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ABSTRACT. The finite element method is widely used in design engineering for modeling and 
analyzing structural systems. Two approaches have been developed: the force-based method 
that exploits the equilibrium of forces and momellts at nodal joillts of the mesh to formulate 
the assembly of element-level matrices into master mass and stiffness matrices and its dual 
counterpart, the flexibility-based method. An alternative formulation of stiffness-based finite 
element assembly is proposed that decomposes element-level matrices even further into strain 
mode contributions. This decomposition (referred to as finite element disassembly here) allows 
the derivation of an efficient numerical solver. It is shown that a single matrix factorization is 
required for analyzing all models characterized by the same topology. This makes finite element 
disassembly and the associated inverse solver ideal in cases where multiple design analyzes are 
performed. In the first part, this publication derives a framework for an alternative finite el­
ement assembly of mass and stiffness matrices in the colltext of linear elasticity. Basically, 
disassembly consists ofrepresentingfinite element matrices as a matrix product where topology 
contributions are isolated from constitutive law or inertia law contributions. Application exam­
ples are discussed to illustrate the advantages and limitations of this formulation using various 
meshes typically encountered in the automotive and aerospace industries. The second area of 
application discussed in the second part of this publication is the correlation between finite 
element models and test data. It is shown that numerical models can be updated for improving 
their correlation with measured frequency responsefimctions with minimum computational cost 
when the model is disassembled. 

RESUME. La methode des e/emelltsfinis est l'une des plus populaires en caiCIII des structures. 
Deux approches Ollt ere developpees. La formulation en force permet /'assemblage des matri­
ces e/ementaires en matrices globales grace aux conditions d'equilibre des forces et momellts. 
La seconde formulation est basee sur Ia notion de matrices de flexibilite. Nous proposons une 
representation alternative. La representation conventionnelle en force ou les matrices elemen-
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taires son/ decomposees en modes de deformation. Celie decomposition est appelee desassem­
blage de modele et elle pennet/'implementation de solveurs nwneriques efficaces. Nous demon­
Irons que Ia factorisation d'une seule mat rice estnecessaire a fin d 'analyser les modeles iss us 
d'une me me topologie et met rique. Celie propriere rend /es solveurs bases sur le desassemblage 
ideaux pour tousles problemes qui necessitent des analyses multiples comme /'optimisation ou 
le recalage de modeles. Tout d'abord, WI cadre general est propose pour le desassemblage 
de modeles arbitraires en elasticite linea ire. Le desassemblage consiste a represelller chaque 
mat rice elbnellls finis comme 1111 produit de matrices oti les contributions de Ia topologie du 
mail/age son/ isolees de celles des lois de comportement. Plusieurs applications son/ presen­
tees afin d'illustrer les avail/ages et inconvenients de celle representation pour des maillages 
typiques des industries automobile et aerospatiale. Puis, Ia formulation de solveurs inverses est 
abordee dans le contexte de Ia correlation calculs-essais. Nous montrons que /'utilisation de 
modeles disassembles permet de recalera moindre cotitles modetes numeriques pour ameliorer 
leur correlation avec des fonctions de reponse enfrequences mesurees. 

KEYWORDS: disassembly, finite element method, numerical method, fast reanalysis. 

MOTS-CLES: desassemblage, methode des elements finis, solveurnwnerique, re-analyse rapide. 

Nomenclature 

Vectors, Matrices and Tensors 

A 

B 

b 

v 
F 

F 

1{ 

H 

h 

Bilinear form for total energy 

Matrix of shape function derivatives 

Linear form for energy of applied forces 

Generic differential operator (in space) 

Static or dynamic flexibility matrix 

Applied force vector 

Condensation matrix 

Generic Hilbert space 

Hooke tensor (constitutive law of elasticity) 

Thickness of a plate or one of its layers 

Identity matrix 

Tensor of inertia 

Jacobian of a coordinate transform 

Stiffness matrix 

Generic localization matrix 

Interface localization matrix 

Vector of resultant moments per unit length 



n 

p 

p 

Q 

Mass matrix 

Matrix of shape functions 

Vector of resultant forces per unit length 

Outward pointing unit normal vector 

Matrix of generic disassembly vectors 

Design parameters of the model 

Matrix of generic disassembly vectors 
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Stress-strain matrices of the layer of a laminate 

s 

T 

Frequency 

Rotation matrix of a coordinate transform 

Time 

t 0 Prescribed traction vector 

u Continuous generalized displacements 

u 0 Prescribed displacement vector 

W Diagonal matrix of generic disassembly values 

w Finite element test function 

w,1 k Weight for numerical integration 

X Triad of coordinates ( x; y; z) 

x Vector of discrete generalized displacements 

Dimensions 

Greek Symbols 

,\ 

n 

cr 

Number of finite elements in the mesh 

Number of Gauss integration points 

Number of disassembly values for the stiffness 

Number of disassembly values for the mass 

Number of subdomains 

Vector of strains 

Vector of curvatures 

Vector of Lagrange multipliers (interface tractions) 

Generic volume 

Boundary of prescribed displacements 

Boundary of prescribed tractions 

Vector of stresses 

Orientation of fibers in a laminate 
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Subscripts and Upperscripts 

( •) k Quantity pertaining to the stiffness matrix 

( • lm Quantity pertaining to the mass matrix 

( • ), Strain-mode quantity 

( • )(e) Element-level quantity 

( • )( k l Quantity pertaining to the kth layer of a laminate 

( •) + Pseudo-inverse quantity 

( • )( s) Quantity pertaining to a subdomain 

( •) T Transposed of a matrix or vector 

1. Introduction 

Design engineering in structural dynamics involves the resolution of linear sys­
tems that provide displacement and rotation solutions given loading conditions applied 
to the system. Typical applications include structural analysis ([PAZ 91 ]), topology 
or structural optimization ([SUZ 91 ], [HAF 93]), and finite element model updating 
where a distance between measured and computed responses is minimized ([HEM 
95]). Such applications are quite different in nature and objectives. However, they 
all share the necessity of solving inverse systems repeatedly because the optimization 
associated with these problems is nonlinear. 

Classical finite element modeling is based on the concept of assembly. It con­
sists of partitioning the elastic domain into elemental volumes with geometries simple 
enough that the stress-strain relationship can be derived. Then, equilibrium of forces 
and moments at each nodal joint of the mesh are exploited to construct the master mass 
and stiffness matrices by adding their element-level counterparts ([HUG 87]). These 
matrices represent both the mathematical idealization and the spatial discretization of 
kinetic and strain energies, respectively. 

Hence, the procedure for solving structural dynamics equations consists of, first, 
assembling master matrices for a mesh with given geometrical and material proper­
ties, then, solving the resulting linear system of equations. The solution generally 
provides displacements and rotations at nodal joints of the mesh and it is associated 
to a design criterion such as minimizing displacements in given areas of the model, 
or making sure that stresses do not exceed prescribed levels. In case of finite element 
updating, the numerical solution is compared with test data to assess the predictive 
quality of the model. Then, this constraint is enforced by bringing changes to the de­
sign and the whole procedure is repeated until convergence. Generally, large numbers 
of degrees of freedom are involved which results into multiple assemblies and factor­
izations of large-size, sparse matrices. This motivates the alternative representation 
of finite element assembly presented in the first part of this work. 

The scope of this paper is restricted to linear, undamped elasticity for simplicity. 
Extension to damped dynamics does not seem to offer any particular difficulty other 
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than implementation issues which involve complex arithmetic because complex vec­
tors must then be handled. The linear systems are described by equations [I] and [2] 
below. Equation [I] would typically be solved for the generalized displacements { x} 
when external static loadings {F} are applied to the structure 

[K(p)] {x} = {F} [I] 

Equation [2] is the counterpart of static equation [I] when dynamic systems are ana­
lyzed in the frequency domain 

((K(p)]- s2 (M(p)]) {x(s)} = {F(s)} [2] 

This last equation models the equilibrium between internal, inertia and applied forces. 
It can be seen that it describes a variety of situations including acoustic problems, 
eigen-decompositions (when {F} = 0) and static problems (when s = 0). Note 
that, in the case of time-domain resolution, the inversion of a similar matrix is in­
volved, typically with s = ~t where Llt denotes the time step selected for numerical 
integration. The mass and stiffness matrices depend on design parameters {p} that 
represent geometrical and material properties for each finite element. These variables 
are precisely the unknown optimization variables considered in inverse problems such 
as design optimization or test-analysis reconciliation. 

With the stiffness-based method, master mass and stiffness matrices are assem­
bled from contributions of each finite element. In structural dynamics, systems are 
analyzed by discretizing them into meshes, adopting a mathematical idealization for 
representing the behavior of each individual finite element, then estimating the global 
mass and stiffness operators by assembling contributions from each element. The 
operation of assembly can be represented with the stiffness matrix, for example, as 

[K(p)] = L [L(e)( [k(e)(P(e)l] [L(e)] [3] 
e=l ··Ne 

where [k(e)] denotes the eth element-level stiffness matrix expressed in the coordi­

nate system local to the element and [L(e)] is the corresponding transformation and 
localization matrix used for adding together equations in the master stiffness [K]. This 
classical and most widely used formulation of finite element assembly is based on the 
stiffness method which consists of writing the equilibrium at each nodal joint of a 
mesh, then exploiting the equality of displacements contributed by all finite elements 
that share a common node to derive equation [3] ([HUG 87]). 

