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ABSTRACT. A numerical model for studying aeroelastic stability is proposed in this paper with 

application to the overexpanded rocket engines. Starting from previous results obtained by Pek­

kari's team [PEK 93], the model is extended to take into account dynamic instabilities. A mono­

dimensional model is used to check the effects of the chosen solicitation form on the global 
stability of a flexible nozzle. We observe that stability is influenced with the initial position of 

the separation shock. A static instability will be revealed by the presence of a zero value for one 
modal frequency, whereas a dynamic instability will appear after coalescing modes (similar to 

well-known flutter phenomena). Finally, a calculation is conducted in coupling two codes, one 
dedicated to structure dynamics, the second to the fluid phase in order to validate the stability 

model in the general two-dimensional case of an overexpanded rocket engine. 

RESUME. Nous presentons ici un modele numerique de stabilite aeroelastique applique aux 

cas de divergents de moteurs fusee sur detendus (presence d'un choc de decollement). Partant 

du modele developpe par l'equipe de Pekkari [PEK 93], nous proposons une extension pour 

la prise en compte des instabilites de type dynamique. Apres verification sur un modele 1 D 

simplifie nous observons que la stabilite d'un divergent flexible, pour laforme de sollicitation 
analytique proposee par le modele, est fonction de la position initiate du choc de decollement. 

La perle de stabilite statique apparaft suite a l 'annulation d'une des frequences fondamentales 
de la structure. Dans le cas dynamique, il s'agit d'une coalescence de deux frequences, phe­
nomene analogue au cas connu du flutter. Un calcul numerique avec couplage de codes, l 'un 

dedie aufluide, ['autre ala structure, estfinalement conduit pour permettre de valider laforme 
analytique de la sollicitation du modele, dans le cas general d'une tuyere bidimensionnelle sur 

detendue. 

KEY-WORDS: aeroelasticity, static and dynamic instabilities, rocket engines, separation shocks, 

coupled calculations, fluid-structure interaction. 
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1. Introduction 

During start-up and shut-down phases of a rocket engine, critical phenomena may 
appear and be responsible for damages or even an irreversible destruction of the di­
vergent part of the nozzle. 

During the starting phase of the engine, a first "blast" wave may sweep the whole 
nozzle to initiate the flow. Behind that first pressure discontinuity, the flow gets es­
tablished by adjusting to the outside pressure ratio. That phase corresponds to the 
existence of a matching shock pattern, of which the longitudinal position is governed 
by the pressure field. That shock wave is attached to a complex flow separation in 
the nozzle. From the separation point, the nozzle jet encompasses periodic pressure 
structure known as pressure cells which may be found in any supersonic jet, with non­
adapted pressure. The first cell structure inside the flow usually contains a Mach disk 
across the axis terminating at a triple point [SCH 84], [ROM 98]. There is no reason 
for this shock to evolve in a perfectly axisymmetric manner and then side loads effects 
may appear [SCH 73], [LEB 94], [NAV 73]. When appearing, they are detected before 
the complete stabilization of pressure chamber, the increase of which is progressive 
and effective after a few seconds according to the rocket engine. Side loads peaks are 
thus measured for particular values of the chamber pressure. 

This phenomenon is known for a long time since the first works according to this, 
date back to the twenties, notably with Prandtl, Meyer and Stodola who worked on 
overexpanded jets [SUM 54]. In 1949, Forster and Cowles conducted measures on se­
parated hot-gas flows [FOR 49]. The result of this work was that the separation condi­
tion corresponds to a pressure ratio of 40%. This ratio is often called the "Summerfield 
criterion" and is still in use today. In the mean time, the results of numerous cold-gas 
test and various hot-gas tests have been published which confirm the tendency of the 
measurements of Foster and Cowles. 

The interest increased in the sixties when the same phenomenon was observed on 
the J2S engine of the Saturn V launcher [SCH 84]. From 1960 to 1966, NASA under­
took a vast program of research to better understand the physics of side loads. It led to 
numerous theories and a huge amount of experimental data for side loads. However, 
the exact comprehension of the physics underlying such a phenomena is not totally 
clear and data correlations are complicated at best. 

Today, this problem is still existing for rocket engines such as the SSME of the 
American space shuttle [REE 95], the Vulcain engine of the final version of Ariane 
V launcher [Pro98], [SER 96], [HAD 97] and other Japanese and Russian rocket en­
gines. Recently, the solid rocket motor upgrade (SRMU) of Titan IVB launch vehicle 
dedicated to Cassini-Huygens mission on Saturn (satellites exploration), gave unex­
pectedly high nozzle actuator loads during ignition [ROM 98]. 
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The main aspects susceptible to explain such phenomena are: 

- Jet separation and its stability. This part is exclusively devoted to the study 
of fluid behaviour involving separation of the turbulent boundary layer, shock struc­
ture related to the main flow, influence of upstream disturbances or fluctuation in the 
downstream pressure field. This domain owns a rich bibliography and the interest evo­
cated by many laboratories of the European community is well expressed in reference 
[Pro98]; 

- Aeroelasticity: This concerns the study of the mutual influence of the dynamical 
behaviour of a flexible structure on the flow. 

In this paper, we focus on the aeroelasticity aspect to predict the structural beha­
viour of the nozzle rather than on an accurate study of the turbulence in separated 
flows. 

Aeroelasticity has been studied for at least forty years from a theoretical point 
of view [DOW 75], [FUN 58], [BIS 75] and more recently a numerical approach has 
been developed and proposed [FAR 96], [KON 87], [TAL 96], [PIP 95b], [LEF 98]. 
The development of coupled models for aeroelasticity is quite recent due to its multi­
disciplinary nature. Moreover, its application to rocket engines has rarely been studied 
[TUO 68], [PEK 93]. It seems reasonable for this case to focus on the structural as­
pect, the engine being above all, the "organ" we wish to preserve. 

The origin of the problem, when an aeroelastic phenomenon appears, is essentially 
due to the design of the rocket and the selected material for its construction. Indeed, 
the weight gain is the main concern in astronautics for which the objective is to launch 
the maximal payload for a given launcher weight, and thus for a given financial cost. 
The choice of a rigid and heavier material would probably resolve the problem but 
would have for main drawback to reduce accordingly the payload. 
Thus, an efficient rocket structure is light in weight and thus quite flexible. The desi­
gner should carefully investigate the appearance of elastic instabilities, static buckling 
and flutter, to assure structural safety. 

