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ABSTRACT This paper presents the extension of our CAD-Free plateform to the simulation and 
sensitivity analysis for design and control of multi-model configurations. The CAD-Free plate
form has been enriched by an elastic model. We present the different ingredients of the plate form 
and discuss various coupling and control strategies. The targeted configurations gather some 
unstable aerodynamical behaviour. 

RESUME. No us presentons l 'extension de notre approche CAD-Free pour Ia simulation, concep
tion et controle de configurations multi-modele. La plate forme CAD-Free a ere enrichie avec un 
modele etastique dynamique. Nous presentons les divers ingredients de Ia methode, ainsi que 
plusieurs algorithmes de couplage et de controle. Les configurations envisagees representent 
les comportements aeroe/astiques ins tables rencontres dans les applications. 
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1. Introduction 

Two and three dimensional flutter problems simulation is a challenging task and 
is interesting for both industrial and academical aspects. Usually, structure design 
concerns the structural characteristics of the model, something which is usually per
formed without taking into account the possible flow unsteadiness. At this step, the 
design accounts often at best for mean flow loads and tries to avoid resonance pheno
mena for a few flow eigenmodes corresponding to the lowest structural modes where 
the eigen-analysis is done for each model separately. On the other hand, aerodynami
cal shape optimization is usually performed for given structural characteristics after 
adding geometrical constraints on local thickness for instance to guarantee a realis
tic final shape from structural point of view. Current efforts concern the realization 
of this task in a MDO (multi-disciplinary) context for steady configurations. In both 
cases, it is therefore reasonable for the flow to stay in the validity domain of these 
optimizations, which means as much as possible steady or close to it. We are therefore 
interested to control unsteadiness which might appear in a fluid/structure system even 
in cruise condition. One easy way to perform this task is by perturbating the inflow 
incidence using a real time flap position perturbation prescribed by a fast gradient ba
sed minimization algorithm. The sensitivity evaluation and the minimisation tool have 
therefore to be enough fast. In that sense, different control laws are obtained using dif
ferent minimization algorithms and the control is in closed loop as the gradient used to 
define the descent direction comes from the linearization of the state equations (fluid 
and structure models) and uses the current state [MOH 99], [OPBM 99], [MOH 99b]. 

In the past, we showed how to perform sensitivity analysis using automatic dif
ferentiation in reverse mode for optimization and control problems. We showed that 
incomplete sensitivities are efficient for control of unsteadiness where the control is 
considered as unsteady shape optimization involving large number of control para
meters. One particularity of this approach is the CAD-Free parametrization of shapes 
which avoids CAD manipulations during optimization and only requires an interface 
with the CAD parametrization at final stage (we recall that the initial correspondance 
between CAD parametrization and the initial surfacic mesh is known) [MOH 95], 
[MOH 97], [MOH 99]. Our aim here is to show how to add to the CAD-Free control 
space an elastic model. In that way, the dynamic optimization system, the fluid and 
the structure solvers work on the same variables. 

Incomplete sensitivities are defined by keeping only geometrical contributions in 
gradients, if both the unsteady cost function and control parameters are defined on the 
shape [OPBM 99] and if the cost funtion has both geometrical and state contributions 
(like in aerodynamical coefficients for instance). This leads to a sensitivity evaluation 
and dynamic minimization tool where the fluid and structure states can be replaced by 
the ones coming from more realistic simulations or based on commercial packages for 
instance. The idea is that the state equations used for the simulation and for sensitivity 
analysis can be different. The problem of interest here is therefore different in the 
sense that the number of control parameters is small (basically one) and the control is 
not defined over the same region than the cost function. 
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A major point of interest here is to show that instantaneous control is still efficient 
for cases where the control and cost function are not defined in the same region (as 
previously). This dynamic control algorithm enables for simultaneous simulation and 
control. Indeed, the solution of the adjoint problem will not be required for the defini
tion of the control. To this end, we are particularly interested by the complex variable 
method. This approach is interesting for cases where only one control parameter (like 
here) is involved as we can access to the gradient of the cost function with respect 
to this parameter in real time without any linearization or extra solution for the state 
equation. 