This formulation is very popular because most efficient for assembling finite el­
ement matrices. It is however quite inefficient when the final objective is multiple 
resolutions with changing designs because the master matrices must be re-assembled, 
at least partly, when the control parameters {p} are modified. These control or design 
parameters are, typically, constituted of geometrical parameters (thicknesses, cross­
sectional areas, etc.) and material properties (moduli of elasticity, shear moduli, den­
sities, etc.). The main motivation for this work is two-fold. First, we revisit the finite 
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element assembly and provide a very efficient numerical implementation when multi­
ple assemblies are required due to design changes or optimization of parameters { p}. 
Secondly, we develop efficient numerical solvers for multiple design analyses. Basi­
cally, the approach proposed here consists of representing the master stiffness matrix 
as a product of three matrices 

[4) 

where the central matrix is diagonal and is the only one that depends on structural 
parameters {p }. Such a dependency must be known algebraically for the efficiency 
of the procedure and we demonstrate how this property can be achieved for practi­
cal applications. The other matrix [Qk] exhibits, in the general case, a high degree of 
sparsity and does not depend on structural parameters. Hence, re-assembling the stiff­
ness matrix based on equation [ 4) only requires the evaluation of the matrix product 
aforementioned. 

The paper is organized as follows. The next section addresses the motivation of de­
veloping efficient numerical solvers for multiple design analyses. Section 3 discusses 
some of the applications of this work by introducing the resolution of structural dy­
namics equations using domain decomposition and parallel computing. Finite element 
theory and matrix assembly are summarized in section 4 to illustrate how disassembly 
can be achieved in the classical context of the stiffness method. The alternative rep­
resentation of constitutive law and inertia law leading to finite element disassembly is 
introduced in section 5. Then, the theory of finite element disassembly is presented in 
section 6. Two simple examples are derived analytically in section 7 to illustrate how 
the method would typically be implemented and to present some of its difficulties. 
Section 8 details the main steps of the numerical solver associated to finite element 
disassembly in the case of a stiffness-based system. Applications are presented with 
various finite element meshes to illustrate the numerical performance of the method 
and to discuss its domain of applicability. Section lO illustrates the application of fi­
nite element disassembly in the case where the solution to a flexibility-based system is 
sought after. Throughout sections 9 and I 0, realistic examples are provided. These in­
volve finite element models typically analyzed in the automotive and aerospace indus­
tries. All performance figures reported are obtained using a Matlab 5.2-based library 
of finite element tools implemented on a Silicon Graphics workstation (equipped with 
a R I 0,000-180 processor). 

2. Stiffness Versus Flexibility FE Methods 

One of the motivations for this work is the development of efficient numerical 
solvers for structural dynamics applications such as design optimization or finite ele­
ment model updating. Consider, for example, the following equation of equilibrium 
in the frequency domain 

([K(p)]- s 2 (M(p)]) {x(s)} = {F(s)} [5) 
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The solution procedure consists of solving equation [5] for a known loading case {F} 
and prescribed boundary conditions. Whether the problem of interest is structural 
design and analysis, structural optimization or finite element model updating, mul­
tiple resolutions of this equation must be obtained. Note that evoking equation [5] 
does not restrict our discussion since static problems are obtained when s = 0 while 
time--domain resolutions involve the inversion of a similar matrix where s = ( 1t) as 
mentioned previously. 

Such solutions are given (in the frequency domain) by the following product be­
tween the flexibility matrix and the right-hand side vector 

{x(s)} = [.:F(p;s)]{F(s)} [6] 

Obviously, the flexibility matrix (or admittance matrix) defined by equation [6] is 
equal to the inverse of the dynamic stiffness matrix at the frequency s of interest 

[.:F(p;s)] = ([K(p)]- s 2 [M(p)])-
1 

[7] 

It can be seen that this solution procedure is quite inefficient in the context of multiple 
analyses because it accumulates the disadvantage of multiple assemblies (which could 
become expensive with large dimensional models) to the need for factoring a full­
size matrix each time. The alternative is the flexibility-based finite element method 
for assembling the flexibility matrix [.:F] directly, therefore, bypassing the need for a 
numerical solver ([ARG 60], [FRA 65]). However, flexibility methods have not grown 
in popularity basically because they do not provide efficient element-level assembly 
as the stiffness method does. 

This issue has been indirectly addressed by Gordis who motivates his work on fi­
nite element disassembly as a way, for example, of relating global error estimations 
to local finite element matrices. It provides a unique identification of which finite ele­
ments contribute to an error indicator, which is extremely useful in problems such as 
mesh refinement, model updating or damage detection [GOR 96]. Gordis' definition 
of disassembly is however more general than the one defined by equation [ 4] and used 
here. His disassembly consists of rendering the master matrix block--diagonal 

[kP\p(l)l] 0 

[K(p)] = [L( [k~e)(p(e))] [L] 

0 [k~N.)(p(N.))] 
[8] 

where each diagonal block represents a "strain-mode" element-level matrix, that is, 
a reduced matrix where contributions from rigid body motions have been filtered out. 
Thus, reduced matrices preserve only the non-rigid dynamics of each finite element, 
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which is a characteristics "our" disassembled matrices share too. Matrix [L) is ob­
tained as the transformation between global (coupled) generalized coordinates { x} 
and local (element-level, uncoupled) coordinates { x(e)} 

{ x(e)} = [L) {x} [9] 

A fundamental difference is that Gordis' work takes the form of a unique decom­
position whereas we will show that equation [4] is non-unique. As a result, for the 
disassembly [8-9] to provide any practical use, the model must represent a structure 
where the load path between any two points is unique, which is extremely restrictive. 
Our approach overcomes this major difficulty because, basically, the decomposition 
is not required to be uniquely determined. Nevertheless, we will discuss the cost to 
pay: a significant numerical implementation effort and the necessity to filter out the 
extraneous information. 

Ideas for mesh disassembly have also been proposed by Peterson, Doebling and 
Alvin for structural damage detection using vibration test data ([PET 95]). Their basic 
idea is the starting point ofthis work: partitioning element-level matrices according to 
the contribution of their rigid body and strain modes, then representing global matrices 
as the superposition of each partition. Relating entries of measured flexibility matrices 
to element-level stiffnesses of a finite element model enables efficient localization 
of structural damage. However, results presented in reference [PET 95] involve the 
disassembly of beam elements only and lack a general framework for generalizing 
the procedure to arbitrary elements, which is precisely the contribution of the present 
work. 

3. Domain Decomposition and Parallel Computing 

Finite element disassembly can also be used to improve techniques for solving the 
equations of structural mechanics in parallel using a decomposition of the model into 
subdomains. In this section, we briefly emphasize this issue with two techniques that 
are similar in formulation but aimed at solving two different problems. 

One of the most popular technique for solving structural mechanics problems in 
parallel is the Finite Element Tearing and Interconnecting (FETI) technique devel­
oped by Farhat and Roux ([FAR 91 ]). Basically, the equation of equilibrium [5] is 
partitioned according to different subdomains, yielding 

for each subdomain (s = 1 · · · Ns ). The last term of equation [I 0] accounts for bound­
ary tractions on the interface between subdomain #s and all the neighboring subdo­
mains. These tractions are required for satisfying the equilibrium of all the subdo­
mains. Equations [ 10] are solved in parallel on separate processors once the tractions 
{A} have been made available, thus, providing reduced running times compared to a 
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single-processor architecture. Of course, the compatibility of displacements on the 
interface must be added 

["II] 

where [ L} •)] denotes the transformation that extracts coordinates on the interface for 

the sth subdomain. Equation [ 11] basically states that displacements contributed from 
separate subdomains that share the same interface nodes must be equal. Equations [I 0] 
and [II] are combined for obtaining the interface problem which provides a solution 
for the unknown boundary tractions {A} 

(~ [L}'lr [:F<•l(p;s)] [L}'l]) {A}= 

(t, [L}•lr [:F<•l(p; s)]) { F<•l(s)} [12] 

The FETI approach is based on a dual variational formulation of the partitioned equa­
tions of equilibrium that has proven its numerical and computational efficiency for 
solving a large variety of structural dynamics problems in the time and frequency do­
mains. One illustration is the development at Sandia National Laboratories of SALI­
NAS, a fully object-<:Jriented and parallel finite element program for linear systems 
constituted of several million degrees of freedom. Another illustration is the devel­
opment by Farhat and Geradin of a component mode synthesis method based on the 
same framework ([FAR 92]). 

Obviously, equations [I 0] and [ 12] feature factorizations of each subdomain dy­
namic stiffness matrix and the iterative resolution of this system requires multiple 
inverse resolutions. This justifies our claim that finite element disassembly might be a 
valuable tool for bypassing these computationally expensive steps. 

Building on the FETI approach, Park has exploited an idea similar to disassem­
bly for formulating an algebraic partitioning of the equations of dynamics ([PAG 97], 
[PAR 97]). Although the overall procedure may not be as efficient as FETI for ar­
bitrary mechanics problems and currently suffers from implementation difficulties, it 
clearly offers the advantage of enabling the identification of local mass and stiffness 
properties using the same decomposition as the one illustrated in equation [8]. 

The main step goes as follows: the transformation from global (coupled) general­
ized coordinates to local (element-level, uncoupled) coordinates can be applied to the 
force vector as 

{F} = [Lf { F(e)} [ 13] 
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Combining equations [5], [9] and (13] at zero-frequency leads to the transformation 
between the full-order static flexibility matrix [F] and decoupled, element-level flex­
ibilities 

[F(ll(p(ll;O)] 0 

[14] 
Then, minimizing a strain-based version of the system's total energy with the compat­
ibility of displacements and equilibrium of forces at the interface between connected 
elements provides a Ricatti-like equation. This equation relates local stiffness prop­
erties to the global flexibility matrix 

[F,(p)]- [F,(p)] [G,(p)] [F,(p)] = ([L] [Qk])T [F(p; 0)] ([L] [Qk]) [15] 

where matrix [G,] is defined as 

[16] 

In equations [15-16], a block-diagonal partitioning similar to equation [4] is used for 
the stiffness matrix from which it can be shown that the flexibility matrix is decom­
posed according to 

0 

0 
[ 17] 

where, by definition, we set [F,] = [W kr 1 . Note that this approach can theoretically 
be applied to the decomposition of the mesh into subdomains larger than a single finite 
element. It should also be emphasized that domain decomposition usually generates 
free-floating subdomains for which master matrices are singular. In this case, inverses 
are replaced with pseudo-inverses, for example in equation [ 16]. 