We may make the following remarks regarding the present state of rocket instabi­
lity studies: 

- Experimental data was published in 1968 by Tuovila [TUO 68] who detected an 
unstable behaviour similar to buckling on three of his five flexible nozzles. He recor­
ded these results with a high-speed camera. His work is essentially rich in qualitative 
data; 

- Experimental measures related to the response of actual rockets are almost non­
existent; 

- Pekkari's team developed an aeroelastical stability model based on a simplifica­
tion of the loads exerted by the separation shock on the nozzle leading to prediction 
of unstable modes [PEK 93]. 
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The aim of this paper is to present certain aspects of a numerical model in order to 
offer a better understanding of aeroelasticity occurring in a rocket engine. 

In this paper, we study the structural instabilities of a rocket type structure using 
simple aeroelastic models as well as fully coupled fluid-structure model. Our purpose 
is to assess the reliability of these models to predict unstable behaviour and to offer a 
better understanding of aeroelastic behaviour of the rocket structure. 

In a first section, we start with a general presentation of a structural stability model 
under aerodynamic forces. This is followed by Pekkari's model involving a simplified 
representation of aerodynamic forces using "piston theory". We propose a linear dyna­
mic instability model based on the finite element discretization to predict as well static 
as flutter behaviours. In a second part, results using eigenvalue analysis and direct time 
integration are exposed to better understand the flutter phenomenon. A coupled finite 
element fluid-structure model is then presented in the third section. It is based on Pa­
rallel Virtual Machine routines in order to establish a "message-passing" between two 
codes, one exclusively dedicated to fluid behaviour, the other for dynamical struc­
ture behaviour. In a fourth and last part, the latter coupled model is used to validate 
the stability model in conducting calculations on an overexpanded rocket engine with 
dimensions of class Vulcain. 

2. Model for aeroelastical stability 

In this section, we present a general dynamic stability model leading to Pekkari's 
model and an extended finite element model. 

2.1. Dynamic stability 

Set a structure in equilibrium for a given configuration Co be subjected to a per­
turbation load. The dynamic equilibrium is defined by: 

[1] 

where m is the local mass of the system, f~(w0 ) + lrn(w) and Jg(w0 ) + f:(w) are 
respectively the internal and aerodynamic forces. Each of them is composed of an 
equilibrium part indiced by "o" and a perturbated part. The terms lrn(w) and h(w) 
express all modifications of the equilibrium case. The terms w and w are respectively 
the local displacement of the structure in response to external disturbances and cor­
responding perturbated acceleration. For the particular case of equilibrium, we have 
then: 

!~ +!~ =0. 

A finite element discretization of the Equation [ 1] gives: 

[M]{W} + [K]{W} = {F(W)}, [2] 
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where [M] and [K] are respectively the mass and stiffness matrices, {W} the global 
displacement vector on each node of the structure mesh, {W} the corresponding ac­
celeration and { F} the global forces vector resulting from the aerodynamic coupling. 

The aerodynamic force vector { F(W)} may be written in the following form: 

{F} = [K*){W}, 

where [K*] is an unsymmetrical matrix. 

Equation [2] then becomes: 

[M){W} + ([K]- [K*]){W} = {0}. [3] 

The stability of Equation [3] may be obtained by analyzing its natural frequencies. 
For a linear system with regards to [M], [K] and [K*], we may represent the solution 
under the following decomposition form: 

{W(xi, t)} = {W(xi)}emt, 0 : natural frequency, 

it leads to the following free vibration model: 

(([K]- [K*])- 0 2 [Ml) {W} = {0}. [4] 

For given matrices [M] and [K], the stability of the system is governed by the aerody­
namic matrix [ K*] which depends on the intensity of the aerodynamic load. 

The system is statically unstable for [K*] such as it leads to 0 = 0 and then: 

([K]- [K*]) {W} = {0}. 

The system is dynamically unstable if [K*]leads to complex conjugate values of 0 
such as: 

(([K]- [K*])- 0 2 [Ml) {W} = {0}, with 0 =a± ib. [5] 

The appearance of flutter is thus related to coalescing between two frequencies with 
the appearance of negative damping (imaginary part b of n). 

If one obtains the eigen-space using: 

Equation [4] expressed in the modal space {Xi} becomes: 
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with: 
{W} = [X]{v}; [K*] = [X]T[K*][X]. 

The matrix [X] corresponds here to the set of the eigenvectors {Xi}. 

A simplified version of frequency modification of Wi by aerodynamic coupling is 
obtained from Equation [6]: 

[7] 
where only the diagonal terms of [K*] have been retained. With this assumption, it is 
thus possible to estimate only static instability. Such a model cannot represent flutter 
instability for reasons we will explain later. 

2.2. Application to a rocket engine: Problem overview 

We are interested in studying the global stability of a Laval nozzle (supersonic 
convergent-divergent). A representation is given in Figure 1: 

Convergent 
~ 

: : 

~ l- --------------------------------------------- _[_ -, Symmetry axi·s 
I •:• • • • • •- •- • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •; • I 

:: . : 
'' :: 

' •--------------------------------------------------· 

Figure 1. Laval nozzle configuration 

What follows is based on the approach proposed by Pekkari [PEK 93] to study the 
aeroelastical stability on a rocket engine. This is described as follows: 

-A Laval nozzle in an initial steady state configuration (Figure 1) is subject to 
an overexpanded flow condition. A separation shock develops and finally stabilizes 
(Figure 2) accordingly with a modified structure state, 

:~------------------------ ---------------,-

Steady state deformed nozzle 

Figure 2. Half nozzle in equilibrium with pressure forces 
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- Simultaneous changes on the shock location and the nozzle wall geometry may 
lead to a fluid-structural coupling (Figure 3) . 

on a modal basis 

Non-balanced deformed nozzle 

Figure 3. Fluid-structure coupling for a non-equilibrium state 

For the case where wall displacements are "small" enough for a linear theory to apply, 
the time evolution of the global structure may be considered as a linear combination 
of modal deformations associated to particular frequencies, deformations that may be 
not necessarily equal to the natural ones. 

We propose to study the influence of the initial position of the separation point (lo­
cation of the compression shock) on the overall global stability of the flexible nozzle. 

