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ABSTRACT Rocket divergents concentrate the engine thrust on a light structure. This thrust may 
provoke deformations, and these deformations may influence the jet. For analysis, we formulate 
a coupled fluid/structure/moving grid problem, which leads to a numerical model involving a 
three-field Arbitrary Lagrangian- Eulerian method offering second-order spatial accuracy. It 
employs a time-staggered procedure for global second-order accurate time-integration of the 
corresponding coupled semi-discrete equations. We present the transient aeroelastic response 
obtained with a simplified geometry of divergent when the flow condition induces shock waves 
either behind or inside the nozzle, for structural designs of small stiffness. 

RESUME. Dans les divergents de fusee, Ia poussee est concentree sur une structure Legere. Cette 
poussee peut provoquer des deformations qui peuvent influencer l'ecoulement du jet. Pour 
analyser ce phenomene, on resout un probleme a trois champs : fluide/structurelgrille de­
formable, en utilisant une formulation d'Euler-Lagrange-Arbitraire. La methodologie numeri­
que developpee est precise au second ordre en espace. Concernant le couplage tempore! des 
equations semidiscretisees, une procedure decatee est utilisee, assurant une precision globale 
du second ordre en temps. On presente Ia reponse aeroelastique obtenue avec une geometrie 
simpli.fiee de divergent pour des configurations d'ecoulement impliquant un choc, soit a l'inte­
rieur; soit en sortie du divergent. 

KEYWORDS: fluid/structure interaction, Arbitrary-Lagrangian-Eulerian formulation, divergent, 
supersonic jet, Euler equations. 

MOTS-CLES: interactionfluide/structure, formulation d' Euler-Lagrange-Arbitraire, divergent, jet 
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1. Introduction 

Any one who has examined the movie of the starting of a rocket could note how 
violent is the transient interaction of hot gases rushing out from the engine divergent. 
These jets are of high pressure and therefore fastly accelerate to a high supersonic 
regime before reaching the end of the divergent. Loads induced by supersonic flows 
on aerodynamical surfaces can lead to transient effects with sometimes flutter phe­
nomena. A well known example is the flutter of a flat panel when a fast enough 
supersonic flow is applied along it [ASH 62]. The panel instability problem can be 
already simulated by 2D calculations relying on a classical Euler model for the fluid 
flow. 

Some papers also show this kind of behavior for axisymmetric nozzles under the 
action of an axisymmetric flow [LEF 00], [LDV 00]. In that case, the excited mode is 
not one of the main modes of the nozzle structure. Indeed, for generic divergents the 
first main modes are not axisymmetric. The purpose of the present work is to consider 
non-axisymmetrical coupling between an inviscid flow and a simplified model of di­
vergent (or nozzle). Different flow configurations involving shock waves behind or 
inside the nozzle are considered, and the possibly flutter phenomenon is investigated 
in each case. For investigating the instability nozzle problem, the software developped 
at University of Colorado (Boulder) in cooperation with INRIA is used. 

The rest of this paper is organized as follows: in Section 2, we present the formula­
tion of transient non-linear aeroelastic problems. In Section 3, we summarize the nu­
merical methodology for solving the non-linear aeroelastic problem of the nozzle, and 
especially the space- and time-discretization, and the partitioned solution procedure. 
In Section 4, we present the instability nozzle problem. We describe the structure and 
flow problems, the structural eigen modes, and the transient aeroelastic simulations. 
Then we comment on the results obtained. Finally, in Section 5 we conclude th is 
paper. 

2. Formulation of transient nonlinear aeroelastic problems 

The problem of the motion of the fluid/structure interface that occurs in coupled 
aeroelastic problems is addressed by solving the fluid equations on deformable dy­
namic meshes. An Arbitrary Lagrangian Eulerian (ALE) [DON 82],[FLM 95] formu­
lation is used in order to perform the integration of the fluid equations on a moving 
mesh. The coupled aeroelastic problem to be solved can then be viewed as a three-field 
problem [FAR 95],[FLM 95]: the fluid, the structure and the dynamic mesh which is 
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represented by a pseudo-structural system. The semi-discrete equations governing the 
three-way coupled problem can be written as follows: 

[ 1] 

where t designates time, x the position of a moving fluid grid point, w is the fluid state 
vector, V resul~s from the finite element/volume discretization of the fluid equations, 
pc is the vector of convective ALE fluxes, R is the vector of diffusive fluxes, q is 
the structural displacement vector, fint denotes the vector of internal forces in the 
structure, j"xt the vector of external forces, M is the finite element mass matrix of the 
structure, M, .iJ and k are fictitious mass, damping and stiffness matrices associated 
with the moving fluid grid and Kc is a transfer matrix that describes the action of the 
motion of the structural side of the fluid/structure interface on the fluid dynamic mesh. 