2. Fluid and structure state equations 

We are interested by the prediction of flutter problems as well as design of structure 
leading to a higher flutter speed. We propose here a coupling between two models for 
the flow and the structure behaviour which show the difficulties we have to face when 
using commercial codes for the physic of the problem. 

2.1. Structural mode/for the elastic CAD-Free parametrization 

For the structure, we consider the following dynamic system based on the CAD
Free surface definition. Our aim again is to have only one geometrical entity during 
simulation and design and this also when doing MDO configurations. The geometri
cal definition is therefore again the surface discretization (in 2D segments and in 3D 
triangles). The definition of normals to the surface is therefore an easy task. 

The displacement of the CAD-Free definition of the shape in the normal direction 

JXP+ 1 = [(x(H - xf).nff is described by the following PDE involving first and 
second order time derivatives as well as second and fourth order elliptic operators. The 
aim here is to recover by a shell type model the behaviour of different structures after 
identification of the characteristic constants of the model. 

Denotes X 0 the initial shape described by the surfacic (shape) nodes in the fluid 
mesh: 

fP X aX _ o 2 o 
M at 2 +C7ft-J\~(X-X )-J-l~ (X-X )=F [1] 

The first two terms involve pointwise behaviour of the shape and the third and fourth 
terms link the surfacic nodes together. The parameters M (mass), C (damping), K 
(stiffness) and J-l (shell stiffness) encapsulate the mechanical characteristics of the 
structure. The presence of second and fourth order surfacic space derivatives enables 
the model to produce both membrane and shell type behaviours and the parameters 
K and J-l have to be identified to reproduce these behaviour. In this work, we consider 
only membrane type behaviour (J..l = 0). F = J80 ( -p + S.ii. i) models the action of 
the aerodynamic forces on the structure. 
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2.2. Fluid models 

The simplest model for pressure prediction can be the Newton or the cos-square 
law where the pressure is given by the following algebraic relation: 

ry( ~ ~) 
P = PooCos" U 00 .n , [2] 

where p00 is the inflow pressure, u~ the inflow velocity and ii the local normal to the 
shape. If we aim to include also viscous effects, a similar relation exists giving the 
amount of the friction based on wall-function approach: 

[3] 

where S = (1/ Re)("'ilu + "'ilut- (2/3)"'i7.ul) is the Newtonian stress tensor, Rex is 
the local Reynolds number based on the distance from the beginning of the viscous 
region and 8pj8x(= "'ilp.f) is the tangential pressure gradient. The unit tangent is 
defined as f = (T/ITI) with T = u~- (u~.ii).ii. 

These relations are of course far from being general but their combination is en
ough to permit the study of various physical behavior we can encounter with more 
complex models. In addition, this simplicity enables for an evaluation of the CAD
Free elastic parametrization as the state equation is well solved. 

The plateform also gives the possibility in using more sophisticated fluid models, 
of course at a higher cost. At this time, NSIKE and NSC(2-3)KE 2 and 3D incom
pressible and compressible solvers have been interfaced with the elastic CAD-Free 
parametrization above [NSIKE], [NSC2KE]. We do not describe here these possibili
ties. 

2.3. Fluid-structure interaction 

The fluid and structure models presented above enables the evaluation of various 
coupling algorithms. This subject has been investigated in similar simulations consi
dering two solvers, with an incompatible interface discretization, in parallel requiring 
informations from each other [DO 92], [CA 96], [NG 94], [SP 95]. With incompatible 
parametrizations for the fluid and structure interface, a major difficulty comes from in
formation transfert between the two models. As we said, this situation is worse when 
adding an optimization tool. The following algorithms are therefore valid with any 
fluid solvers working on the CAD-Free parametrization. 

3. Coupling strategies 

To present the different strategies possible, we rewrite the second order system 
( 1-2-3) as a first order one: 
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Z = f(Z), Z(t = 0) = Z0 , [4] 

where Z = [ ~~ ] [ ~ ] are the new variables and 

f(Z)= [ M- 1(F(Z1,Z2 )-gi2+Kfl(Z1-ZP)) ]· 

In the fluid model above, F does not include Z 2 contribution, but in a more general 
situation where time derivative is also present in the fluid model, this contribution 
exists due to an ALE implementation for instance. 