2.2.1. Hypotheses 
The hypotheses are as follows: 

- The system is considered as quasi-steady with respect to the flow because time 
scales between the fluid and the structure are distinct from several orders of magni­
tude: tlt fluide < < fltstructure · 

It permits to simplify the fluid flow model by neglecting the inertial effects; 

- The geometry is two-dimensional with a unit width; 

- The fluid is assumed perfect, compressible and inviscid. The pressure profile 
p00 (x) along the nozzle is obtained using analytical relations for isentropic flow with 
sections: for given section profile A(x) and chamber conditions in pressure and tem­
perature (respectively Pc and Tc). it is then possible to calculate static pressure Poo (x) 
and Mach number M 00 (x) as functions of the section A(x) with analytical relations 
[CAN90]. 
From this analytical pressure profile, a normal shock is considered at location Xsep by 
using a separation criteria such as Schmucker criteria [SCH 84]. 
The global wall pressure is thus defined by: 

{ 

( ) PooU! Tsaw 
Poo X + _I + ... , X < Xsep, v M2 -1 s 

p(x)= ( )- oo ·h Psep_0304 p Xsep - Psep. sue as -- - . ' . '... X = Xsep. 
Pa 

Pa, X> Xsep, 

[8] 
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where Poo ( x) is the static pressure resulting from the flow expansion and Pa the exter­
nal pressure. The variables p00 , U00 and Moo are respectively the density, the stream­
wise velocity and the Mach number of the fluid where the static pressure is equal to 
Poo(x). 
The second term in the first equation in [8] is based on a simplified form of the piston 
theory [ASH 56], where Wn represents the normal displacement of the wall. 
Beyond the separation point located at Xsev• the pressure is taken equal to the ambient 
pressure Pa· 
Eventually, the pressure in the area covered by the separation point is taken to Psev• 
x~ep being the initial position of the separation shock; 

-The stressed structure being initially in equilibrium (Figure 2), the solicitation 
term will be calculated from the forces resulting from the motion of the separation 
point between the initial and current positions [PEK 93]: 

f:(x, w) = n(pa- Psep)(JH[x- Xsep]-JH[x- X~ep]), 

where 1H function acts as a filter given by the following law: 

JH[z] = { ~: if z < 0, 
if z ~ 0. 

[9] 

It permits to consider a non-zero solicitation term on the area covered by the shock 
and equal to zero elsewhere, such as: 

Introducing the first order expansion around x~ep of Poo (x) in the relation [8], it leads 
to: 

( ) ( 
0 ) ( 0 ) (dpoo) PooU'!, 8wn I P X :::::i Poo X sep + X - X sep -d + -{) + ··· 

X 0 M2 -1 8 0 
x,ep V oo x.,ep 

For x = Xsep• this finally leads to the relation: 

0 p00 U'!, 8wn I 
Xsep- Xsep = (d ) -8 ' 

Poo JM2 - 1 8 x~.P 
dx xo 

00 

sep 

by assuming that: p(Xsep) :::::i Poo(X~ep) :::::i Psep· 

By using this previous expression, we finally obtain the aerodynamic matrix [K*]: 

<oW>[K*]{W} =<oW>{F} = ~x:~~p ow.n(pa- Psep)dS, 

'W ( ) PooU! ::::i<u > Pa - Psep ( ) 
_ dpoo JM2 -1 

dx J oo 
(nx) 8Wn I 

ny {) ' 
0 8 J 

J 

[10] 
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where J denotes the nodal indice corresponding to the separation point and < 8W > 
is the nodal test function vector used in a finite element approach. 

2.2.2. Aeroelastic stability model 

The purpose of the stability analysis is to verify if the structure is stable for: 

-A given flow situation i.e. p00 (x), M 00 (x), U00 ; 

P d. .b . ( ) Pa d dpoo - ressure tstn utton parameters: Poo x ; -- an -d ; 
Psep X 

- An initial separation shock position at x~ep . 

The Pekkari's model is based on Equation [6]. We recall that this latter has been 
obtained after having applied a projection of the global solution on the eigenmodal 
vectors base [X], such as: {W} = [X]{v }. 

If we only retain the diagonal terms of the perturbated matrix [K*] in Equation 
[6], it leads to the expression [7] given in [PEK 93]: 

2 2 ( PooU! k I aX~ I 
Dk = wk - Pa - Psep) ( d ) Xn J - 0 , [11] 

-~ _1M2 -1 s J 
dx J V oo 

where nk and wk are respectively the forced and the natural pulsation associated to 
the kth mode of the structure. 

The term X~ IJ denotes the normal displacement at J node of the kth natural 
mode. We deduce from the previous equation that according to the second term am­
plitude in the right part of the equation, Dz may become null and thus express a static 
instability such as buckling. 

However, only statical instabilities may be deduced form this equation. Dynamical 
ones appear by coalescing between two modes associated to two complex conjugate 
eigenfrequencies. It thus requires: 

-Complete form of the unsymmetrical matrix [K*] to allow eigenfrequencies be­
coming complex and conjugate; 

- Coalescing effect between two eigenfrequencies also affects the corresponding 
eigenvectors. This point explains why the Pekkari's model is unable to predict such a 
phenomenon because of the projection of the solution on a constant eigenvectors base 
[X]. Moreover, there is no particular reason that coalescing eigenvectors be a linear 
combination of natural ones. 

2.2.3. Finite element analysis model 

Based on the general instability model [5] and the expression of [K*] given by 
[10], we propose the following approach to study the stability for the most general 
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case (static and dynamic): 

-For a given initial shock position x~ep• corresponding to a particular chamber 

I P d 
. . . . Pa 

pressure va ue c an a given separation cntena --: 
Psep 

-Identify the flow parameters: p00 (x), M 00 (x), ... ; 

-Identify the pressure parameters: p00 (x), d::; 
-Calculate the corresponding aerodynamic matrix [K*] by Equation [10]; 

- Obtain the eigenvalues n~ of [5] by modal analysis. 

- Choose next shock position according to a new chamber pressure value. 

We propose in the next section to determine the evolution of the natural frequencies 
in regards with the shock position for a given nozzle configuration. Three different 
calculations will be conducted with: 

- Pekkari's simplified model based on Equation [11]; 

-Extended model for flutter analysis with [5]; 

- Direct time integration in using expression [ 10] for the solicitation term. 

2.3. "Analytical" validation of the stability model 

The previous model can be tested by directly introducing the solicitation term gi­
ven by the Equation [10] in a structural analysis code. The objective is to verify the 
instabilities predicted by the model for given material properties. 

The structure code is based on a finite element method. It solves the system [2] in 
using a Newmark scheme for the time discretization. The only modification consists 
in directly applying the solicitation [ 10] after extracting nodal displacements of the 
previous time step. 