The conclusion is that, solving equation [ 15] for the diagonal matrix [F,] provides 
an estimation of local inverse stiffness parameters. Hence, measured frequency re­
sponse functions of a system may replace the flexibility matrix [F] in equation [ 15] 
and the solution procedure may be applied for identifying local stiffness properties 
given a description of the topology of the structure. Hence, Park's idea of adding an 
additional constraint of algebraic decomposition (what is referred to as "disassembly" 
here) provides an elegant framework for solving inverse problems such as health mon­
itoring and damage detection where the main challenge is precisely to relate global 
error indicators to local mass and stiffness changes over time. 
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Each of these two examples demonstrates where finite element disassembly may 
be a useful tool for enabling, or at least enhancing, the resolution of direct and inverse 
structural dynamics problems. The development of efficient inverse solvers is how­
ever complicated by the non-unicity of disassembly and caution must be observed for 
filtering out extraneous information and obtaining meaningful solutions. 

4. Finite Element Discretization and Assembly 

After having motivated the need for alternative finite element assembly procedures, 
a theoretical framework is derived in this section. We start with a brief summary of 
the classical, stiffness-based finite element procedure: mathematical idealization, dis­
cretization and weak formulation are addressed. Our purpose is to remind where de­
sign parameters {p} are involved during the matrix assembly because this is critical 
to the understanding of the disassembly technique. reference [GER 97] provides the 
complete details for those readers who may not be familiar with the notations indro­
duced here. 

From now on, we will focus on linear elasticity problems that constitute the core 
of structural mechanics applications. Furthermore, Einstein's summation convention 
of repeated indices is used for clarity in most equations (A;jUj = L A;jUj ). In 

j=l···N 

the general case, the following boundary value problem is considered 

{ 

a' 
Im,

1 
;;',' (t) -1Jk (H;Jkl1Jt (uJ(t))) = F;(t) 

u; (t) = u 0; (t) 
u;j (u) =to; (t) 

indomainn 
onanu 
on an, 

[18] 

where the boundary an of elastic domain n is partitioned in two disjoint parts an,. 
and an, where the displacements and tractions are imposed, respectively. In addition, 
equation [ 18] must be completed with the adequate initial conditions (at t = 0) that 
involve the generalized displacements u or the velocities or accelerations. Equation 
[ 18] represents a mathematical idealization of the real behavior of the physical system 
where inertia and internal forces in the left-hand side balance the applied forces. 

Prior to discretization, problem [ 18] is cast in a variational form given in equations 
[ 19-21 ]. This second form of the same problem is commonly referred to as the "weak" 
form because its solution u satisfies equation [ 18] in average. The weak formulation 
of equation [ 18] is given by 

A (u; w) = b(w), Vw E 1i [ 19] 

where 

A(u;w) [20] 

b(w) [21] 
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It is assumed, as usual, that w = 0 on the boundary cKlu. In equation [ 19], 1l de­
notes the adequate Hilbert space. In Mechanical Engineering, Sobolev spaces such 
as W 1·2(r2) and W 2•2(r2) are usual choices, depending on the order of partial differ­
ential equations analyzed. Applied mathematics tell us that problems [ 18] and [ 19-
21] are equivalent under fairly general assumptions relevant to the class of problems 
treated here and which essentially consist of satisfying the continuity and coercivity 
of the bilinear, symmetric form A over 1l [ODE 76]. 

For obtaining a computational procedure from the weak formulation, discretiza­
tion is introduced. The element-level stiffness matrix represents the second-order 
derivative of the element's strain energy with respect to nodal displacements, that is 

[22] 

In the context of linear, homogeneous and isotropic elasticity, this element stiffness 
matrix can generally be obtained when the element's strain field is expressed in terms 
of nodal displacements. Without loss of generality, this can be represented as 

[23] 

where X = (x;y;z) are spatial variables. In equation [23], matrix (B] [~~] 
represents the strain-displacement matrix that features derivatives of the element's 
shape functions 

{ f(e)} = (B(X)] {X( e)} [24] 

while matrix (H] denotes the constitutive matrix that relates the strain and stress fields 
to each other 

[25] 

The same formalism applies to the element's mass matrix. Integration can be per­
formed over individual subdomain fl(e) (or finite elements), then accumulated in the 
master quantities. This is the essence of the assembly procedure that is written as 

[M(p)] L: [L(e)r [m(e)(p(e)l] [L(e)J [26] 
e=l···Ne 

[K(p)] E [L(e)r [k(e)(P(e)l] [L(')] [27] 
e=l···Ne 

{F(t)} 2:: [L(e) r { f(e)(t)} [28] 
e=l···Ne 

where matrix [L(e)] denotes the localization of master degrees of freedom to the eth 
finite element. Practically, these quantities are calculated by numerical integration, 
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except in the case of simple geometries where analytical solutions are available. For 
example, element-level stiffness matrices are obtained as 

[k(e)(p(e)l] = L (B(i; j; k)]T [H(p(e)l] (B(i; j; k)] Wijk detJ(i; j; ~~) 
i,j,k=I···N9 

[29] 
where N9 , the number of Gauss integration points, depends on the degree of the poly­
nomial function being integrated. 

Finally, the well-known linear system of equations is obtained by substituting 
shapes functions (Ritz-Galerkin formulation) into the weak formulation [ 19-21] 

{
8

2
x } (M(p)] ot
2 

(t) + (K(p)] {x(t)} = {F(t)} [30] 

Note that a transformation in the frequency domain (using the Fourier transform, for 
example) yields the previous equation [5]. It can be seen that quantities depending on 
the order of the interpolation performed, that is, the triplet (i; j; k) in equation [29], 
and quantities depending on the element's design parameters {p(e)} are decoupled. 
This property is exploited in the next section for a practical formulation of finite ele­
ment disassembly. 

For completeness, the following remarks can be made about these developments: 

- Although a Ritz-Galerkin formulation is used for simplicity, nothing prevents 
us from choosing the test functions w differently from the shape functions 
{N1 }. Hence, more general approximation methods can be implemented within 
this framework ([ODE 83]). 

- Similarly, mixed or hybrid variational principles are not excluded from this for­
mulation [FEL 89]. Actually, the critical, enabling condition for finite element 
disassembly is that only inertia and constitutive matrices depend on design pa­
rameters {p }, which is shared by all approaches. 

5. Alternative Representation of Linear Elasticity 

Section 4 has established the natural decoupling between topology-dependent and 
design parameter-dependent quantities in the elemental mass and stiffness matrices. 
Our goal is now to show that inertia and constitutive laws can be decomposed as 

[Im(P(e)J] 

[H(p(e))] 

(Pm]T [wm(Pe)l] (Pm] 

(Pkf [wk{p(e)l] (Pk] 

[31] 

[32] 

where matrices (Wm] and (Wk] are diagonal and where matrices (Pm] and (Pk] do 
not depend on geometrical and material properties. Because the inertia law can be rep­
resented by a diagonal matrix (Im]. we will focus on the constitutive law of elasticity 
in this section. 
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In the following, I D, 2D, then 3D elasticity is investigated. The main result is to 
show that, no matter what type of isotropic elasticity is considered, the decomposition 
[31-32] can always be written algebraically because it involves (at worse) three by 
three symmetric matrices that can be decomposed "by hand." 

5.1. Monodimensional and Isotropic Elasticity 

The most trivial case is to consider axial deformations only because the stress­
strain relationship can be expressed as (j = EE, where E represents the material's 
modulus of elasticity (Young's modulus). Therefore, the decomposition [31] is simply 
W k = E and P k = 1. 

The second interesting case involving pseudo- I D elasticity is that of beam ele­
ments. Consider, for example, the 4th-order, 2-node Euler-Bernoulli beam with the 
degree of freedom ordering given in equation [33] 

Design variables are {p(<)} = {E,A,v,J,Iy.I:}T and it can be verified that, in 
this particular case, the disassembly [4] may be achieved by hand because numerical 
integration is not required. We can write 

[34) 

where 

EA. 0 0 0 0 0 
0 GJ 0 0 0 0 

[wie)(p(e))J 1 0 0 Ely 0 0 0 
- --:! 

§ [35) 
L 0 0 0 :! 0 0 

0 0 0 0 !il... 0 :! 

0 0 0 0 0 !il... 
:! 
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. hC E d Wit , = 2( 1+v) an 

1 0 0 0 0 0 
T 

0 0 _w w 0 0 L L 

0 0 0 0 _w w 
L L 

0 1 0 0 0 0 
0 0 0 0 1 + J3 1- J3 

[Qke)] = 0 0 -(1 + J3) -(1- J3) 0 0 
-1 0 0 0 0 0 
0 0 w _w 0 0 L L 

0 0 0 0 w _w 
L L 

0 -1 0 0 0 0 
0 0 0 0 -(1- y'3) -(1 + J3) 
0 0 1- J3 1 + J3 0 0 

[36] 
This decomposition is equivalent to the one given in reference [PET 95]. The six-row 

vectors in matrix [ Qke) J can be interpreted as the element's static deformation shapes 

associated with nonzero strain energy, or strain modes. Their number is always equal 
to the rank of the stiffness matrix. It can be verified that the main two assumptions of 

disassembly are satisfied: l) Coefficients of the diagonal matrix [ Wke l] are known 

explicitely; and 2) Matrix [ Qke)] does not depend on design parameters {p(e)}. Note 

also that a similar decomposition can be obtained with the Timoshenko beam where 
shear coupling is involved. 