3. Numerical methodology for solving coupled non-linear aeroelastic problems 

In this section, we give the main features of the numerical methods employed in 
this work for solving the coupled non-linear aeroelastic problem given by Eqs.[l] . 
For more details, the reader is invited to examine the references given in the text. 

3.1. Discretization of transient non-linear aeroelastic problems 

Spatial discretization 

The spatial discretization of the fluid equations is based on a finite element/finite 
volume formulation on unstructured meshes. It combines a Roe upwind scheme for 
computing the convective fluxes, and a Galerkin centered method for evaluating the 
viscous terms. Second-order space accuracy is achieved through a piecewise linear in­
terpolation method based on the MUSCL (Monotonic Upwind Scheme for Conserva­
tion Laws) procedure [VAN 79],[DER 85], and a slope limitation algorithm [ALB 82] 
can be employed in order to damp or eliminate the spurious oscillations that may occur 
in the vicinity of discontinuities. For addressing the problem of flow simulations on 
moving grids, an ALE formulation is incorporated in the flow solver. The numerical 
algorithms used with this ALE formulation satisfy the Geometric Conservation Laws 
(GCL) [LES 95],[NKO 94] that govern flow computations on moving grids. 

The structure is represented by a finite element model, and its dynamics behavior 
is predicted using the true displacement, velocity and acceleration degrees offreedom. 

At selective time-steps of an aeroelastic simulation, the dynamic fluid mesh is 
updated to conform the most recently computed configuration of the structure. The 
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points lying on the fluid/structure boundary are first adjusted to conform to the new 
position of the surface of the structure, then the remainder of the fluid grid points 
are repositioned accordingly. In the methodology used in this work, the new position 
of the interior grid points is determined from the displacement solution of a discrete 
pseudo-structural problem representing the unstructured dynamic fluid mesh. The 
pseudo-structural system is constructed by lumping a fictitious mass at each vertex of 
the fluid mesh and attaching fictitious lineal springs to each edge connecting two ver­
tices [BAT 89],[FLM 95],[FAR 95]. This discrete system is represented by the third 
ofEqs. (1) where M = iJ = 0. 

Finally, in fluid/structure interaction problems the fluid and structure meshes have 
often non-matching discrete interfaces. In that case, we use the load and motion trans­
fer algorithms described in [FAR 00] for evaluating properly the pressure forces on 
the surface of the structure, and transferring correctly the structural motion to the fluid 
mesh. In particular, the loads induced by the fluid on the structure are computed in a 
conservative way. 

Time discretization 

For solving accurately and efficiently the flow equations given by the first of 
Eqs.[1] on dynamic meshes, a second-order time-accurate implicit algorithm preserv­
ing the GCL [KOO 99] is employed. The time discretization is based on a second­
order backward difference scheme. The non-linear flow equations derived from the 
time-discretization are solved by a defect-correction (Newton-like) method [BOH 84], 
[MAR 96]. 

The structural equations of dynamic equilibrium given by the second of Eqs. (1) 
are solved with a second-order time-accurate implicit scheme where the trapezoidal 
method is used. 

3.2. Staggered solution procedure 

The solution of the coupled fluid/structure problem [1] is computed by a staggered 
solution procedure in the time domain [FLM 95],[FAR 97]. More precisely, we use 
the staggered algorithm given in [FAR 96] which satisfies the GCL as well as the 
continuity of both the displacement and velocity fields at the fluid/structure interface. 
This algorithm can be written as follows: 

1. Using the mesh position xn-!, and the mesh velocity :rn that matches the struc­
tural velocity qn on the fluid/structure interface, update the mesh coordinates as fol­
lows: 

2. Using xn-!, xn+! and :rn, update the fluid state vector wn+! in a manner that 
satisfies the GCL; 
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3. Using the pressure computed from wn+!, compute qn+I and qn+I using the 
midpoint rule. 

4. Aeroelastic coupling between a nozzle and a supersonic jet 

4.1. Description of the structure and flow problems 

In this paper, we consider a simple structural model of a nozzle made with a cone­
shaped part, a divergent, and a stiffener at the exit. The nozzle discretized in 9300 
nodes is represented by an equivalent finite element model with 18400 triangular shell 
elements for the cone-shaped part and the divergent, and 100 beam elements for the 
stiffener (Fig. 1). The nozzle is clamped at its base, and immersed in the flow domain 
which is discretized into 87648 vertices and 483912 unstructured tetrahedra. A partial 
view of the fluid mesh is shown in Fig. 2. 