The domain of calculation is illustrated on Figure 4: 
y,w 

Flexible zone : 2.60 m 

Force 
I 

- - - - - - - - ~ - - - - - - - - - - - - - - Axis 

1.17 m 

Throat 

Figure 4. Model for flexible nozzle 
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It consists on a two-dimensional geometry whose the dimensions correspond to a Vul­
cain class engine. However, in order to reduce two-dimensional effects, the profile of 
the nozzle has been chosen straight instead of parabolic. Only the divergent part is 
supposed flexible and is meshed using two-nodes beam elements. The mesh is made 
of 40 uniformly distributed nodes. 

The material properties of the structure are as follows: 

Young modulus Thickness Poisson coefficient I Mass density I 
o.o 1 2ooo kgfm3 

1 

Concerning the fluid properties and characteristics, we have: 

Range for Pc [bar] Tc [K] I Range for shock position [m] I Pa/Psep I Pa [bar] I 
[0.5 - 6.5] 24oo 1 [o.1 - 2.55J 1 15.5 1 ws I 

The value given to the separation criteria (pa!Psep) has been obtained from previous 
two-dimensional fluid calculations on the same domain. One may also show that sta­
bility results are very little dependent on the value given to this separation criteria. 

The results obtained from the direct calculation of the Equation [11] (after a pre­
vious modal analysis for obtaining [X]) are presented in dashed lines on Figure 5. 
The results obtained from the resolution of [5] for each nodes corresponding to an 
initial shock position, are also presented on Figure 5 in continuous lines. 

We can make the following observations: 

-For an initial position surrounding Xsep ~ 0.8 the first natural mode collapses 
with the zero-axis expressing a buckling effect. This behaviour is also reported in 
using the Pekkari's model; 

-For Xsep belonging to the range [1.4 - 1.8], the first two natural modes collapse 
in complex conjugate eigenfrequencies. This expresses a dynamical instability similar 
to flutter. This case is not observed with Pekkari's model for which all frequencies 
remain real. It is due to the fact that for this model, eigenvectors used for modal pro­
jection are supposed unchanged and prevent this instability to appear. However, both 
models remain close of the global trend. 

REMARQUE.- For a smaller Young modulus (results not shown here) that streng­
thens the collapsing modes effect, we observe for the Pekkari's model that the first two 
natural modes pass each other with no mutual interaction as a swapping-modes. 
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90,0 

'N 
t; 70,0 

"' ·g 60,0 

~ 50,0 
tt 

Mode 1 : present model solution 
Mode 2 : present model solution 
Mode 3 : present model solution 
Mode 1 : Pekkari's solution 
Mode 2 : Pekkari's solution 
Mode 3 : Pekkari's solution 

D Complex conjugate value 

4o,o r------
3o,o 

20,0 

Separation point position (m) 

Figure 5. Analytical profiles for the first three modes 

For the third calculation that corresponds to an the analytical validation of this 
model, a first step consists in introducing the solicitation form [ 1 0] in a structure code 
dedicated to dynamical simulation. The calculation has been conducted in applying 
the solicitation on several nodes to obtain the results presented on Figures 6, 7 and 8. 

For each case, we represent on the upper graph the temporal evolution of the ra­
dial displacement taken at the considered point. The lower graph is the spectrum of 
the previous signal obtained from a "Fast Fourier Transform" procedure. The time step 
has been taken equal to ~ts = 1.10-4s and 2000 steps have been conducted. 

These results show the frequencies deviation forecasted by the stability model and 
confirm the coalescing effect between the first two modes and its exponential growing 
typical ofthe dynamical instabilities for the case Xsep = 1.54 m. 
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t... rr=z LSZS;;d, ' .. .. .. .. .. . .............. ., 
Time (s) Time (s) 

Figure 6. Results for Xsep = 0.45 m Results for Xsep = 0.85 m 
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Time (s) Time (s) 

Figure 7. Results for Xsep = 1.10 m Results for Xsep = 1.54 m 
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Figure 8. Results for Xsep 1.94 m Results for Xsep = 2.20 m 
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However, these results do not constitute a complete validation because of the in­
troduction of the particular form of the solicitation. In the following sections we will 
attach ourselves to validate the stability model in a more objective way in taking two 
different codes respectively dedicated for fluid and structure calculations and letting 
them proceed to their own coupling. 

3. Numerical model for fluid-structure calculations 

The coupling model considered in this section has been previously developed in 
[LEF 98], [LEF 99c] and [LEF 99b]. 

It consists of two numerical codes, one exclusively dedicated to fluid calculations, 
the other for structural dynamics. 

Here, we briefly expose characteristics of both codes: 

- Structure code: 

- A Total Lagrangian Formulation is employed to calculate the deformations 
of a flexible structure under large displacements hypothesis [DHA 95a]; 

- The resolution of the resulting non-linear system is obtained using a 
Newton-Raphson iterative method [DHA 95c], [AMM 96]; 

- Two finite elements are proposed in geometrical non-linearities assumptions, 
a two-dimensional two-nodes beam element and an axisymmetrical shell element 
[LEF 99c], [LEF 99b], [DHA 95b]; 

- An implicit Newmark scheme is used for temporal resolution of dynamical 
terms. 

- Fluid code: 

- The fluid is supposed compressible and inviscid and the flow is considered 
two-dimensional or axisymmetric; 

- An explicit Lax-Wendroff scheme is used for temporal discretization 
[LAX 60] with a shock capturing technique called Flux Corrected Transport 
[BOR 97] in zones where positivity is not ensured (shocks); 

- In order to ensure geometrical compatibility between both fluid and structure 
meshes, and to avoid excessive mesh distortion, a dynamic mesh technique is used to 
totally adapt fluid mesh to wall deformation. A geometrical consistency law is applied 
to the dynamic mesh in order to ensure independency of the fluid variables in regard 
with the mesh motion [FAR 96], [LEF 99c]; 

-Stability is ensured using a CFL criteria [COR 92]. 
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-Coupling: 

- In order to preserve modularity aspects of each code taken separately, the 
coupling is done in establishing a "message-passing" between solvers by using parallel 
tools offered by PVM (Parallel Virtual Machine) routines [GEl 94], [KES 97]; 

- The exchanged data during calculations consist of the wall pressure distri­
bution and time step from the fluid code to the structure one, and the update of the 
flexible boundaries common to both codes from the structure to the fluid; 

- The characteristic times being different by several orders of magnitude bet­
ween both codes (implicit structure code and explicit fluid code), the updating of wall 
conditions is made using a subcycling coupling scheme and thus carried out every 
Nf/s fluid steps; 

- Several subcycling schemes may be employed depending on the required ac­
curacy (with CPU considerations) and the type of common wall boundary at the inter­
face. Usually, kinematic compatibility and energy conservation are not both ensured 
simultaneously. 