5.2. Bidimensional and Isotropic Elasticity 

Bidimensional finite elements such as plates and shells involve membrane and 
bending deformations. For constant-thickness elements, these constitutive laws are 
generally equal to 

Eh [ ~ v 0 l [ Hmembrane (p(e))] 1 0 [37] 
(1- v 2 ) 0 1-v 

~ 

[ Hbending (p(e)) J ~: [Hmembrane(p(e))] [38] 

where h is the element's thickness. It can be verified easily that the decomposition 
[31] for membrane deformations is obtained with 

[ wi' )membrane (p(<))] 

1 
2(1+v) 

0 
0 

0 
1 

2( 1-v) 

0 ,,L l [39] 
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[ Pke )membrane] li T n [40] 

Similarly, the decomposition [31] for bending deformations is obtained with 

[
w(e)bending( (e)l] = h2 

[w(e)membl"ane( (e)l] 
k p 12 k p [41] 

d [p(e)bending] [ (e)membrane] b f · 3 8 h · an k = P k • It can e seen rom equattons [ 7-3 ]t at, m 

the case of 2D elasticity, the design parameters of interest are restricted to { p(e)} 
{E,v,hf. 

5.3. Tridimensional and Isotropic Elasticity 

Volume elements rely on the following constitutive matrix in the case of linear, 
homogeneous and isotropic elasticity 

1-v v v 0 0 0 1-2v 1-2v 1-2v 
v 1-v v 0 0 0 1-2v 1-2v 1-2v 

[H(p(e))] E v v 1-v 0 0 0 1-2v 1-2v 1-2v [42) 
1+v 0 0 0 1 0 0 2 

0 0 0 0 1 0 2 
0 0 0 0 0 1 

2 

It can be decomposed into 

E 0 0 0 0 0 1-2v 

0 E 0 0 0 0 1+v 
0 0 E 0 0 0 

[wke\p(e)l] 1+v 
0 0 0 E 0 0 

[43] 
2(1+v) 

0 0 0 0 E 0 2(I+v) 

0 0 0 0 0 E 
2(I+v) 

1 1 1 0 0 0 73 v'3 v'3 
1 0 1 0 0 0 72 -72 

[Pke)] 
1 2 1 0 0 0 -./6 --./6 -./6 [44] 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 

with design parameters defined as {p(e)} = {E, v f. 
We emphasize that the decomposition [31-32] is not an eigenvalue factorization 

that could be performed numerically. Doing so would not provide any computational 
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advantage over the classical assembly technique. The key point here is to obtain al­
gebraically the expression of matrices [W] and [P] so that the decomposition [31-32] 
can be implemented in any finite element program. 

6. Theory of Finite Element Disassembly 

In this Section, the procedure for disassembling an arbitrary finite element model 
is presented, based on decomposition [31-32) of inertia and constitutive laws. Here, 
we are mostly concerned with decomposing the element-level matrices. Next, the 
partitioning is collected for each finite element to generate representations of master 
matrices similar to equation [ 4]. 

We assume that the inertia and constitutive laws have been partitioned into Nm 
and N k vectors, respectively, according to the procedure detailed in section 5 for the 
homogeneous and isotropic elasticity. Equations [31-32] can also be written as an 
accumulation of rank-one matrices 

[I,(p(e))] 
Nm 

LWmdd(p(e)) {Pmd} {Pmdf [45) 

d=l 

[H(p(e))] 
Nk 

L Wkdd (p(e)) {PkJ {PkJT [46) 
d=l 

These equations are simply substituted to matrices [Im) and [H] in the definition of 
element-level mass and stiffness matrices, respectively. Accounting for numerical 
integration provides 

where we have defined the following sets of vectors 

{Q~!(i;j;k)} 

{Qie}(i;j;k)} 

Jwijk det J(i; j; k) [N(i; j; k)] {Pmd} 

Jwijk det J (i; j; k) [B(i; j; k)] {Pkd} 

[47) 

[48) 

[49) 

[50] 

Note that the square roots involved in equation [49-50] should not be a concern be­
cause integration weights Wijk are generally positive (see, for example, [BAT 96)) and 
so are the determinants det. J of the Jacobian's coordinate transform if the element's 
outward normals are defined correctly. If these quantities are not positive, a nega­
tive sign can always be assigned to the corresponding entry in the diagonal matrix W 
without loss of generality. 
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Finally, the decomposition can be written compactly as 

[Ql,~)r [w;,~)(p<e)l] [q;,~)] 

[Qke)r [wke)(p<e)l] [Qke)] 

[51] 

[52] 

Consider the stiffness matrix: since [ Wie)] is a diagonal matrix, equations [ 48] and 

[52] emphasize the mechanism of finite element construction. It is a summation of 
(Nk x N9 ) rank-one matrices. The same remark applies to the mass and it is easy 
to understand that similar representations hold for the master matrices because the 
assembly consists in adding together the element matrices. The disassembled master 
matrices are denoted by 

[M(p)] 

[K(p)] 

[Qmf [Wrn(P)] [Qm] 

[Qkf [Wk(p)] [Qk] 

[53] 

[54] 

where matrices [Wm] and [Wk] are diagonal and collect values Wmdd and Wkdd' 

respectively, for each finite element. Similarly, vectors { Q~~} and { Qi:)} are col­

lected in columns of matrices [Qm] and [Qk], respectively, with the usual ordering of 
master degrees of freedom, that is 

This explains why these matrices exhibit, in general, a very high degree of sparsity. 
This procedure is illustrated in section 7 using a simple example for which all compu­
tations can be performed analytically. 

We now have achieved the main result of this work: equations [51-54] show that 
element-level and master quantities can be decomposed in a summation of rank-one 
matrices, each multiplied by a scalar value known explicitely and that depends on 
the model's design parameters. In general, these rank-one matrices require numerical 
integration and they can not be derived explicitely. However, the key point is that they 
do not depend on design parameters and they stay constant once the topology and the 
metric of the mesh has been set. Re-analysis techniques or inverse solvers can take 
great advantage of this property because only the diagonal matrices [W m] and [W k] 
need to be updated. 

7. Demonstration Examples 

To illustrate how finite element models can be disassembled, two examples are 
now presented. They both involve simple, planar models because our purpose is to 
offer a complete overview of the procedure before demonstrating its application to 
re-analysis, structural optimization and inverse problem solving. 
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Node 1 Ne>de 2 Node 3 

"'' 

Noda 4 

Figure 1. Finite Element Model Used for Illustration 

7.1. Example 1: Disassembly of a Two-Beam Structure 

Figure l depicts the finite element model used for this first illustration. It consists 
of a uniform, cantilever planar beam connected to a spring. Two Euler-Bernoulli 
beam elements are used for the discretization. For simplicity, the beam's local axes 
are aligned with global axes (x; y) and it can be verified that the two element stiffness 
matrices are equal to 

[ EA 0 0 l [k(ll(p(l)l] = ~ 12EI 6EI 

iii HI 
"£2 --y-

[56] 

and 

EA 0 0 EA 0 0 T -y 
0 12EI 6EI 0 12EI 6EI 

61/!I HI -&I HI 
[k(2)(p(2)l] 

0 "£2 --y- 0 -TF' --y-
EA 0 0 EA 0 0 ---y;- T 
0 12EI 6EI 0 12EI 6E/ 

-6B -4Fr -yr- -4kl 
0 0 6E/ 

"£2 --y- -""'[2 --y-

[57] 

In equations [56-57], only the active (unrestrained) degrees of freedom are kept. Sim­
ilarly, the element stiffness matrix of the spring is equal to 

[58] 

where k denotes the sping rigidity. Finally, the boolean table that provides the one­
to-one equivalence between local and global degrees of freedom can be defined as 

DOF Ux! Uy! Bz! Ux2 Uy2 Bz2 Ux3 Uy3 Bz3 Ux4 Uy4 Bz4 

I 0 0 0 I 0 0 0 0 0 0 0 0 
2 0 0 0 0 I 0 0 0 0 0 0 0 
3 0 0 0 0 0 I 0 0 0 0 0 0 
4 0 0 0 0 0 0 I 0 0 0 0 0 
5 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 0 0 0 0 
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It can easily be verified that the resulting master stiffness matrix for this simple 
example is equal to 

'.lEA 0 0 EA 0 0 -r- -y 
0 24£! 12EI 0 12£! t3EI 

1~EI iii - 611I iii 
[K(p)] = 0 --y;2 --y;- 0 -TT --y;- [59] EA 0 0 EA 0 0 -y T 

0 12EI 6EI 0 (11./F +k) 6EI 

0 
-6kl -1k/ 

0 6EI -1k/ 
--v- --y;- ---v- --y;-

where the unrestrained degrees of freedom consist of the two translations and in-plane 
rotations at nodes 2 and 3 

[60] 

We now use equations [34-36] to generate the disassembly of beam elements. It 
provides the following decompositions 

[k1'>1p!l>l]= ~ £{!- -£{!- ;I 
[ 

1 0 0 l [ E~LA 0 

0 1-v'3 l+v'3 0 

0 
EI 
'IT: 
0 

with [Qi2)r = 

The spring element is simply disassembled as 

0 

0 
-1 

0 

0 

0 
_£fl 

L 
-(1 + v'3l 

0 
w 

L 
1- y'3 

0 
£il 

L 
1- y'3 

0 l T _£fl 
1+~ 

[61) 

0 
£il 

L 
-(1-v'3) 

0 
[62) 

_w 
L 

1 + v'3 

[63] 

Partitioning the master stiffness matrix simply consists of collectingthe disassembly 
values and the corresponding vectors in the diagonal matrix [W k] and columns of 
matrix [Qk], respectively. Of course, degrees of freedom must be ordered in matrix 
[Qk] the same way they are ordered in the master stiffness matrix [59]. It can be 
verified that the disassembled master stiffness matrix is given by 

EA 0 0 0 0 0 0 T 
0 EI 0 0 0 0 0 2L 
0 0 EI 0 0 0 0 2L 

[Wk(p)] = 0 0 0 EA 0 0 0 [64] T 
0 0 0 0 EI 0 0 2L 
0 0 0 0 0 EI 0 2L 
0 0 0 0 0 0 k 
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Node 3 

Figure 2. Illustration Example of a Planar Beam Model 

and 

-1 0 0 1 0 0 0 
T 

0 £il _M 0 _M £il 0 L L L L 

[Qk) = 0 1- v'3 1 + v'3 0 -(1+v'3) -(1- v'3) 0 
[65] 

0 0 0 -1 0 0 0 

0 0 0 0 £il _M 0 L L 
0 0 0 0 1- v'3 1 + v'3 

A total of seven disassembly values are obtained for this particular example, that 
is, more than the dimension of the model. This is because finite elements are dis­
assembled independently of one another, therefore, redundant information may be 
introduced such as illustrated here. This is not a concern for the assembly of master 
matrices. The second part addresses this issue when disassembly is used for alge­
braically inverting the master matrices. 