3.1. First order explicit coupling 

The easiest way to couple two models is a parallel approach, as in the following 
first order explicit scheme, where both model are advanced in time and the necessary 
informations are communicated from one model to the other. 

Z 0 = Z(t = 0), zn+l = zn + 6.tf(Zn). [5] 

3.2. First order implicit coupling 

The previous approach has time step limitation, especially due to the stability 
condition of the structural model. This can be avoided by an implicit version of [5] 
which leads to: 

zn+l zn 
M 2 - 2 + czn+l _ f{ !l(zn+l _ zo) _ F(zn+1) [6] !lt 2 1 1 - 1 . 

This scheme is also first order accurate. 

3.3. First order semi-implicit coupling 

The difficulty in the previous algorithm is a too important coupling of the fluid 
and structure codes. In practice, it is suitable to have an algorithm which requires a 
separated solution of two codes and if possible no more than one solution of each for 
each coupling iterations, while algorithm [6] requires a fixed point approach. 
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3.4. Second order implicit coupling 

To improve the accuracy, we use the trapezoidal rule for the integration in time of 
system [4]: 

Zo = Z(t = 0), [7] 

which leads to: 

zn+1- zn zn+1 + zn zn+1 + zn zn+1 + zn 
lvf 2 2+C: 2 2-I\.6.( 1 1_za)=F( 1 1)[8] 

.0.t 2 2 1 2 

3.5. Second order coupling with prediction 

One difficulty with the implicit schemes [6-8] above is again a too important cou
pling of the fluid and structure codes. As we said, in practice, it is suitable to advance 
the two codes separately. This is possible for instance by predicting the structure po
sition needed by the fluid code, and using the predicted fluid state in the structural 
system: 

z~+1/2 = xn+1/2 = 2Xn- xn-1 = z~ + z~ .0.t. 

The scheme (8) becomes therefore: 

zn+1 zn zn+1 + zn zn+1 + zn 
M 2 - 2 + C: 2 2 _ K.0.( 1 1 _ za) = F(zn+1/2) [9] 

.0.t 2 2 1 1 ' 

which gives (Z~'+ 1 , z;+1) without recomputing F(Z). This is especially important 
for complex fluid models. 

4. Time dependent minimization problem 

We consider the following time dependent minimization formulation for the control 
of the flutter problem 

{ 

mina(t) J(a(t)) =faT fan(t)(X(t)- Xtaget)
2 d[di +faT a(t) 2 dt, 

E(a(t), X(t), U(t)) = 0, 
gl(a(t)) ~ 0. 

[10] 

where a(t) denotes the control parameter which is here the inflow angle of attack de
viation performed by a flap. X(t) denotes the CAD-Free model deformations and we 
would like to reach a target position (i.e. avoid flutter for instance). One particularity 
which has to be introduced is the time lag between the impact of the inflow deviation 
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on the different points of the shape. To minimize the effort during control, the neces
sary deviations have to be minimized too and this is the meaning of the second term 
in the cost function. In this work, we do not take into account this contribution, but ra
ther introduce constraints on the maximum amount of the deviation. This is of course 
not fully satisfactory. g1 denotes the constraints on the control parameter (for instance 
the maximum deviation possible and the maximum realizable frequency by the flap 
or injection device). We are of course interested by the smallest maximum deviation 
allowed and the smallest frequency. In addition, we can introduce also geometrical 
and state (on U) constraints as previously showed on control problem [MOH 99], 
[OPBM 99], [MOH 99b]. E(o:, X, U) denotes the state equations system (1-2-3). As 
we said, the plateform also includes more sophisticated flow and structure solvers 
[MOH 99], [MOH 99b], [MED 98c], [NSIKE], [NSC2KE], [ME 98d], but their pre
sentation is of no help for the purpose of control algorithm description. 