3.1. Structure model 

The variational form of the equilibrium relations may be written as follows: 

with a the Cauchy's stress tensor, 1: and 1: the external solicitations respectively sur­
facie and volumetric, c5;_ a test function and i1 the displacements vector. 

In the case where small perturbations hypothesis is not verified any more, a Total 
Lagrangian Formulation [DHA 95a] is used to express the weak form on the current 
configuration V(t) and S(t): 

where: 

- p0 : density on (V 0
, 8°) configuration, 

- c5;,: test function, 

- cS£91: variation of Green-Lagrange deformation tensor, 

- f;o, f;o: external solicitations on co, 
- S: Piola-Kirchhoff stress tensor (2nd species). 

The Green-Lagrange deformation tensor is determined in the general way: 

ox 
where :F = a- , xo [13] 
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with :F the transformation gradient tensor and I the unity tensor. 
The stress and deformation tensors are related using a linear elastic behaviour: 

s = IH£91, 

with IH the property matrix. 

A finite element technique is used for space discretization. It leads to the non-linear 
system: 

{
fJ2u} [M] fJt2 + {fint(U, t)}- {!ext}= 0, [14] 

obtained after assembling all over the mesh elements where: 

• [ M]: global mass matrix, 

• { u}: nodal displacements vector, 

• {lint( u, t)}: non-linear internal efforts, 

• {!ext}: external forces resulting from aerodynamical coupling. 

The element used in this paper is a 2-nodes beam that will not be presented here. We 
invite interested readers to consult the references [LEF 98], [LEF 99c]. 

A Newmark scheme is then used for the temporal discretization. An iterative 
Newton-Raphson is used to solve the non-linear system given by [14]. It means the 
calculation of a tangent matrix given by the variation of the weak form [12] and ob­
tained as follows: 

After each time step, the geometry is updated, the deformations and strains are all 
calculated from initial configuration with regards to the Total Lagrangian formalism. 

3.2. Fluid model 

The conservation laws for conservative quantities of compressible and inviscid 
flow on a two-dimensional moving domain may be written as [FAR 96], [LEF 99c]: 

[16] 

where: 

• {U}: conservative variables, 

• {Fx} = {Fcx}- Wx{U}: convective flux along x-direction, 

• {Fy} ={Fey}- wy{U}: convective flux along y-direction, 
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with: 

(
p) ( pu) ( pv) U - pu F - puz + p F - puv 

{ } - pv ' { ex} - puv ' { cy} - pv2 + p ' 

pe (pe + p)u (pe + p)v 

with p the mass density, u and v respectively the components of fluid velocity in (x, y) 
system, e the total energy per unit of mass and p the local pressure given by the law of 
perfect gas: 

P = p.r.T = ('y- 1)(pe- 1/2p(u2 + v2
)), 

with the temperature T, 'Y = 1.4 and r = 287u.SI. 
The variables ( Wx, Wy) represent the local velocity components of the domain. 

One may obtain a weak form by integrating by parts: 

W1 = aa { < 6U > {U}dV- { (< 6U,x > {Fx}+ < 6U,y > {Fy})dV 
t lv(t) lv(t) 

+ J < 6U > ({Fx}nx + {Fy}ny) dS = 0, 
Js(t) 

[17] 

where < 6U > is a test function on the reference space and where ( nx, ny) are the 
components of the external normal vector at the boundary. 

3.2.1. Geometrical consistency 
We suppose that mesh displacement within the interval (t, t + Llt) is defined as 

follows: 
~ ~ p ~ p+l 

XJ(7) = (1- ¢(7))XJ (~,17) + ¢(7)XJ (~,17), 

leading to: 
~ . ~ p+l ~ p 
w(~,17) = ¢(XJ - x, ), 

with ¢(7 = t) = 0 and ¢(7 = t + Llt) = 1 and(~, ry) are reference coordinates for a 
two-dimensional model. 
The Jacobian matrix is obtained in a general way: 

[J]T = (F(7)] = [a:! a~! l = ((1- ¢(7))[FJP + ¢(7)[FJP+l, 

and the determinant is quadratic in ¢ for two-dimensional cases: 

[18] 

For a fixed mesh, the Lax-Wendroff finite element model satisfies the consistency 
and stability conditions (see [BOU 93]). For a moving mesh, it is essential that uniform 
flow field be exactly conserved (according to the so-called geometrical consistency 
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law) for any moving mesh. If we consider a uniform flow that corresponds to constant 
{U}, the Equation [16] becomes for each component of {U}: 

{)J JD' .... 0 [19] at-. ww=. 

In weak form, we have: 

{)
{) { 1/JdV = { '!f;DivwdV, 
t lv J~, 

where 1/J is a test function representing each component of { 8U}. For geometrical 
consistency, it is then essential this relation be exactly satisfied by the discrete model. 
The time integration leads to: 

using [18] 

[20] 

The right term in the last equation is linear in ¢( T). The space integration is gua­
ranteed by standard finite element integration. Since the variation is linear in ¢( T), 
the midpoint rule integration is sufficient to integrate exactly this last term. In our 
case, ¢( T) has been chosen linear in T and then the integration point corresponds to 

¢(7 = !) = !· 
Recalling that we are interested in integrating Divw, it leads to: 

{ 1/JdV- { 1/JdV = 6.t { '!f;DivwdV, 
lvr>+l lvp lvr>+l/2 

that corresponds to an integration over the domain located at p + 1/2 and defined by 

.... p+l .... p x/+1/2 = x, +x, 
2 

The corresponding mesh field velocity is calculated as follows: 

.... p+l .... p 

wvH/2 -i- x, -x, 
- I- 6.t 

After discretization of the weak form [ 17] and applying the previous midpoint 
integration rule, it leads to the system: 
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that can be written in an incremental way: 

where: 

• [M]P, [MJP+1 : global mass matrix at instants t and t + ~t; 
• {~U} = {U}P+1 - {U}P: incremental solution; 

• {R}P+112 : global residual vector obtained from {U}P+112 ; 

• {R}: modified residual vector due to [M]P and [MJP+l. 
To solve [21], we perform about 2 or 3 Jacobi iterations using diagonalized precon­
ditioned mass matrix (good condition number). Thus, the solution process becomes 
very efficient. 

A linear triangular element is used for space discretization and we invite interes­
ted readers to consult references given in [LEF 98], [LEF 99c] for the finite element 
description and additive informations. 