7.2. Example II: Disassembly of a Planar Frame Structure 

Before proceeding with the derivation of efficient numerical solvers, we illustrate 
the disassembly of the simple finite element model depicted in Figure 2. The structure 
consists of a planar frame where four beams are connected at four nodal joints. The 
mathematical idealization chosen for this structure is, once again, the Euler-Bernoulli 
beam model. Nodes I and 2 are clamped so that the total number of active degrees of 
freedom is equal to six. 
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7.2.1. Assembly of the Planar Beam Frame Model 

The element stiffness matrix for the Euler-Bernoulli planar beam element is first 
expressed in each element's local frame system. It yields 

EA 0 0 EA 0 0 T --y;-
0 1'2EI 6EI 0 1'2EI 6E/ 

[k(e)(p(e))] = 0 itJ £I 0 
- ltJ ?l; 

""[2 -y- -yr -y- [66] EA 0 0 EA 0 0 --y;- T 
0 12£/ 6EI 0 1'2EI 6EI 

0 
-68 -... B 

0 t~J -... B 
""[2 -y- -""[2 -y-

where the element's design parameters are defined as {p(e)} = {E; A; l}T and rep­
resent the Young modulus, the cross-sectional area and the moment of inertia of the 
beam. The local-to-global coordinate transform consists of the following 6 by 6 ma­
trix where B denotes the in-plane angle of the element (measured positive from the 
horizontal to the element's axial direction) 

cos(B) - sin(B) 0 0 0 0 
sin(B) cos( B) 0 0 0 0 

[L(e)] = 0 0 1 0 0 0 
[67] 

0 0 0 cos( B) -sin(B) 0 
0 0 0 sin( B) cos( B) 0 
0 0 0 0 0 

The master stiffness matrix for this model is obtained by substituting definitions [66] 
and [67] in the assembly equation [27]. The ordering of active degrees of freedom is 
provided below 

[68] 

7.2.2. Disassembly of the Planar Beam Frame Model 

As before, both disassembly values and vectors can be obtained algebraically in 
the case of beam elements 

0 
EI 
2[ 
0 

with 

;I l [Q(<)] 
2L 

(q'·'r ~ I j, 0 
_M 

L 
-{1 + v'3l 

0 
£.J& 

L 
1- V3 

0 

I 
£.J& 

L 
-(1- v'3l 

[69] 
0 

_M 
L 

1 + V3 
Equation [69] shows that each planar beam contributes to three strain-deformation 

modes. The three vectors of matrix [ Q~e)) represent each one of the element's non­

rigid deformation modes. It can be verified that the local matrix [66] is recovered 
exactly when the product [69] is performed. In addition, the element's three rigid 
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body modes have been filtered out from the disassembly because all three entries of 

diagonal matrix [ Wke)] are nonzero. Therefore, the total number of disassembly 

values and vectors is equal to N v = :3 x 4 = 12 (three values contributed by each 
one of the four beams). Then, combining the decomposition of each element stiffness 
matrix and the local-to-global coordinate transform [67] provides the disassembly of 
the master stiffness matrix. Each element-level disassembly vector is stored in a row 
of matrix (Qk] below with the same degree of freedom ordering as the one described 
by equation [68]. The main diagonal of master matrix (W k] is composed of twelve 
entries equal to 

{ (EA)Ill (EJ)Ill (EJ)Ill ... (E.4)14l (EJ)I4l (E/)14)} 
L ' 2L ' 2L ' ' L ' 2L ' 2L 

1701 

and the corresponding twelve disassembly vectors are 

0 0 0 0 0 

0 2.il 1- v'3 0 0 0 L 

0 _2.il l+v'3 0 0 0 L 
0 0 0 -1 0 0 

0 0 0 0 2.il I- y'3 

0 0 0 0 
_:tn_ 

I+ y'3 
[Qk] = L 

0 -I 0 0 I 0 
_£;il 0 -(I+ v'3) £:il 0 I- y'3 
:Ji L 

0 -(1- v'3) _2.il 0 I+ y'3 L L 
cos( B) - sin(B) 0 -cos( B) sin( B) 0 

_£;il sin( B) _£;ilcos(l:l) -(1 + v'3) '¥sin(B) '¥cos(l:l) I- y'3 

¥sin(l:l) ¥cos(B) -(1-v'3) -iz'lsin(l:l) -iz'lcos(B) 1 + v'3 
[71] 

Note that the main two assumptions of finite element disassembly are satisfied: matrix 
(Wk] is diagonal and components of disassembly vectors {QkJ do not depend on 
design parameters {p} of the model. 

This example shows that several designs can be analyzed simply by modifying 

the diagonal entries wk(_e), then performing the matrix product [54]. For large-size 
dd 

meshes, this procedure becomes much cheaper than re-assembling the entire model. 
Of course, this is valid only to the extent where the topology of the structure does not 
change because modifications of the load path generally affect disassembly vectors 
{ Qkd}. Using our simple example, we now illustrate the case of topology modifica­
tion to show that situations may occur where finite element disassembly continues to 
apply. 

7.2.3. Structural Removal 

First, we are interested in removing a structural member. This case is the sim­
plest one because it consists of deleting contributions from the element that is being 
removed. For example, we want to remove the transverse beam number 4. This ele­
ment contributes to disassembly values and vectors I 0, II and 12. Simply removing 
them from vector [70] and matrix [7l]leads to the disassembled model described by 
elements I, 2 and 3 only. 
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When the removal of one or several finite elements generates a "free-floating" 
nodal joint (this would arise in situations where all elements contributing to a given 
degree of freedom are removed), structural integrity may be re-gained by grounding 
the corresponding nodal joints. Practically, it would simply mean deleting all entries 
of vectors { Qkd} that correspond to the free degrees of freedom. This simple example 
demonstrates that finite element disassembly can be applied to such problems as topol­
ogy optimization where the load-carrying capability of a system is optimized. The 
topology optimization algorithms generally attempt to minimize a given cost function 
by carving the optimum load path out of an elastic domain. The conclusion is that 
element removal can be handled easily within the general framework of finite element 
disassembly. 

7.2.4. Addition of Finite Elements 

The second situation considered consists of adding finite elements to an existing 
mesh. In cases where no nodal joint or degree of freedom is created, adding a new 
element can be handled by classical assembly as 

[K(updated)(p)] = [K(original)(p)] + [L(e)r [k(e)(p(e))] [L(e)] [72] 

Similarly, the disassembled model can be updated by adding to matrices [W k] and 
[Qk] the diagonal entries and vectors corresponding to the new finite element. For 
example, introducing a spring element in figure 2 between nodes I and 4 simply con-

sists of adding the disassembly value ( ELA) (
5

) at the 13th position on the diagonal of 
matrix [W k] and adding the following vector 

{ Qk5
)} = {-cos(},- sin 0, 0, cos(},- sin 0, 0} T [73] 

as the 13th column of matrix [Qk]. The reason that a single strain mode is considered 
is because the spring element exhibit extensional stiffness only. 

When the mesh is modified in such a way that new degrees of freedom are intro­
duced, the procedure remains basically the same except that components of existing 
vectors { Qkd} may have to be re-ordered to match the new degree of freedom num­
bering. Nevertheless, it should be noted that performing this operation on individual 
vectors is generally much easier than re-ordering rows and columns of an existing 
master matrix. 

8. Numerical Validation 

In this section, the technique for disassembling arbitrary finite element models is 
illustrated. Implementation and numerical aspects are discussed. Our goal is to illus­
trate the technique using a variety of structures typical of the aerospace and automotive 
industries. Our first example is a wing structure formed of I D and 2D finite elements, 
then, a volume model is disassembled. Finally, a truss structure is used for illustrating 
the computational advantage of disassembly over classical assembly in the context of 
repeated analysis. 
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Figure 3. Reduced-Scale Model of a Wing Structure 

Number of Nodes 
Number of Elements 
Number of Equations 
Sparsity of [K] 
Storage of [K] 

Wing Model 
432 

1, 708 
2,556 
1.81% 

1.43 Mbytes 

Volume Model 
4,805 
2,727 

14,415 
0.39% 

9.8 Mbytes 

Table 1. Properties of the Finite Element Models Used 

8.1. Wing Model 

Truss Model 
44 

135 
120 

5.00% 
9, 172 bytes 

Our first example features the finite element model of a reduced-scale wing shown 
in figure 3. The model counts a total of I ,708 elements among which 434 stiffeners 
(with axial deformation only), 178 Euler-Bernoulli beams and I ,096 3-node shell 
elements. The wing is cantilevered and it results into a total of 2,556 active degrees 
of freedom. Table I lists the characteristics of the models used. It can be seen that 
the sparsity of the stiffness matrix is 1.81 %, meaning that only 1.81% of its entries 
(potentially, 2,556 x 2,556 entries) are nonzero. This very low ratio of nonzero terms 
is typical of aerospace structures. Table 2 lists characteristics of the disassembled 
model for this system and the other two used. For the stiffness matrix, a total of 17,752 
vectors are generated by disassembly. However, the sparsity ratio of matrix [Qk] is 
only 0.62%: as a result, it requires only a little less than three times the memory 
required to store the master stiffness matrix. 
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Figure 4. Simplified Model of a Cylinder-head Block 

As far as computation times are concerned, it can be observed in table 3 that clas­
sical assembly and disassembly techniques are very similar for all three examples 
presented. These examples illustrate that it may even be less expensive to perform a 
disassembly of the stiffness matrix than to assemble it. Table 3 shows CPU times ob­
tained for various operations with a Matlab-based finite element program. Relatively 
large assembly times are measured because 1) Programs are interpreted by Matlab 
rather than compiled; and 2) The program used is a research software in finite ele­
ment methodologies that is not optimized for computational efficiency as commercial 
programs would be. However, both assembly and disassembly suffer from the same 
disadvantages. Hence, the merit of table 3 is to provide a relative comparison between 
various operations. The CPU times are obtained on the R I 0,000 processor of a Silicon 
Graphics workstation. Each time presented is an average of 30 executions of the same 
operation. In our first example, the computational cost of 2.5 seconds for constructing 
the master stiffness matrix from its disassembly is approximatively two orders of mag­
nitude less than the cost of classical assembly. Thus, if the design is changed without 
altering the topology of the structure, master matrices can be reconstructed at a small 
fraction of the cost of the assembly (about I%). 

