofnoet! dag,
ry rs

Vo = (9%, 97) € D(Qo)® x D(Qp)°.

da’(6z°%,05) = / (66115(1)617 > : Vo3 day,

corresponds to the linearisation of the structural elastic constitutive law.

where

Subtracting now the linearised convected problem [16] satisfied by the steady state
Wy, and using the interface kinetic relation at equilibrium o§no = opng, we obtain
that the perturbation field (W, éx) satisfies the following variational problem:

o oW - of dzg + m® (65, 95)

_/ (g‘f/(Wo,Uo)(SW + —(Wo, 0‘0)(50’) - Vol dzo

+6a5(6.755 AS) +/ {(5.’135 -ngWo + (¢(Wo,0’0) + I 0'0) 7’](51‘5)

;
—[Vo (I 00 + ¢(Wo, 00)) 2°] no — Ly dong — 62° - agng 13} - of dag
+/ [(Vooodz® + b60) ng — agn(dz®)] - 95 = 0,

Vo = (0°,97) € D(Q)® x D(N)>.  [17]

In addition, the kinematic boundary condition [9], once written at first order in terms
of W and dz, reduce to

quE

oF
PTG = (Wo)dWng = ¢F (Wo)n(dz) — 8—n(Wo’n0’ Weo)n(éz)
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—Vodf (Wo)dzng + —= Bf — (Wo,no, Weo ) (W + VoWyéz), on F(f). (18]

oW

In the particular case where W = W, and the extension map has no effect on the
exterior edge (it means éz = 0 on Fé) the boundary condition [18] is more simple, in
fact we get
a¢F
oW

in other words, there is no added incoming flux at infinity.

—— (W)6Wng = AT6W, on T/,

As before, an integration by parts of [17], written with

o o

and ©° = 0, yields

6W2 “Ng = poé.is ‘T — VoWO,Q(s.’ES “No + WO’Q '77((51‘5), on F(s) [19]

The kinematic condition [19] and the specific form [10] of the flux function en-
able us to greatly simplify the interface integrals in [17]. Indeed, from the kinematic
condition at rest, Ug -ng = 0, and [19], we first have

podUf -ng = 5(pr) “ng — (5pU({ ng
= 6W2 o
= po6z* - no — Vo(poU{)82° - no + poU{ - n(62°)
= pobzs-mnp— po(VoUOf)ézs “ng + poUOf -n(dz®).

The kinematic condition [19] therefore reduces to
SUT -ng = 6z°5 -ng — (VOU({)&ES “ng + U({ -n(éz®), on T§. [20]

For viscous fluids with no slip boundary conditions we have Ug = 0 and
sUf + VOU({(st = 4z* on I'j. We then deduce, from [10], [12] and [20], that
onI'§
(¢(Wo,00) + L2 00) n(6z°) — [Vo (12 00 + ¢(Wo, 00)) 62°] no
+(51.Es -ngWy — I3 6ong — 61‘3 -ogno I3

= (SUf 'TL()WO —12(50'710 - Uo(sUf '”013

0
(85‘5/(”/0) UO)5W + g—d)(WO, 0'0)60')
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Therefore, the linearised fluid-structure interaction problem [17] finally reduces to
the unique variational equation

/ SW -4 dzo + m®(6z%, 03

_/ (;&;(WO,UO)(SW + gf(Wo,ao)ég> - Vool dag

17, g .
+/ (8$(WO’OO)5W+6—¢(WO’UO)6U> TLO'U‘f dag

+6a°(6z°,03) + [(Vooobz® + b0) ng — oon(dz®)] - 05 = 0,
I3

Vo = (0°,97) € D(Q)® x D(Np)>. [21]

complemented with the kinematic boundary conditions [18] and [20].

This linearisation leads to a coupled problem written on a fixed configuration g,
using standard flux functions ¢, and totally independent of the extension éz used
inside the fluid domain Q{; . Therefore, the problem obtained allows us to take into ac-
count the motion of the structure, while keeping a fixed fluid domain. This is achieved
by using non-standard boundary conditions on the fixed interface I'j. On the one hand,
the kinematic condition of continuity of the normal velocity [9] is replaced by a con-
dition of transpiration [19], and on the other hand, the kinetic continuity of traction
forces on the interface is modified by the introduction of a correcting term which
appears in [16] as a surface integral.

Our method’s underlying idea comes from the definition of fluctuations, [13],
which leads to the transpiration condition [19], and from the transported problem
[16], which enables us to transform the volume integral, with dependencies in dz,
into a surface integral on the fixed interface.