4.1. Second order dynamic system 

To solve problem [ 10], we need an equation for o: ( t). Consider the following se
cond order time dependent equation for the shape parametrization o:. 

[ ll] 

where G is a function of the exact or incomplete gradient and of the inverse of the Hes
sian of the cost function. It also takes into account the projection over the admissible 
space precised above. 

Consider the following discretization in time of [ 11] (denotes by 6 o:P the control 
parameter variation at step p): 

.!_ .!_)- p+1 _ .!_, p _ (( p J)-1 JP) 
{ ,\ 2 + ,\ 00: - ,\ 2 uo: F V aa , V aP . 

With c = 0, we recover the steepest descent algorithm with fixed step size if the 
time step ,\ is fixed and if G does not depend on the Hessian. Of course, ,\ can be tuned 
to be optimal at each time step and we recover the optimal steepest descent method 
which necessarily converges to the closest minimum. 

If c < 0, we find the so called heavy ball method [AT 99]. The aim in this approach 
is to access different minima of the problem and not only the nearest local minimum. 

If c > 0, and p-dependent, we recover methods such as conjugate gradient where 
G has a particular expression. Indeed, the following system without first order time 
derivative represents the conjugate gradient method: 
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where gi = \7~ P. Note that if>. is fixed and llgP II = llgP- 1 11 (like for instance in 
minimizing a regularized absolute value function), we have 

o:P+1- 2o:P + o:p-1 =II( ->.gP), 

which is a discrete second order system without damping meaning that the conjugate 
gradient method cannot converge if the step size is not optimized. 

In the same way, a Newton or quasi-Newton type method can be expressed introdu
cing the inverse of the Hessian or its approximation through a quasi-Newton iterative 
formula like BFGS for instance where (\7~x J) - 1 is approximated by a symmetric de
finite positive matrix HP, constructed iteratively, starting from the identity matrix for 
instance: 

with 
'"'/ = \7 j ( o:P + 1 ) _ \7 j ( aP) . 

Through this representation, minimization concepts are easy to integrate to a multi
model plateform as they consist in adding a new state equation for the parametrization, 
coupled with the previous existing equations. 

4.2. Coupling the control and state equations 

Reconsider the system (4), to which we add two new contributions, coming from 
[11]: 

Z = f(Z), Z(t = 0) = Zo, 

r z~z:~1 r~.-1 where Z = : are the new variables and 

f(Z) = r M-' (F(Z,, Z,) - ~' + K<>(Z, - Z11i 1· 
-f-

1 (Z4 + G(H(Z3), VzJ)) 

[13] 

We use the semi-implicit algorithm presented above to integrate this system. In 
particular, we consider the following semi-implicit right-hand-side: 
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h Z n+l/2 - zn + zn "t d zn+l/2 - zn + zn "t werel -1 2L.J.an 3 -3 4L..l.. 

The results shown here have been obtained with only first order accuracy for the 
control part. 

5. Sensitivity analysis by CVM 

In the past, we widely used automatic differentiation in reverse mode for design 
and control. In these problems the dynamic minimization equation was seen as an 
equation for the structure and the control as a time dependent shape optimization 
problem in CAD-Free framework [MOH 95], [MOH 99]. Therefore, in these confi
gurations the number of control parameters was large. In the problem studied here, 
the number of control parameter is small. We are interested by the evaluation of the 
complex variable method for a real time access to the sensitivity of an unsteady cost 
function (10) with respect to one control parameter (the flap incidence). This method 
has been widely used by NASA Langley research center group [AN 98], [SQ 98] for 
sensitivity analysis in aerodynamical problems. 

Figure 1. Snapshots of the membrane position without (left) and with (right) control 
for a vertical inflow impact. Control condition: h = 10- 6, p = 100, f = lOOH z, 
maximum deviation D'rnax = +/- lOdegrees 

A Taylor expansion in the complex plane enables for the definition of the gradient: 

therefore 

2 

J(a + iE, U(a + iE)) = J(a, U(a)) + iEl~- ~]~ + E 2 o(l), 
2 

dJ 
da 

Im(J(a + iE, U(a + iE))) 2 ( ) -------'-----'- + E 0 1 , 
E 
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We can see that there is no more substraction and therefore the choice of E not critical 
as in finite differences: 

dJ J(a +E)- J(a) 
da E 

In the same way, the second derivative can be found as: 

d2J Re(J(x; + ic, U(x; + iE)))- J(x, U(x)) 
da 2 E2 

Unfortunately, here, there is again a substraction, instead of two when using a central 
differencing formula (1::,' = ( (J(x +E) - 2J(x) + J(x -E))/ E2 )). 