8.2. Cylinder-head Model 

The second example features a simplified, "shoe-box" model of a cylinder-head 
block from the automotive industry (see figure 4). The model is constructed from 
2,727 8-node brick elements with free-floating boundary conditions and it results 
into a total of 14,415 active degrees of freedom (see table I). The sparsity ratio of 
the stiffness matrix is now equal to 0.39%, which basically means that less degrees of 
freedom are coupled than for the case of the wing model. 

Table 2 shows that the stiffness disassembly generates 112,886 vectors stored in 
columns of matrix [Qk]· However, the high degree of sparsity of matrix [Qk] (with 



Length of [W,] 
Sparsity of [Q,] 
Storage of [Qm] 
Length of [W k] 
Sparsity of [Qk] 
Storage of [Qk] 

Wing Model 
24,468 
0.39% 

0.44 Mbytes 
17,752 
0.62% 

3.99 MBytes 
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Volume Model 
65,448 
0.007% 

1.11 Mbytes 
112,886 

0.14% 
29.20 MBytes 

Car Model 

113,540 
0.06% 

18.7 MBytes 

Table 2. Properties of Disassembled FE Models 

Wing Model Volume Model 
(in seconds) (in seconds) 

Assembly of [M] 32.2 343.3 
Disassembly of (M] 53.7 471.8 

Product of [Q,f (W,] [Qm] 0.3 2.8 
Assembly of (K] 280.2 3,023.1 
Disassembly of (K] 237.6 5,294.9 

Product [Qkf [Wk] [Qk] 2.5 78.6 

Table 3. Typical CPU Times Obtained for the Disassembly 

Car Model 
(in seconds) 

3,700 
3,000 

6.7 

0.14% of nonzero entries only) yields a memory requirement multiplied by a factor 
three only compared to storing the master stiffness. The second column in table 3 
shows, again, that reconstructing master matrices once their disassemblies are avail­
able can be achieved at a fraction of the original cost: 78 seconds with disassembly 
compared to 3,023 seconds with classical assembly for the stiffness matrix, that is, 
about 38 times less. 

It can be observed that, in general, disassembly tends to generate large numbers of 
vectors in matrices (Qm] and [Qk]. This is because finite elements are disassembled 
individually, as mentioned previously. Hence, extraneous (or redundant) information 
is introduced because the master matrices only span a subspace of dimension equal to 
their rank. Practically, a filtering technique would be implemented to recover the cor­
rect number of independent columns in matrices [Q,] and [Qk] but the figures listed 
in table 2 do not take such a filtering into account. Therefore, the CPU times obtained 
correspond to a worst-<:ase scenario since much more information is generated than 
actually needed. 

8.3. Car Model 

Finally, we illustrate the disassembly procedure with the body in white of a car 
shown in figure 5. This model features a total of 3,930 nodal joints and 8,110 triangu­
lar shell elements leading to 23,480 degree of freedoms. The DKT18 shell presented 
in reference [BAT 92] is used for this discretization. 
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Figure 5. Finite Element Model of the Car Structure 

Since the DKTI8 shell element exhibits a rank order of II, the number of columns 
stored in matrix [Qk) is equal to 11, 3540 after applying boundary conditions. Statis­
tics and CPU times are provided, again, in tables 2 and 3, respectively. They illustrate 
that the CPU time required for this example is less than the time of assembling the 
master stiffness matrix. It can also be seen that reconstructing the master matrices 
once their disassembly is available can be achieved at a marginal fraction of the orig­
inal cost. Finally the high degree of sparsity of matrix [Qk) (with 0.06% of nonzero 
entries only) yields again a memory requirement multiplied by a factor three compared 
to storing the symmetrical part of master stiffness. 

9. Numerical Solver for Repeated Analysis 

In this section, we focus on the problem of solving equations [ 1-2] with multiple 
models (that is, when various sets of design variables {p} are tested). Typically, we 
require multiple resolutions of an equation written as 

[74] 

corresponding to the static equilibrium [I]. In this equation, the design {p} is modi­
fied at each analysis cycle, and it is assumed that the system matrix is disassembled. 
For eigenmode extraction equation [74] still hold with the right-hand side defined as 

{F} = [M) {x} 

if~ subspace iteration solver, for example, is implemented ([GER 97]). We amphasize 
that the deviation that followsis not restricted to static problems. 

Next, in the next section, we introduce the incomplete QR factorization of the dis­
assembly matrix [Qk) required for establishing the baseline numerical solver proposed 
in section 9.2. 
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9.1. QR Factorization 

In general, finite element disassembly generates large numbers of vectors. For 
example, disassembling the model shown in figure 2 generates a total of twelve vectors 
(Nv = 12) whereas the number of active degrees of freedom is equal to six (N = 
6). Obviously, some of the information generated during disassembly is redundant 
because the elements are decomposed into strain mode contributions independently 
from one another. 

This section addresses this issue by showing how redundant vectors may be elim­
inated without loss of vital information about the model. We assume in the remainder 
that the rank of the matrix decomposed is equal to N R which is less than or equal to 
N, the number of equations. Hence, we always work with the following assumption 

[75] 

The first step to derive a numerical solver for equations [I -2] using disassembly is 
to "invert" matrix [Qk]. Since this matrix is generally rectangular and exhibits a high 
degree of sparsity, a QR factorization is best suited. The QR factorization is denoted 
by 

[Q] 
Nv x Nv 

where matrix [Q] is orthogonal, that is, it satisfies 

[Qf [Q] =(I] 

[R] 
Nv x N 

[76] 

[77] 

and where matrix [R] would typically feature a N x N upper triangular part followed 
by a ( N D - N) x N zero-block matrix. In equations [76] and [78] below, the conven­
tion Nraw x Neal indicates the number of rows (Nraw) and the number of columns 
(Neal) of each partition. 

It can be seen from equation [76] that the full QR factorization would be prohibitly 
expensive because it involves the computation of an orthogonal matrix [Q] of dimen­
sion N D. We could rather implement an incomplete QR factorization. This algorithm 
is widely available for sparse matrix algebra based either on Householder transforma­
tions ([BUS 65]) or Givens rotations ([GEO 80]), the latter being less computationally 
efficient than the former but offering the advantage of introducing less fill-in. An in­
complete QR factorization is denoted in the following by 

[78] 
where the orthogonality condition [77] becomes 

[79] 
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Decomposition [78] is called incomplete because the partition (Q 2] is not actually 
computed. However, the incomplete QR factorization provides the same information 
regarding the subspace spanned by the original matrix as a complete decomposition, 
that is 

Range ([Qk]) = Range ([Qi]) [80] 

Equation [80] proves that redundant information generated during finite element dis­
assembly may be filtered out because a minimum number of column-vectors can be 
collected in matrix [Q t) that span the same subspace as the master stiffness matrix. In 
equation [78], matrix (R11 ] is a square, upper triangular and non-singular matrix of 
dimension N R. The second non-zero block [R12] gathers all singular columns of the 
triangular matrix. For a mechanical system with no mechanism, a maximum of six 
rigid body modes are extracted from the stiffness matrix. Therefore, the rank would 
typically be obtained in the range (N- 6) :S NR :S Nand partition [Rt:!] would 
collect no more than six columns. In the case where the stiffness matrix is full-rank 
(that is, N R = N), it can be shown that the upper triangular matrix [R1 i] is equal to 

the Choleski factorization of matrix ( [Qkf (Qk]) ([GOL 90]). 

The advantage of an incomplete QR factorization is that partition [Q 2] need not to 
be calculated. This results in significant computational savings. Reference [GOL 90] 
provides several numerical procedures for computing the incomplete QR factorization, 
the cost of which can be estimated to (2ND N 2 ) floating point operations (Flops). 
In comparison, it requires approximatively (~Nb2 ) Flops for factoring the master 
stiffness matrix where b denotes the sparse storage's bandwidth. Practically, partitions 
(R11 ] and [Rt:!] are extracted from the upper triangular matrix (R] by identifying 
which columns possess nonzero diagonal entries and which columns possess zero 
diagonal entries, respectively. The latter characterizes the singular columns that are 
stored in partition (Rd. Then, we are left with the non-singular part (R11 ]. The 
inverse of this matrix is denoted by (R11r 1 in the remainder; However, it should be 
kept in mind that this operation is simply a backward substitution since the "inverted" 
matrix is upper triangular. 