5.4. Coupled fluid and solid subproblems

The variational formulation [21] is now equivalent to two subproblems coupled
along the fixed interface, I'{) (see remark of Section 2). If we take, in [21] 0° = 0,
we recover the standard linearised Euler equations for inviscid fluids, or the linearised
Navier-Stokes equations for viscous flows,

: . 0¢ a¢ _
W + divg (-BW(WO, 0g)0W + %(WO,00)50> =0, in Q(’;, [22]
completed with the kinematic condition of transpiration

opF

S (Wo)6Wno = §E (Woln(62) — oo (Wo, mo, Woo)n(52)

on
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~ V¥ (Wp)bzno + S—V?(Wo,no, Woo) (6W + VoWoéz), on T,

6U! -ng = 825 - np — (VoUL)é2® - no + U{ - n(éz®), on T3,

Alternatively, and this will be the case in the section to come, the fluid subproblem can
be replaced at first order by its non-linear equivalent by adding to [22] the equation,
divg ¢(Wp, 00) = 0, satisfied in initial state, yielding

W + divo oW, ) =0, in Qf,
¢F W)no = ¢ (W)n(6z) + FOWV, JF~Tng, W)

0
—VodEW)ézng + %(Wo,no, Weo)(VoWéz), on T,
Wa - ng = pbzs - ng — VoWadz® + Wy - n(6z°), on T%.
The structural subproblem is simply obtained by taking 9/ = 0 in [21], yielding
m®(8x3,03) + 6a®(6z°,05)

= [0on(62°) = Vooodz*ng — Song) - 05 dag, Vo5 € D(Qp)3.
I3

Equivalently, after integration by parts, this structural problem can be written

§z° — divg (f—j([)éﬁ) = 0, in Q,
F
(%—6:(1)(5:05> ng = dond + Voooedz*nd + oon(éz®), on T§.

The coupling with the fluid subproblem appears here on the interface by means of
non-standard boundary conditions.

Finally, the configuration subproblem defining the extension of dz inside the fluid
domain is no longer needed and therefore disappears from the problem.

6. Numerical tests

We have used the Dassault Aviation code “Eugenie” with its three-dimensionnal
steady and unsteady capabilities. This industrial Euler code working on unstruc-
tured mono- or multi-domain meshes can deal with complex configurations, such as
a complete aircraft with its engines. The finite volume cell vertex formulation (see
[FEZ 89]) uses space-centered schemes. Two numerical fluxes are available: the first
one is a predictor-corrector flux based on a Lax-Wendroff scheme (see [BAS 99]),
and the second is a Peraire flux with second and fourth order artificial viscosity (see
[SEL 89]). A dual time stepping technique allows unsteady computations, with a Gear
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(second order) backward difference scheme for the physical time steps and an implicit
strategy for the resolution of the local time-stepping unsteady problem.

Compared to its description in the former section, the practical implementation of
the kinematic boundary condition is slightly relaxed in most Euler codes, including
“Eugenie”. More precisely, in the kinematic boundary condition [4], the velocity after
transport U (zf (o)) is approximated by its value before transport U (zo):

Ul (@ (z0)) - n(z! (z0)) = Us(2®).n(z?).

In other words, the gradient term VOUJ is neglected. Then, the transpiration kine-
matic boundary condition reduces to:

U! (2! (z0)) -n(a! (w0)) = U (o) - mo(20) + U7 (o) - (n(a” (o)) = mo(20))
= U’(z®(z0)) - n(z°(20))

This means that in the numerical solver the usual boundary term
U/ (z0) - no(zo) = g(z0),
will be given by the modified expression
9(z0) = U’ (o) - no(0) — (U (z0) — U (%)) - n(a (o)),

prescribing weakly the interface transpiration boundary condition.

The Eugenie code has been linearised using the automatic differentiation tool
O0yssée developed by INRIA (see [FAU 98]). Fortran routines corresponding to nu-
merical flux and boundary conditions have been carefully differentiated with respect
to the fluid state W and to a set of input conditions (for instance angle of attack or
slip angles, motion of the body, ...) and were gathered to compute either steady or har-
monic solutions. The resulting linear system is solved using iterative solvers such as
preconditioned G.M.Res., without any local time stepping technique. This approach
leads to smaller computation times but requires more memory, especially to store the
preconditioner.

This linear code is interesting in many domains in aerodynamics such as:

— flight control and stabilisation methods, by predicting sensitivities of some
coefficients such as (lift, ...) to variations of aerodynamic parameters (angle of
attack, ...);

- aerodynamic shape design, by computing the sensitivity of a cost function to a
given deformation of a body;

— stability analysis for flutter prediction, which needs generalised aerodynamic
forces that can be computed by a harmonic linearised Euler code.
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6.1. Euler code, steady case

The first test validates the transpiration technique in a transonic steady case. We
will compare the pressure coefficients on a NACA64A010 wing (with a supposed
infinite span) for a Mach number of 0.796. We compute these coefficients for an an-
gle of attack of -0.21 degree (inflow condition) with a transpiration condition which
corresponds to an angle of attack increase of 1 degree. The reference test is the
computation of the same coefficients for an angle of attack angle of 0.79 degree
(Figure 2). The same strategy is used for an angle of attack increase of 0.5 degree
by transpiration around an angle of attack of -0.21 degree, compared to the results
obtained with a 0.29 degree angle of attack (Figure 3).