The fluid mesh is decomposed into 14 subdomains and assigned to 14 processors 
for parallel computations. The finite element structural model is sequentially com­
puted and therefore is not partitioned. 

In this work, two different flow configurations are considered: depending on the in­
flow pressure, shock waves occur behind or inside the nozzle. For both configurations, 
the inflow density and Mach number are respectively set to Pinflow = 0.423 kg/m3 

and Min flow = 1, and the outflow condition corresponds to the ambiant air. The value 
of the inflow pressure is taken either to Pin flow = 1060000 Pa (shock wave behind 
the nozzle) or P;nflow = 230000 Pa (shock wave inside the nozzle). 

Figure 1. Finite element model of the nozzle 



840 Revue europeenne des elements finis. Volume 9- no 6-7/2000 

Figure 2. Partial view of the fluid mesh of the nozzle and the immersed structure mesh. 

4.2. Transient aeroelastic simulations 

The first fundamental modes of the structure are computed, and as expected, they 
are not axisymmetric. This tends to prove that a truly three-dimensional aeroelastic 
computation is necessary for simulating realistic nozzle coupled problems which are 
dominated by the first fundamental modes. The first structural mode corresponds to 
an ovalization mode whose frequency is jreq = 25 Hz (Fig. 3). 

In a first step, the finite element structural model of the nozzle is perturbed along its 
first fundamental mode, and a steady state solution is computed around the deformed 
shape of the nozzle. 

For an inflow pressure value Pinflow = 1060000 Pa, external Mach stems are 
obtained as depicted in Fig. 4. One can notice a large fluid acceleration inside the 
nozzle and oblique shock waves attached to the exit. In the jet downstream nozzle, 
there is a harrell-like structure, as well as a slip discontinuity at the boundary of this 
jet. 

For an inflow pressure value Pinflow = 230000 Pa, one can remark the presence 
of a normal shock wave preceding a subsonic zone inside the nozzle (see Fig. 5). Next, 
this perturbation is used as an initial condition, and the aeroelastic response of the 
nozzle is computed by the partitioned procedure described in the previous section. The 
objective is to predict numerically the subsequent nozzle motion and flow evolution 
for both flow conditions. 

For this dynamics problem, the time-step of the structure problem is set to 
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Figure 3. First fundamental mode. The enlarged shape at the exit of the nozzle corre­
sponds with the stiffener 

Figure 4. Zoom of the Mach isovalues in the nozzle region for an inflow pressure set 
to 1060000 Pa 
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Figure 5. Zoom of the Mach isovalues in the nozzle region for an inflow pressure set 
to 230000 Pa 

!J.ts = T6 /80 = 0.00025 s., where T6 denotes the period of the sixth mode of the 
nozzle. For the flow solver, the CFL number is set to 100. It turns out that for the given 
fluid mesh, this value of the CFL number corresponds to an average value of the fluid 
time-step over the duration of the aeroelastic simulation /J.tp = !J.ts. The aeroelastic 
response obtained for both case of flow configurations is described hereafter. 

- Pinflow = 1060000 Pa. With this flow condition, we have a large fluid accel­
eration inside the nozzle and oblique shock waves attached to the exit. The obtained 
radial displacement history of points located on the stiffener (point pl) and on the 
nozzle wall at 25% of the total length after the throat (point p2) is depicted in Fig. 6 
for the first 0.2 physical seconds. We observe that the motion of the nozzle around 
its initial configuration is damped, and no flutter phenomenon accurs with this flow 
condition. The presence of small high frequency perturbations on the displacement 
history corresponding with the point located at 25% of the nozzle length is probably 
due to the fact that the nozzle is clamped at its base and its stiffness. Fig. 7 shows 
the evolution of the pressure at point pl, it consists in a damped oscillating average 
signal with small perturbations. The history of the longitudinal resulting force due to 
the pressure acting on the nozzle surface is depicted in Fig. 8. We remark that the 
averaged signal of this force is constant with time, and that the amplitude of the high 
frequency component of this signal is less than one percent of the averaged force. 

- Pinflow = 230000 Pa. With this flow condition, we have a normal shock 
wave inside the nozzle. Because of the nozzle geometry and the simulation of an 
Euler flow, the shock wave induces no flow separation. The obtained displacement 
history of points located on the stiffener (point pl) and on the nozzle at 25% of the 
total length after the throat (point p2) is depicted in Fig.9. As previously, the initial 
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Figure 6. Radial displacement history for an inflow pressure set to 1060000 Pa 
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Figure 7. Pressure history at point pl 

perturbation is damped, and no flutter phenomenon occurs. The pressure history at 
point pl and the history of the longitudinal resulting force due to the pressure acting 
on the nozzle surface are respectively depicted in Fig.? and Fig. 8.The remarks made 
for the previous flow conditions are still valid. 