We now investigate the derivation of a pseudo-inverse matrix using the incomplete 
QR factorization obtained previously. For solving a rectangular system of equations 
[A] {x} = {b }, a pseudo-inverse matrix (A+] is generally defined as the matrix that 
minimizes the Frobenius (or Euclidean) norm of the following residue 

Going over the derivation of the minimization problem [81] where (A] [Qk] 
provides the following solution 
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An alternative way of establishing this result is to verify that the pseudo-inverse matrix 
satisfies the four necessary and sufficient Moore-Penrose conditions listed in equation 
[83-86] below. The pseudo-inverse is the unique matrix that satisfies these conditions 

[83] 

[Qt] [Qk) [Qt] = [Qt] [84] 

([Qk] [Qt]) is symmetric and equal to ([QI] [Qif) [85] 

([ Qt] [Qk]) is symmetric and equal to [I] [86] 

Again, we emphasize the fact that partition [Q2] is not required in the solution pro­
cedure [82]. Similarly, the notation [ Qt J is employed in the following for the sake 
of clarity. However, this pseudo-inverse needs not to be calculated explicitely which 
also saves a great deal of memory and CPU requirements. Therefore, implementing an 
incomplete QR factorization provides a computationally efficient procedure for "in­
verting" matrix [Qk] while featuring at the same time a practical filtering of redundant 
information introduced by finite element disassembly. Of course, this procedure is 
significantly more expensive than a simple Choleski factorization of the master ma­
trix. Nevertheless, we will show that this initial higher cost is rapidly compensated by 
the very efficient disassembly-based solution procedure for repeated analysis. 

9.2. Baseline Numerical Solver 

The solution to equation [74] can now be expressed as 

[87] 

where the pseudo-inverse matrix [ Qt J is provided symbolically by equation [82]. Of 
course this solution is obtained in a least square sense since the number of disassembly 
vectors generated is usually greater than the dimension of the problem (N D 2: N), as 
illustrated by previous numerical examples. However, the obtained solution could be 
seen as an excellent starting guess for an iterative solving procedure, which necessitate 
only few step refinement for leading to an acceptable solution. But in practical appli­
cations shown in sections 9.3 to 9.6, no refinement steps are involved since solutions 
obtained with [87] are readily acceptable. 

Practically, the solution procedure only involves forward-backward substitutions 
and it takes advantage of orthogonality conditions [79] to avoid constructing and stor­
ing the pseudo-inverse matrix. The numerical implementation of this solver is pro­
vided and discussed briefly below: 

1. Solve { x(I)} = [R11rr {F} [88] 

2. Multiply { x(:?)} = [QI] { x(I)} [89] 
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:3. Solve { x( 3 )} = (W k (p W1 
{ x!2)} [90) 

4. Multiply { x(4)} = [QI]T { x(3)} [91) 

5. Solve {x} = [R11r 1 
{ x( 4

)} [92) 

Step I of solver [88-92) consists of a forward substitution with a system of N R 

linearly independent equations. It requires approximately ( ~ N b) Flops where b de­
notes the sparse storage's bandwidth. Note that the load vector possesses a total of 
N entries. However, if the system is rank-deficient (that is, N R ::=; N), only N R 

components need to be solved for. Typically, these components are identified during 
the QR factorization by storing indices of columns where a nonzero entry is found 
on the diagonal of triangular matrix [R]. Step 2 of solver [88-92] is a matrix-vector 
multiply that results into a maximum of (N D N R) Flops. Step 3 involves the inversion 
of a diagonal matrix and Step 4 is another matrix-vector multiply: these totalize a 
maximum of N R ( N D + 1) Flops. Finally, Step 5 consists of a backward substitution 
with N R equations. The computational burden of solver [88-92) is therefore equal to 
NR (2Nv + b + 1), at most, if it is assumed that the orthogonal matrix [Qd is full 
and that the triangular matrix (R1 d is stored using a skyline profile of bandwidth b. 
Obviously, this requirement is marginal compared to the (2ND N 2 ) Flops required for 
QR factorization. 

Also, we see that implementing the solution procedure [88-92] using a second 
set of design parameters {p} only requires to modify Step 3 because only matrix 
[W k] depends on the model's design variables. If the load vector {F} is unchanged, 
repeating Steps 3 to 5 involves a maximum of N R ( N D + % + 1) Flops in addition 
to the cost of re-assembling the diagonal of matrix (Wk],-which can be kept to a 
minimum given the adequate implementation effort. In the remainder of this section, 
the procedure is illustrated using two different finite element models. 

9.3. Disassembly of a Truss Structure 

Our first example is the truss structure shown in figure 6 and presented in tables 1-
3. It features a total of 44 nodal joints and it is modeled using 135 bar elements (with 
extensional stiffness only). The ten-bay truss is cantilevered, its number of active 
degrees of freedom is equal to 120 and each finite element contributes to essentially 
one strain mode. Therefore, disassembly yields a matrix (Qk] formed of 120 rows 
and 135 columns. Its sparsity is 2.12%, meaning that 97.88% of its entries are not 
stored because they are equal to zero. The CPU time required for total finite element 
disassembly is equal to 0.84 seconds and QR factorization is achieved in 0.03 seconds. 
In comparison, the CPU time required for assembly of the master stiffness matrix is 
equal to 1.15 seconds and a Choleski factorization is obtained in 0.003 seconds. The 
sparsity ratio of the master stiffness matrix is equal to 5.00%. 
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Figure 6. Finite Element Model of NASA Langley's DSMT Truss Structure 

9.4. Re-analysis of a Truss Model With Various Solvers 

Figure 7 compares CPU times obtained with three implementations as the design 
is changed and multiple solutions to equation [74] are sought after: 1) The stiffness 
matrix is re-assembled, re-factored and multiple load cases are analyzed; 2) No new 
assembly or factorization is necessary and only forward-backward resolutions are car­
ried out; and 3) The disassembly technique is implemented together with solver [87]. 
Note that the second strategy is not realistic as soon as the design is changed be­
cause the stiffness matrix must be re-factored. However, since the forward-backward 
resolution is the most efficient solver for sparse matrices, a comparison with case 2 
provides us with insight regarding the computational efficiency of disassembly. In 
figure 7, five loading cases are analyzed for each design and I 0 design cycles are con­
sidered. As expected, figure 7 shows that case I is by far the most expensive solution 
procedure. Cases 2 and 3 are very similar in terms of computational efficiency for this 
example. The reader should however keep in mind that these results depend on the 
problem's size, its degree of sparsity and the type of finite elements involved. 

Next, we apply a loading in the vertical direction at each of the four nodes at 
the free end of the truss and we are interested in computing the structural response 
for various combinations of design parameters {p }. Three solvers are compared in 
the following. The first one consists of re-assembling the master stiffness matrix, 
performing a Choleski factorization and forward-backward resolutions for each model 
considered. The second solver implements the Woodbury method: in the case where 
modifications brought to the stiffness matrix can be represented as a superposition of 
rank-one updates, the solution of a modified system of equations can be obtained from 
the previous solution without having to perform a new factorization. Equations [93] 
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Figure 7. Comparison of Three Solvers for Structural Re-analysis. Case I is shown 
with the dashed line: the master matrix is re-assembled andre-factored for each new 
analysis. Case 2 is shown with the solid line: only forward-backward resolutions are 
implemented for each new analysis. Case 3 is shown with the dashed/dotted line: 
model disassembly and solver [87] are implemented 

to [95] below summarize the formulation of this second solver. We assume that the 
"new" stiffness matrix is obtained from the previous one by 

[93] 

where [Dw) is a diagonal matrix that collects changes brought to the model and [Ew) is 
a localization matrix used for propagating these changes to entries of the master stiff­
ness matrix. Design changes would, for example, represent rank-one perturbations 
assigned to individual finite elements between two successive design cycles. Then, it 
can be verified that the "new" solution can be expressed as a function of the previous 
solution by 

where 

[95] 

The solution procedure of the Woodbury-based solver goes as follows: the first analy­
sis consists of solving the linear system [K) { x} = { F}. Then, the model is perturbed 
according to equation [93] and solution [94] is implemented for any subsequent anal­
ysis. Since a Choleski factorization of the original stiffness matrix is available, equa­
tion [94] consists only of forward-backward resolutions and matrix-vector multipli­
cations, which is cheaper than having tore-factor the new stiffness matrix. 
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25 

Figure 8. Comparison of Three Solvers for Structural Re-analysis of a Truss Model. 
Case I is shown with the dashed line: the master matrix is re-assembled and factored 
for each new analysis. Case 2 is shown with the dashed/dotted line: the Woodbury­
based solver [93-95] is implemented with updates of rank ( n-1) at the n-th design 
cycle. Case 3 is shown with the solid line: the disassembly-based solver [88-92] is 
implemented 

It can be seen that the numerical efficiency of this second solver depends to a 
great extent on the size of matrix [W w] that is the only one to require factorization. 
Equation [95] shows that this matrix is full and that its size is equal to the number 
of column vectors in matrix [Ew ]. Typically, an update of rank N R involves exactly 
Nn linearly independent vectors and, therefore, matrix [Ww] in equation [95] is a 
square matrix of size N R· To maximize the numerical efficiency of this solver in 
our numerical example, we restrict ourselves to rank-one updates: the cross-sectional 
area of a single bar element is modified at each new design cycle. Hence, the size of 
matrix [W w] is equal toN R = ( n - 1) at the nth design cycle. Note that, for a rank­
one update, equations [93-95] degenerate into the well-known Sherman-Morisson 
update. 

The third solver is the disassembly-based algorithm described in equation [88-92]. 
The CPU times obtained are equal to 0.95 seconds, 0.13 seconds and 0.03 seconds for 
the Choleski-based, Woodbury-based and disassembly-based solvers, respectively. 
We emphasize that these figures represent the average CPU time required for a single 
static resolution. 