5 .0.1. Practical issues 

In practice, this methods only requires a redefinition of all real variables of the 
computer programs in the design loop as complex. This can be seen also as a par
ticular operator overloading approach as in automatic differentiation [OPBM 99]. The 
complexity of the approach is comparable to first order (forward) finite differences 
despite the fact that complex operations and storages require twice more effort than 
for reals but the evaluation of the functional after a small change in the complex plan 
will not greatly affect the real part: 

Re(J(x + ic)) ~ J(x), 

therefore only one evaluation is necessary to get J and J'. Of course, the second 
derivative will not be available anymore. We recover here the same argument as behind 
incomplete sensitivities. This permits for a real time evaluation of sensitivities for one 
or few parameters and is interesting for control problems. Of course, the complexity 
is still proportional to the number of control parameters. 

Finite difference method stays however more useful in case where we only have 
access to black box codes like commercial packages. This is why incomplete sen
sitivities are really useful in industrial applications where such packages cannot be 
avoided. Indeed, we only need to linearize the cost function dependency with respect 
to geometrical quantities over the shape (normals and surfacic triangles in 3D basicly). 
Hence, automatic differentiation or complex variable method become the best choices 
as usually this part of the code (i.e. CAD-Free definition, shape deformation, shape 
based geometrical quantities evaluation, cost function evaluation) is provided by the 
user and is application dependent. 

6. Applications 

Aeroelastic simulation were performed using CAD-Free structural models for two 
and three dimensional flows. The problem of interest is to predict aeroelastic beha
viour of the coupled system and to control situations where the structure behaviour 
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Figure 2. Control frequency (left) and descent amplitude p (right) impacts on control 
for a vertical inflow impact. Control conditions: h = 10- 6

, p = 1, 10, 100, 
f = IOOH z, lOOOH z, IOOOOH z, maximum deviation O'max = +/ - lOdegrees. 
The efficiency decreases with the frequency of control and its amount, for a given 
maximum deviation 
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Figure 3. Control frequency (left) and h-increment (right) impacts on sensitivities for 
a vertical inflow impact. Control conditions: h = 10- 3 ,10- 6

, p = 100, f =100Hz, 
lOOOH z, lOOOOH z, maximum deviation O'max = +/- lOdegrees 

becomes unstable due to fluid perturbations. Control has been performed for all cases 
using flap deflection to change the flow (for the panel case) or the body incidence (for 
the wing and the aircraft cases). The flap deviation, as explained above, is prescribed 
using a real time sensitivity equation. 

The first case concerns a 2D panel at Mach 1.2. The structural behaviour has been 
chosen for the coupled model to be unstable. Our aim is to control this unstability 
by a flap introducing a deviation of the inflow. The CAD-Free parametrization here 
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Figure 4. Snapshots of the membrane position without (left) and with (right) control 
for a zero incidence inflow. Control condition: h = 10- 6

, p = 100, f = 100Hz, 
maximum deviation O:max = +/- 10degrees 

has about 100 elements. The initial system has been perturbated by a displacement 
along the first panel engeinmode. We consider two cases corresponding to initial flows 
with zero and 90 degrees incidence. The former case represents therefore a vertical 
impact of the flow. We notice that for these cases the control is not enough efficient 
as it requires too much energy (maximum deviation angles required). In addition, the 
control efficiency increases with its update frequency which is not satisfactory from an 
industrial point of view, even if it makes sense. For these cases, a reasonable maximum 
deviation angle is about one or two degrees and an update frequency of a few Hertz 
(less than 10). Our control is therefore not enough efficient as it requires about 5-10 
times more energy and update. This might be due to: 

- imperfect numerics and coupling; 

- the instantaneaous control approach used instead of a global control. We recall 

that in the cost function (10), we removed the term J: o:(t) 2dt and only consider the 
following instantaneous cost function 

minJ(o:(t)) = { (X(t)- Xtaget) 2di; 
a(t) lan(t), 

[ 14] 

- the fact that only the steepest descent approach has been used which does not 
lead to the optimal control, but is only sub-optimal. 