Both aeroelastic problems have required around 800 coupled time-steps for the first 
0.2 second of the transient aeroelastic response of the nozzle, and a total simulation 
time evaluated to 4 hours on a IS-processor SGI Origin 2000 machine. 
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Figure 8. Longitudinal resulting force history 
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Figure 9. Radial displacement history for an inflow pressure set to 230000 Pa 

5. Structure stiffness influence 

We now investigate the influence of the stiffness of the different components of the 
structure (shell and stiffener); more precisely we shall compare the behavior of three 
structures: 

-a first one, (Sl), has a rather rigid shell (cone+divergent), and a strong stiffener; 
we shall call it the reference structure; 

- in a second one, (S2), the shell is weakened by a two times thinner shell, the 
stiffener is unchanged; 
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-in a third one, (S3), the shell is same as in reference, but the stiffener is weakened 
by a factor 100 (applied to the cross section). 

Besides these structural options, we shall consider the two above "flow condi­
tions": 

- (Pl) is the high pressure flow with oblique shock depicted in Fig.4, 

- (P2) is the lower pressure flow with normal shock depicted in Fig.S. 

It is first interesting to evaluate the global reaction (amplification, damping) of the 
different structures for the two flow conditions. In all calculation, the initial position 
of shell is a deformation by the first (bilobate) eigenmode, as in Fig.lO. 

In Fig.ll, the oblique-shock (Pl) flow is tested with the structures (S1) and (S3). 
It is predicible that the oscillation frequency will be lower with a weaker stiffener, 
but we also assess that the stiffener is necessary for mastering the arising of high fre­
quencies (about 20 times larger). We present in (Figs. 12 to 15) some snapshot of 

Figure 10. Initial shell shape for all calculations, i.e. first mode (artificial amplifica­
tion by a factor 16) 

the calculation with weak stiffener; we observe that the bilobate oscillation is more or 
less well conserved, but with higher frequency interacting. These high frequencies are 
visible at two levels, i.e. at the level of the lip plane (already just after the starting of 
simulation (Fig.12)) and also transversely (Fig. 15). We then compute the second 
flow context,(P2), with a lower pressure and a normal shock inside the divergent. We 
have computed the three structure configurations. In Fig.16 we observe that the stiff­
ener has a predominant role since the structure movement is well changed when the 
stiffener is weak. We concentrate on this last combination, P2 flow and S3 structure: 
the reason of change in amplitude and frequency is easily explained by the chang­
ing in oscillation mode, that is produced at early starting, since from the fundamental 
bilobate mode, a trilobate mode appears in the first oscillation, Figs.lO, 17, 18. 
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Figure 11. Behavior with a weaker stiffener and oblique shock: comparison of shell 
motion with reference structure and thinner one 

Figure 12. Behavior with a weaker stiffener and oblique shock : shell shape after a 
tenth period (artificial amplification by a factor 16) 
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Figure 13. Behavior with a weaker stiffener and oblique shock: shell shape after half 
a period (artificial amplification by a factor 16) 

Figure 14. Behavior with a weaker stiffener and oblique shock: shell shape after a 
complete period (artificial amplification by a factor 16) 
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Figure 15. Behavior with a weaker stiffener and oblique shock: shell shape after a 
tenth period (artificial amplification by a factor 16) 
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Figure 16. Behavior with a weaker stiffener and normal shock: comparison of shell 
motion with reference structure and thinner one 
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Figure 17. Behavior with a weaker stiffener and normal shock inside divergent: shell 
shape after half a period, the number of lobes is unclear (artificial amplification by a 
factor 16) 

Figure 18. Behavior with a weaker stiffener and normal shock: shell shape just after 
a complete period : (artificial amplification by a factor 16) 
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6. Conclusion 

In this paper, we have addressed the problem of simulating aeroelastic coupling be­
tween a nozzle and a supersonic jet. More specifically, no axisymmetric assumptions 
have been done, and we have considered truly three-dimensional jet/nozzle coupled 
problems with different flow conditions involving shocks either downstream or inside 
the nozzle. In this work, the flow has been assumed non viscous. We have observed 
that, for the investigated flow conditions, and with the given geometry and material 
features of the nozzle, an initial perturbation is damped with time and no flutter phe­
nomenon occurs. 

A hightly supersonic flow excitates high frequencies while keeping the main bilo­
bate mode. A less fast supersonic flow with normal shock inside the divergent pro­
vokes changes in the shape of oscillation mode. The important role of the stiffener 
is also stressed. This study will contribute to the a priori specification of a series of 
experiments. It will be pursued by applying the turbulence modelling capacities of the 
AERO software. 
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