In high gradient zones, the non-positive nature of Lax-Wendroff [LAX 60] scheme 
may produce spurious oscillations. The idea behind stabilization techniques (Flux Cor­
rected Transport in our case [PAR 85]) is to consider a first order scheme in high gra­
dient zone and to conserve higher order Lax-Wendroff scheme elsewhere. 

Inflow and outflow boundary conditions are solved using characteristics theory 
[COR 92]. A slip condition is imposed on solid wall boundaries and symmetric axis. 
For moving wall boundaries, the normal fluid velocity is imposed equal to the normal 
component of the wall velocity. 

The mesh velocities are obtained using linear interpolation in both direction as 
shown on Figure 9: 

Figure 9. Mesh adaptation 

- For each interior moving node, locate its radial projection on flexible boundary 
and search the two neighboring nodes whose velocities are known, 'fiiUP and wdown; 



746 Revue europeenne des elements finis. Volume 9- n° 6-712000 

- Calculate gwProj ect of projected point by using linear interpolation between 'liJ"P 
andwdown; 

- Obtain interior node velocity by linear interpolation between wProject and zero­
velocity on symmetrical axis. 

3.3. Continuous coupling scheme 

A coupling scheme is a list of operations to execute in a given order between two 
codes in order to permit the message-passing of common data. 

A complete cycle takes place as follows: 

- The fluid transmits to the structure the pressure profile obtained at time ( n); 

- The structure code determines the displacements solution (Xn+l, yn+l) at ins-
tant ( n + 1) obtained from pressure data corresponding to instant ( n); 

- This structure configuration is transmitted to the fluid code i.e. displacements 
and velocities of all nodes denoted by (Xn+l, yn+l) and (.Xn+l, yn+l ); 

- Fluid variables are then advanced of N 118 fluid time steps in order to reach the 
new structure deformation; 

- Back to step 1. 

The boundary conditions are: 

Xlluid(t) = Xstructure(t) \:It at the interface, 

Xlluid(t) = Xstructure(t) \:It at the interface. 

The geometric consistency law imposes a mesh velocity given by: 

X n+l xn 
· n+l/2 I - I 

XI = ' ~ts 

[22] 

[23] 

where X/+1 and Xj denote the fluid mesh states respectively at times ( n) and ( n+ 1). 
This choice must be compatible with the Newmark temporal discretization scheme 
used in the structure solver. Thus, we may show that if the fluid mesh velocity must 
be constant between two fluid time steps, it must be re-calculated after each fluid time 
step. This is due to the Newmark scheme that considers a constant average accelera­
tion between two structure steps leading thus to a linear evolution of the velocity field 



Aeroelastic Stability of a Rocket Nozzle 747 

over the N 11 s fluid time steps. This is illustrated on Figure 10: 

. 
X 

~ 1 s f\+ 
m=l, ... , N -1 

f/s 

Figure 10. Compatibility between fluid and structure velocities 

t 

We may prove [PIP 95a] that the total energy exchanges between fluid and struc­
ture between two successive updates of the structure is given by: 

En+l -En= 6.E1 + tl.Es 

~ [Nl ~ Pie,ip- Pi~ ] {(Xn+l_Xn)nx + (Yn+l_yn)ny) 
ie=l lis ip=l .._,..., ~ 

Fluid Structure 

f:: 0, 

where Pie,ip corresponds to the average pressure on the ieth element at fluid time step 
(ip), Lis the element length, nelt the total number of elements and (nx, ny) the nor­
mal vector components. The term Pi~ corresponds to the pressure value transmitted 
by the fluid code to the structure one and constant during the N 118 fluid time step. 

We observe for this case that the energy conservation is not ensured and is pro­
portional to the difference between two successive structure states. Previous studies 
[LEF 99a] on the flutter test-case has shown that for N1 Is > 5, results may become 
inaccurate! 

Moreover, we may prove that action-reaction principle is not even more ensured 
between fluid and structure where the sum of each one that should collapse to zero is 
effectively given by: 

Force (Fl.-> St.)= -tl.tsPie, 

and then: 

tl.ts Nil• -
Force (St. ->Fl.) = N L Pie,ip, 

lis ip=l 

=> Force (Fl. -> St.)+ Force (St. ->Fl.) f:: 0 ! 

[24] 
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This is the reason why this scheme will not be used for this study and we will 
prefer the discontinuous scheme exposed on the next section. 

3.4. Discontinuous coupling scheme 

By opposition to the continuous scheme, the discontinuous scheme is not develo­
ped to ensure kinematical compatibilities between fluid mesh and structure mesh such 
as those given in Equation [22]. 

The idea is that the pressure distribution transmitted by the fluid to the structure to 
calculate displacements from time tn to time tn+l is taken at time tn. Thus it intro­
duces a discrepancy between deformed state and solicitations. 

One way to get around this problem is to relax the matching condition on the fluid­
structure interface. This idea may seem surprising at first since the coupling precisely 
carries out at this interface. But we may prove that if we ensure that the non-matching 
fluid and structure interfaces remain close during the calculation, the results will be 
more accurate and dependencies with regards to N 118 really weak. This scheme is 
inspired from works of S. Piperno essentially referenced in [PIP 94], [PIP 95a]. 

A complete cycle takes place as follows (Figure 11): 

- The structure code determines a first estimation of the displacements solution 
(Xn+l, yn+l) at instant ( n + 1) obtained from previous pressure data; 

- This estimated structure geometry is transmitted to the fluid code i.e. dis­
placements and velocities of all nodes respectively denoted by (Xn+l, yn+l) and 
-n+l -n+l ex ,:Y ); 

-Fluid variables are then advanced of Nf/s fluid time steps in order to reach the 
estimated structure deformation; 

-Then the fluid code transmits a pressure profile averaged on all N1 Is time steps; 

- The structure code thus calculates the corrected solution from the new pressure 
profile corresponding at instant ( n + 1): ( xn+l' yn+l); 

- Back to step 1. 

Concerning the boundary conditions, we will impose a constant wall velocity du­
ring the N 118 fluid time steps and calculated as follows: 

[25] 
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where X/+1 and X/ denote the estimates of fluid mesh states respectively at 
times ( n) and ( n + 1). This choice corresponds to the one imposed by the geometric 
consistency law. 

n+'l n+l 
s s 

n+'2 n+2 
s s 

/ : Calculation / : Message Passing 

G) Estimated configuration (in lstep): S 
1 

from P 
n+ n 

0) Transfer St. ->Fl. de s 
n+l 

G) N f/s fluid time steps 

@ Transfer Fl. -> St. of pn+l 

@ Corrected configuration (in 1 step): Sn+l from P n+l 

Figure 11. Discontinuous coupling scheme 

The present scheme is more conservative than the previous one in spite of the non­
compatibility between common interfaces. 