Pressure coefficients

-Kp

0.79 deg. incidence —
-0.21 deg. incidence + 1 deg. transpiration ----

0 0.2 0.4 06 0.8 1

Figure 2. ] degree by transpiration

We can see that the results obtained by the transpiration method are very good for
small variations of angle of attack, and deteriorate for larger ones.

6.2. Euler code, unsteady case

The second test validates both transpiration and ALE techniques. We consider an
oscillatory pitch of the NACA64A010 wing in a transonic unsteady flow. We com-
pare, in Figures 4 and 5, the real and imaginary parts of the pressure coefficients for
different methods: transpiration, ALE with a solid rotation of the mesh and ALE with
mesh deformation. Both ALE techniques were used with an second order geometric
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conservation law (see [KOO 98]). For these computations, the oscillatory pitch am-
plitude chosen was 0.1 degree, the rotation axis was located at = /c = 0.24 (where ¢
denotes the chord) and the frequency was 17.2 Hz. We have also plotted the experi-
mental datas ({AGA 82]) to validate the computational results.

Pressure coefficients

1 T T T T

Kp

1 - 4
0.29 deg. incidence —
-0.21 deg. incidence + 0.5 deg. transpiration ----
15 i L L I
0 02 0.4 0.6 08 1

Figure 3. 0.5 degree by transpiration

We can see that the three computational methods match quite well the experimental
datas. Especially, the shock displacement is well located, even if the amplitudes are
not the same.

From a CPU point of view, the ALE method with a global rotation is nearly thirty
percent more expensive than the transpiration technique, while ALE with mesh defor-
mation is much more expensive, due to the huge amount of time spent in the deforma-
tion processes.

6.3. Linearised code, harmonic case

The last computation validates the linearised harmonic code with transpiration
conditions in the case of an imposed structural motion. We consider the three dimen-
sional RAE wing with an oscillating flap (see Figure 6 and [AGA 82] for experimental
datas) for a transonic Mach number of 0.9 and a flap frequency of 90 Hz. The mesh
contains 228000 tetrahedra and 40000 nodes.
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Pressure coefficients

30 T T

Transpiration —
ALE with rotation
ALE with deformation

E i t on-the upper side

20

Real part

0 0.2 04 0.6
x/c

Figure 4. Real part of the pressure coefficients

Pressure coefficients

08

30 T T

Partie imaginaire

Transpiration -——
ALE with rotation

ALE with deformation
Experiment on the upper side ¢
Experiment on the lower side +

0 0.2 04 0.6
x/c

Figure 5. Imaginary part of the pressure coefficients

0.8
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Figure 6. RAE wing with its flap pulled down

Real part

-4

Cutter : y/s=0.45

o

Linearized harmonic computation —
Non linear unsteady computation -----
... Experiment on the lower side . ¢

Experiment on the upper side +

T T T

02

04 0.6 0.8 1
x/c

Figure 7. Real part of the pressure coefficients

We present on Figures 7 and 8 the real and imaginary parts of the first harmonic of
the pressure coefficients on a cutter of the wing (at 45% of the span) obtained by the
linearised Euler code, by the unsteady non-linear code and by the experiments.

We can see that the linearised harmonic results agree with the unsteady compu-
tation. Nevertheless, the mesh seems to be insufficiently refined to obtain a good
comparison between computations and experiments.

The CPU gain of the linearised approach depends on the numerical flux used in
the linearised and in the non-linear computation. The Lax-Wendroff flux was chosen
for the non-linear cases, because of its reasonable cost and of the quality of its results.
Using the same flux in the linearised approach leads to a gain of a factor 2. But if
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we take the Peraire flux to solve the linearised problem, the CPU time reduces by a
factor of 13 compared to the Lax-Wendroff linearised case. Computations on a refined
mesh will be required to evaluate the quality of both fluxes, but we cannot yet consider
bigger geometries for memory requirements reasons (the linearised code has not been
parallelised).

Cutter : y/s=0.45
3 T T T T
: Linearized harmonic computation ——
N Non linear unsteady computation -----
A Experiment on the lower side ©
.- Experiment-on the upper side -+ .

Imaginary part

Figure 8. Imaginary part of the pressure coefficients

7. Conclusion

The analysis presented in this paper may give a better insight on the different
formulations used in fluid-structure interaction, and on the stability properties of the
different time integration schemes used in such problems. We have seen there the
importance of using smooth grid deformation maps inside the fluid to preserve long
term stability properties.

We also have proposed a mathematical derivation of the so called transpiration in-
terface boundary conditions which seem to be good candidates for solving efficiently
fluid-structure interaction problems while keeping a fixed grid and configuration on
the fluid domain.

The real numerical issue 1s in any case to be able to obtain reliable numerical pre-
dictions of the physical stability of the coupled problem under study. This can either
be carried out by a direct numerical integration in time of the full coupled problem us-
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ing time accurate schemes with good energy conservation properties, or by computing
the harmonic solutions of the linearised variational problem [21].
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