Surprisingly the situation is better for the 3D applications below. 

The three dimensional cases concern flows over an M6 wing and a business Jet. 
The elastic CAD-Free parametrizations for these cases contain several thousands of 
elements and consists of surfacic triangular meshes. This surfacic mesh, as we said, is 
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Figure 5. Control frequency impact on control (left) and sensitivities (right) for a 
zero incidence inflow. Control conditions: h = 10-6, p = 100, f = 100Hz, 
1000Hz, lOOOOH z, maximum deviation a max = + / - 10degrees 

shared by fluid and structure codes in a more general coupling; something which really 
simplify the coupling strategies. In these cases, the fluid and structure system has been 
excited by an initial periodic incidence perturbation with frequency and amplitude (a 
few Hertz and degrees) corresponding to inflight observed situations: 

the M6 case: f"' 2Hz, -2 < a1 < 2 degrees,a2 = 0 degrees, 

thebusinessjetcase: f,....., 10Hz, -1 < a1 < 1 degrees,-1 < a2 < 1 degrees, 

where a 1 and a 2 are the two incidence angles for a 3D flow. These perturbations 
might happen in stormy weather or during take-off and landing in the wake of bigger 
aircrafts. 

The same values have been used for the maximum incidences deviation during 
control. The control update frequency is twice the initial perturbation ones for each 
case. We show snapshots of shape deformation for each cases. The histories of the 
wing tips motion with and without the control applied show that this instantaneous 
control is quite efficient. 

7. Conclusion 

The application of the complex variable method to sensitivity analysis and defini
tion of control laws for multi-model configurations has been presented. The approach 
seems to be quite insensitive to the choice of the increment for sensitivity analysis. 
This is interesting in multi-disciplinary applications. In addition, this enables a si
multaneous evaluation of the functional and its sensitivity with respect to one control 
parameter. The physical problem concerns the control of 2 and 3D structures under
going unstable structural behaviour due to flow perturbations. The dynamic control 
approach, based on instantaneous evaluation of sensitivities, gives only partly satis-
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Figure 6. Aeroelastic simulation and control by stiffness identification for an M6 wing. 
Snapshots of the wing position without control. Last picture: wing tip vertical evolu
tion 
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Figure 7. Aeroelastic simulation and control for a business jet. First picture: upper 
view of the CAD-Free parametrization. Snapshots of the shape without control. Last 
two pictures: left and right wing tips vertical evolutions without (left) and with control. 
The evolutions are not symmetric partly due to the fact that the CAD-Free parametri
zation is not 
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faction as the required energy is still too high. However, our theoretical knowledge on 
the controlability of these systems is quite weak, especially we do not know about the 
amount of energy which should be enough to perform the task. 

8. Bibliography 

[MOH 95] MOHAMMAD! B. , Practical Applications to Fluid Flows of Automatic Differen
tiation for Design Problems, VKI-Lecture Series, Vol. 05, num. 1, (1997) pp. 205-225. 

[MOH 97] MOHAMMAD! B., A New Optimal Shape Design Procedure for Inviscid and Vis
cous Turbulent Flows, Int. J. Num. Meth. Fluids, Vol. 25, num.2, pp.183-203, (1997). 

[MOH 99] MOHAMMAD! B., Flow Control and Shape Optimization in Aeroelastic Configu
rations, AIAA-0182, (1999). 

[OPBM 99] MOHAMMAD! B., PIRONNEAU 0., Applied Shape Optimization for Fluids, Ox
ford University Press, (1999). 