Indeed, the action-reaction principle expresses as follows where the action of the 
structure on the fluid is still the same: 

l::l.ts Nil• -

Force (St. ->Fl.)= ~ L Pie,ip· 
f /s ip=l 

Concerning the force applied by the fluid on the structure, the major difference 
results that the pressure distribution now results from the same summation for the 
fluid: 

l::l.ts Nil• -
Force (Fl.-> St.)=-~ L Pie,ip· 

f/s ip=l 
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Thus, the conservation force principle is now exactly verified by this new scheme. 
We may also prove [PIP 95a] that the total energy exchange may express itself as 
follows: 

with: 

idem forY. 

The energy variation is now a function of the difference between estimated and 
corrected solutions of the structure at the same time and not any longer between two 
successive configurations. This scheme has been validated on aflutter case to finally 
obtain similar results as well for N 1 /s = 5 as for Nf/s = 100 [LEF 99a]. 

4. Numerical validation of the stability model 

This section is dedicated to the numerical validation of the stability model by 
coupling two different codes, one for the structure, the other for the fluid. Precisely, 
we intend to validate the solicitation choice used in the model by using a numerical 
scheme developed with no particular consideration for this choice and recovering pre­
dicted results. 

The domain considered here is the same as the one given in a previous section as 
well the geometry and the material properties. The fluid mesh is composed of 19750 
nodes and 38827 elements (triangle of w-2 m). 

The structure mesh is directly extracted from the boundary of the fluid mesh to 
obtain conformity between both. It gives a mesh composed of 297 nodes. 

Several cases have been considered for the initial position of the compression 
shock. This position being directly influenced by the value of the chamber pressure, 
positions have been obtained from 0.70 m to 2.20 m corresponding to a chamber pres­
sure changing from 2.4 bars to 6 bars. Retained choices are shown on Figure 12 in 
comparison with the solution for mono-dimensional case. The wall pressure distribu­
tion resulting for many of these cases are shown on Figure 13 where the pressure jump 
due to the shock is well defined. 

A coupling calculation, for a given chamber pressure value, is conducted along the 
following steps: 

-A fluid calculation is conducted starting from no-flow conditions to converge to 
overexpanded stabilized flow. For this step, the structure is considered as rigid; 
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-The flexibility is given back to the structure and coupling may start. During the 
coupled calculation, velocity components and wall pressure are extracted every other 
ten nodes and stored for post-treatment. The number of fluid steps is 1.105 ; 

- At the end of the calculation, all signals in displacement and pressure are treated 
with a Fast Fourier Transform algorithm for modal analysis. 

The CFL condition for fluid stability gives a fluid time step of: !:lt f = 2. 7 10-6 s. 
The subcycling process is used to update the geometry configuration with N 1 /s =50. 

Only linear terms of the finite element used for the structure have been retained 
in order to ensure consistency with the linear hypothesis of the stability model. The 
iterative process based on tangent matrix is however used, as for the general case of a 
geometrical non-linear problem. 

For the coupling calculation, the objective is to test the stability of a given initial 
configuration. 

Then, in order to consider the initial structure as an equilibrium configuration, 
the initial pressure distribution is extracted at the beginning of the calculation and 
subtracted to the current pressure profile transmitted to the structure code during each 
updating step. 

This procedure has the advantage to avoid the determination of a deformed state 
in equilibrium with respect to the pressure distribution and to be exactly in accordance 
with the Equation [9]. 

We show on Table 1, the displacement and pressure spectra for several test cases 
indicated by the initial position of the compression shock at the bottom of each graph. 
The x-axis is scaled from 0 to 150Hz. 

We can make the following observations: 

- The first natural peak associated to the first natural mode undergoes a significant 
shifting in frequency depending on the initial location of the compression shock. For 
the graphs from the 5th to the gth columns, we do not observe single peaks any more, 
but a wide range of frequencies, typical of coalescing modes; 

- The 2nd column is related to the lowest frequency taken by the first mode, the 
value is around 3 Hz; 

- We may also observe that peaks in frequency observed on displacement spec­
trum are clearly induced by pressure variation for the case where values do not cor­
respond to any natural frequency. 
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Figure 12. Chamber pressure versus shock position 
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For the cases corresponding to dynamical instabilities, the displacements rapidly 
reach order of magnitudes greater than the structure thickness. At this point, the non­
linear terms become significant for the structure and must be considered. For all stable 
cases, displacements are of an magnitude order lower than the thickness (see Figure 
14). Stable cases show higher frequencies than unstable cases essentially governed by 
only one coalescing frequency. 

0,0005 ,----,----,,----,----,----,----,---,---,-..,--.....,.-,-.....,.-,--,-,----,-,----,-,----., 

~0,0004 

E-0,0003 

iil 0,0002 
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g ~ ...... ~~ 
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ez::-0.0004 
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t: E o.oo2 
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0 0,025 0,05 O,D75 0,1 0,225 0,25 

Time(s) 

Figure 14. Nodal displacement evolutions for stable and unstable cases 

The global set of results are shown on Figure [ 15] in comparison with the analyti­
cal results. We can make the following observations: 

-No calculation has been conducted for a shock position lower than 0.75 m cor­
responding to a chamber pressure lower than 2.3 bars. Indeed for these cases, the 
shock never stabilizes itself and oscillates avoiding convergence of the fluid flow; 

- The buckling effect has not been observed, the lowest frequency reached by the 
structure being about 3 Hz. This may be explained because two-dimensional effects 
are the most important in this region as shown with the difference of chamber pro­
files between mono and two-dimensional profiles, as illustrated on Figure 12. But the 
decrease of the first frequency is significant enough to hope that different material 
properties may be able to develop a numerical buckling during a coupling calculation; 

- We clearly see that the first two natural frequencies tend to collapse in the region 
forecasted by the model. However, this range of dynamical instability seems to be wi­
der than in the theory. For these cases, the structure undergoes an oscillating behaviour 
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associated to an exponential growth leading to displacements of the order of 0.20 m. 
It really corresponds to flutter phenomena; 

-The frequency shift occurs essentially on the first mode and on the second one 
but with a smoother effect. Concerning the third and fourth modes, the shift is almost 
inexistent in comparison with the model. We may explain this with the accuracy of 
the fluid scheme that is second order at most. In the shock, we have a first order 
approximation to stabilize the solution. This is done in adding numerical viscosity 
that may be the explanation of the dissipative effects on the frequency-shift for higher 
modes. 

'N 
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Figure 15. Confrontation between analytical and numerical results 

On Figure 16, we display the location of the order of approximation for the fluid 
code. This case corresponds to an initial shock position in 1.33 m. We clearly observe 
the thick band of first order approximation induced by the shock capturing technique. 

On the following Figures 17 and 18, we show the contours for pressure field res­
pectively after the beginning of the coupling then at the end. The last one clearly shows 
the need to consider non-linear terms for taking into account large displacements. An 
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instability will always appear under linear assumptions but will be next controlled by 
non-linear terms. 

On Figures 19 and 20, we represent the nodal pressure and displacement beha­
viours for the calculations corresponding to Xsep = 1.74 m and Xsep = 2.25 m. For 
each variable, the results are displayed in three graphs, respectively for nodes upstream 
the shock position, nodes covered by the shock displacement and nodes downstream 
the shock (from top to bottom). 

The Figure 19 corresponds to an unstable behaviour that is confirmed with the 
pressure magnitude and the pressure jumps detected by the nodes swept by the shock 
(middle graph). The magnitude of pressure jumps is about 85000 Pa and corresponds 
to the ones measured on the parietal pressure profiles shown on Figure 13. 

The displacement magnitude rapidly reaches large values in a very short time. 
Several nodes are concerned by the shock displacement that is important, since si­
gnals are extracted each ten nodes, the distance between each signal-point being of 
0.1 meter. We may observe correlations between pressure and displacements for nodes 
upstream the shock, corresponding to supersonic flow. Both signals clearly adopt the 
same sinusoidal form. We also observe a discrepancy between pressure and displace­
ment with a backwardness for the pressure that may be responsible of the exponential 
growth after each cycle of oscillation. 

Concerning the Figure 20, the magnitude for both pressures and displacements si­
gnals are of an order compatible with a linear stable behaviour. This time, only one 
node is attached to the shock displacement. This means that the shock remains located 
in a narrow area. We still observe the same correlations between pressure and displa­
cements for the upstream nodes. 

Now, there are figures concerning the computing times: The calculations have been 
conducted on two kind of computers. The CPU time dedicated to structure dynamics is 
about 1% for any coupled calculations. Main results are shown on the following table: 

Computer type I Iterations I CPU for fluid I CPU for structure I Total CPU I 
Pentium III 550 10000 453' 6' I 459' I 

98.7% 1.3% I -- I 
SGI R 10000 195 10000 512' 5' I 517' I 

98.95% 1.05% I -- I 

Table 2. CPU time shared between both codes 
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Figure 16. Spatial location of precision order 

<:::>0 0 Q 

Q 
0 0 

Figure 17. Pressure contours at the beginning, min.: 0.059 bar, max.: 2.113 bar 

Figure 18. Pressure contours at the end, min.: 0. 052 bar, max.: 2.113 bar 
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Time (s) Time(s) 

Figure 19. Pressure-displacements correlation for the case: Xsep = 1.74 m 

Time(s) Time (s) 

Figure 20. Pressure-displacements correlation for the case: Xsep = 2.25 m 
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The gain with the Pentium is about 20% but could be improved in using a Fortran 
version with better compilation options. 

5. Conclusion 

In this paper, a stability model for aeroelastic behaviour on an overexpanded flexi­
ble nozzle has been developed based on an improvementofPekkari's model [PEK 93]. 
The main difference between both models concerns the choice of the projection base 
used for modal superposition analysis. These models are both based on a solicitation 
expression issued from the linear piston approximation. 

The objective was to study the influence of the separation shock position on all 
the natural vibration modes. The model developed here is able to take into account 
dynamical instabilities and is consistent with Pekkari 's model that is only able to de­
tect static ones. An analytical validation was then conducted with a particular material 
properties choice that confirmed, for the retained solicitation form, the existence of 
both static and dynamic instabilities. 

In a second part, a numerical model for fluid-structure interaction was then expo­
sed with the description of two codes, one dedicated to structure, the other one for the 
fluid. A discussion followed on the choice of the coupling scheme to use. We have 
shown that the non-satisfaction of kinematic compatibility was the better way to en­
sure energy and momentum conservations [PIP 95a]. 

In a third part, the same previous validation case was then conducted with the cou­
pling model to verify the correct choice of solicitation form introduced in the stability 
models. We thus observed that the structure undergoes aflutter effect for initial shock 
position in accordance with the stability model. However, the buckling effect has not 
been observed for reasons that seem essentially related to two-dimensional effects. 
They seem to introduce significant differences between analytical and calculated fre­
quency evolution. But we observe all the same a first natural mode going down to 3 Hz. 

Both models of stability are consistent even if Pekkari's one is not dedicated to 
detect dynamical behaviours in the sense where two frequencies may collapse. But for 
three-dimensional analysis, this model is cheaper in computation cost because natural 
modes have to be determined only one time, whereas, for each new shock position, 
the developed model of this paper has to conduct new modal analysis at each time. 

We also observed that frequency shift effect essentially acts on the first two natural 
modes only, due to the dissipative effect of shock capturing and only second order for 
fluid scheme. Next works will consist in using a WENO scheme [LIU 94] for the fluid 
code in order to avoid the excessive dissipation of the FCT technique and to globally 
improve the precision order up to five. The aim will be to increase the accuracy in the 
numerical frequency shift and detect effects on higher modes. 
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In conclusion, this work seems to confirm the dynamical coupling of a flexible 
nozzle with regards to overexpanded flows. Even if experimental data are quasi-inexis­
tent, the astronautic industries express a growing interest in such a numerical study 
that seems promising to offer a better understanding of the coupling physics under­
lying aeroelasticity on rocket engines. 

These works have been partly realized with the support of computer resources 
(CRIHAN - Centre de Ressources Informatiques de Haute-Normandie) financed as 
part of article 12 of the CPIPB - Inter-regional pole of modeling for engineering 
sciences. 

The first author is currently supported and financed by CNES (Centre National 
d'Etudes Spatiales) for a post-doctoral position under the contract No 99/CNES/5652 
for studying aeroelasticity on flexible nozzle. This work is associated to a research 
group between CNES/ONERA/CNRS/SNECMA/Aerospatiale-Matra on jet flows in 
nozzle and after bodies of rocket launchers. 
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