[MOH 99b] MOHAMMAD! B., Dynamical Approaches and Incomplete Gradients for Shape 
Optimization and Flow Control, AIAA.99.3374, (1999). 

[MAL 95] MOHAMMAD! B., MALE J. AND ROSTAING-SCHMIDT N., Automatic Differen
tiation in Direct and Reverse Modes: Application to Optimum Shapes Design in Fluid Me
chanics, Proceedings of 2nd SIAM workshop on AD, pp. 173-192, (1995). 

[MED 98] MEDIC G., MOHAMMAD! B., STANCIU M. AND MOREAU S., A New Approach 
for Optimal Blade Design, Proc. ICFD conf. Oxford, (1998). 

[MED 98b] MEDIC G., MOHAMMAD! B., STANCIU M. AND MOREAU S., Optimal Airfoil 
and Blade Design in Compressible and Incompressible Flows, AIAA-98-2898, (1998). 

[MED 98c) MEDIC G., MOHAMMAD! B., PETRUZZELLI N. AND STANCIU M., 3D Optimal 
Shape Designfor Complex Flows: Application to Turbomachinery, AIAA-98-0833, (1998). 

[PE 99] PETRUZZELLI N. AND MOHAMMAD! B., Incomplete Sensitivities and BFGS method 
for 3D Optimal Shape Design, RR INRIA 3633, (1999). 

[RO 93] ROSTAING N ., Differentiation automatique: Application a un probleme d'optimisa
tion en meteorologie, Ph.D. Thesis Nice University (1993). 

[AT 99] ATTOUCH H., GOUDOU X. AND REDONT P., The Heavy Ball with Friction Method, 
Advances in Contemporary Mathematics, Vol. 2, num. 2, pp.183-203, (1999). 

[OPBM 94] MOHAMMAD! B. AND PIRONNEAU 0., Analysis of the K-Epsilon Turbulence 
Model, Wiley, (1994). 

[NSIKE] MEDIC G. AND MOHAMMAD! B., NS/KE- An Incompressible Navier-Stokes Solver 
for Unstructured Meshes, RR INRIA 3644, (1999). 

[NSC2KE] MOHAMMAD! B., CFD with NSC2KE: an User Guide, Technical INRIA report 
164, (1994). 

[DO 92] DONEA J ., An ALE Finite Element Method for Transient Fluid-Structure Interactions, 
Comp. Meth. App. Mech. Eng., Vol. 2, num. 33, pp. 689-723, (1982). 

[CA 96] FARHAT C. AND LESOINNE M., On the Accuracy, Stability and Performance of the 
Solution of Three-dimensional Nonlinear Transient Aeroelastic Problems by Partitioned 
Procedures, AIAA-96-1388, (1996). 



Control of Multi-Model Configurations 725 

[NG 94] NKONGA B. AND GUILLARD H., Godunoc Type Method on Non-Structured Meshes 
for Three Dimensional Moving Boundary-Problems, Comp. Meth. App. Mech. Eng., Vol. 
10, num. 113, pp. 183-204, (1994). 

[OP 84] PIRONNEAU 0., Optimal Shape Design for Elliptic Systems, Springer, (1984). 

[SP 95] PIPERNO S., FARHAT C. AND LARROUTUROU 8., Partitioned Procedures for the 
Transient Solution of Coupled Aeroelastic Problems, Comp. Meth. App. Mech. Eng., Vol. 
11. num. 124, pp. 97-201, (1995). 

[ME 98d] MEDIC G., MOHAMMAD! M. AND STANCIU M., Prediction andAeroelastic Simu
lation of Turbulent Flows in Civil Engineering Applications, Proc. ECCOMAS 98, Athens 
(1998). 

[AN 98] ANDERSON K., NEWMAN J ., WHITFIELD D. AND NIELSEN E., Sensitivity Analysis 
for the Navier-Stokes Equations on Unstructured Grids Using Complex Variables, AIAA-
98-239, (1998). 

[SQ 98] SQUIRE W. AND TRAPP G., Using Complex Variables to Estimate Derivatives of 
Real Functions, Siam review, Vol. 10, num.1, pp.110-112, (1998). 