Figure 8 illustrates the cumulated CPU requirements for each one of the three al­
gorithms. It can be observed that the cost of the first solver increases linearly with 
the number of design cycles: this makes sense since similar operations (assembly, 
factorization and forward-backward resolutions) are repeated each time. With the 
Woodbury-based solver, the first analysis is the same solution procedure as before. 
Then, figure 8 shows that additional iterations are much cheaper because a matrix of 
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small size N R = ( n - I) is factored at iteration n. It also shows that the Woodbury­
based solver loses its numerical efficiency as .\' R· the rank of the update, increases. 
Clearly, our disassembly-based solver provides the best result. In a worst-case sce­
nario, the computational cost associated to finite element disassembly and QR fac­
torization would be greater than that of solver one, although this is not observed in 
our numerical simulation. In any case, these expensive manipulations are performed 
only once and the computational requirement of each subsequent iteration represents 
a marginal fraction of that cost. Moreover, this requirement does not depend, as in 
the case of a Woodbury-based solver, on the rank of the update. The conclusion is 
that our disassembly-based solver is best suited to situations where enough designs 
are analyzed to absorb the potentially higher initial cost. 

9.5. Re-analysis of a Wing Model With Various Solvers 

We will now discuss the re-analysis of the wing model presented in section 8.1 
(see figure 3) using the same three solvers as before. Disassembly yields a matrix 
[Qk] formed of 2,556 rows and 17,752 columns. Since we are essentially interested 
in constructing an inverse stiffness matrix, the largest disassembly values Wkdd are 
filtered out because their inverse would be very small compared to other components, 
therefore, the contribution from corresponding disassembly vectors { Qkd} can be ne­
glected. Hence, the number of disassembly vectors is reduced down from 17,752 to 
3,039 which greatly lowers the computational burden, yet yields a solution accurate 
up to the second decimal (the maximum error is I%). 

Next, static forces and moments are applied at the free end of the wing to simulate 
a structural response similar to the first torsional mode. Again, a total of n = 30 
resolutions are repeated in the same condition as before, that is, a single perturba­
tion (or rank-one modification) is introduced between any two consecutive design 
cycles. CPU times obtained for a single static resolution are equal to 279.03 sec­
onds, 39.75 seconds and 133.04 seconds for the Choleski-based, Woodbury-based 
and disassembly-based solvers, respectively. Figure 9 illustrates the cumulated CPU 
requirements for the three algorithms. The Woodbury-based solution procedure now 
appears to be cheaper than the other two: this is because any two successive designs 
only differ by a rank-one update, which is the best possible situation for this solver, yet 
not the most realistic one. Nevertheless, the cost of the second solver grows quadrat­
ically each time as the rank of the update is increased because matrix [95] is full 
and it must be factored. The cost of the disassembly-based solver, to the contrary, is 
independent of the amount of change brought to the model. 

9.6. Application to Fully Stressed Design 

One last illustration of the applicability of finite element disassembly is the prob­
lem of minimum mass design given known operating conditions. The baseline truss 
model shown in figure 6 is optimized to decrease its total mass as much as possible 
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Figure 9. Comparison of Three Solvers for Structural Re-analysis of a Wing Model. 
Case 1 is shown with the dashed line: the master matrix is re-assembled and factored 
for each new analysis. Case 2 is shown with the dashed/dotted line: the Woodbury­
based solver [93-95] is implemellted with updates of rank (n-1) at the n-th design 
cycle. Case 3 is shown with the solid line: the disassembly-based solver [88-92] is 
implemented 

given the same static loading as before (vertical forces are applied at each of the four 
nodes at the free end of the truss). The optimization algorithm described briefly below 
is implemented and performance is compared using two static solvers: the first solver 
involves classical assembly followed with a Choleski factorization and the second 
solver features finite element disassembly and implementation [88-92]. 

Many formulations and solution procedures have been proposed for this problem 
([RAZ 65], [ROZ 89)), among which we choose to implement the fully stressed de­
sign algorithm developed by Souza de Cursi and Pagnacco because of its simplicity 
([SOU 95]). The problem is formulated as the minimization of the total mass of the 
structure 

min (mass) 
{p} 

[96] 

given a constraint on the stress distribution generated in the model by the applied 
loading. This limitation can be expressed as 

[97] 

where the design criterion \II typically represents a Von Mises-like criterion of plastic 
failure and lit mar represents the material's limit of elasticity. Using mathematical con­
siderations, it is shown in reference [SOU 95] that the optimum design {p(opt)} can 

be obtained by seeking the solution to the equation {p(opt)} = f(\ll(p(optl)) {p(opt)} 
where f is a somewhat arbitrary, user-defined function. This problem is solved by con-
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Figure 10. Finite Element Model of NASA Langley's DSMT Truss Structure After 
Fully Stressed Design Optimization 

structing a sequence of models {p(n)} that converge to the optimum design {p(opt)} 
using the following numerical procedure: 

1. Assembly of Matrix [K(p(n)l] [98] 

2. Resolutionof [K(p(n))] {x(n)} = {F} [99] 

3. Determine the Stress Distribution { (j( n)} = { 0"( X( n))} [I 00] 

4. Determine the Design Objective w!" l = llt(x!" l; (j(n l) [ 101] 

5. Optimization {P(n+l)} = (1- w) {P(nJ} +wf ( w(n)) {P(n)} [102] 
\II max 

6 A I C t . t (n+l) . ( ( (n+l))) [103] . pp y ·OilS ram s Pk = 111111 Pmax; max Pmin; Pk 

In the application example below, f(x) = x is chosen for simplicity. Step 6 of the 
algorithm is implemented to ensure that each design parameter Pk is optimized within 
user-defined bounds [Pmin; Pmaxl· The relaxation parameter w can be optimized for 
improving the convergence rate of the algorithm. In our example, it is kept constant at 
w = ~. Convergence is assessed by estimating the total amount of change brought to 
the m~del between any two iterations. 

The total mass of the truss illustrated in figure 6 is optimized using the same static 
loading as in section 9.4. The fully stressed design algorithm [98-103] requires multi­
ple inverse resolutions during step 2 and two implementations are tested. The first one 
involves classical assembly and a Choleski-based solver. The second one involves 
finite element disassembly (performed at iteration n = 1 only) and the solver [88-
92]. Note that the Woodbury-based solver [93-95] would typically be inadequate in 
this situation because all of the model's design variables are modified simultaneously 
at each iteration. Figure I 0 illustrates the optimum design reached after 15 iterations 
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Figure 11. CPU Time Requirements for Fully Stressed Design Optimization. Case 
I is shown with the dashed line: the master matrix is re-assembled and factored for 
each new analysis. Case 2 is shown with the solid line: the disassembly-based solver 
{88-92] is implemented 

only. Optimization variables consist of the cross-sectional areas of the 135 truss mem­
bers. The solution makes perfect engineering sense since stiffer members (indicated 
by thicker cross-sectional areas in figure 10) are placed near the cantilever bound­
ary condition where strain energy is the highest. At the same time, cross-sectional 
areas are decreased to minimize the mass as much as possible in areas that do not 
carry significant loading. This optimization results into a minimization of the total 
mass by 83%: the structure's weight is decreased from 0.0574 lbf (or 10.05 kg) be­
fore optimization to 0.0097 lbf (or 1.71 kg) after. Both solvers provide the same 
design because assembly-based and disassembly-based solutions at step 2 are identi­
cal. However, computational requirements are quite different, as illustrated in figure 
11. Although a small number of iterations are necessary to achieve convergence, finite 
element disassembly and its associated solver provide a dramatic reduction ofthe total 
computational requirement. 

10. Inverse Problem Solving Using Flexibility Data 

An application to test-analysis reconciliation is now discussed. First, we formu­
late the inverse problem of finite element model updating. This discussion is aimed 
at showing that most updating techniques result into similar resolutions ; the only 
difference between any two methods being the definition of a residue vector. It is 
shown here that the particular choice of flexibility data offers significant advantages 
in the context of finite element disassembly, not to mention that flexibility matrices 
are easily measured during modal tests. 
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10.1. Formulation of Finite Element Model Updating 

Updating methods can generally be formulated as the minimization of residue vec­
tors. Residues measure the (lack ot) correlation between test data and responses simu­
lated using the finite element model. Typical examples include the difference between 
identified and simulated frequencies or vectors. Indirect measures of the correlation 
between the test article and the model can also be defined, such as out-of-balance 
forces in the model. Reference [HEM 98] provides a description of these popular 
residues. 

No matter what definition is used, design parameters are sought after that minimize 
residues at the ( n + 1 )th iteration given a distribution of residues at the n-th iteration. 
The best-case scenariowould consist of reaching zero-residues, that is 

[104] 

where the updated design parameters are obtained from current ones as 

[ 105] 

Usually, substituting definition [I 05] into equation [I 04]leads to a nonlinear system of 
equations. First-order linearizations are attractive alternatives to the implementation 
of computationally intensive nonlinear solvers. It yields 

At any updating iteration, the system [I 06] is solved for the unknown correction pa­
rameters { Jp} by inverting in a least-squares sense a correction matrix [9] that col­
lects the residue's gradient vectors in its columns. The compact form of system [ 106] 
is provided below 

[107] 

with 

[g(p(n); s)] = [{ 8R (p(n); s)} I { 8R (p(n); s)} I·. ·I { 8R (p(n); s)}] 
8p1 8p2 OPNp 

[ 108] 
Regularization can be added to improve the condition # of matrices to invert. This 
would typically modify the definition of matrix [I 08] but it does not change the con­
clusion reached below. For clarity, regularization is not assumed in the following. 

It can be seen from equation [I 07] that the solution procedure consists of forming 
matrix [I 08], then inverting it to get the solution and adjust the model. All updating 
algorithms using gradient-based optimization techniques involve a similar procedure. 
In the following, we show that the computational burden associated to this procedure 
can be greatly reduced when the correlation involves flexibility data. 
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10.2. Using Flexibility Data and Reduced FE Models 

Using flexibility data consists of defining the residue vectors as the difference be­
tween measured and analytical Frequency Response Functions (FRFs). Since FRFs 
are obtained by inverting the dynamic stiffness matrix at a given frequency s, a flexi­
bility-based residue matrix can be defined as 

[109] 

The advantage of this definition is that the measurements [Fid] can be obtained di­
rectly from test data by estimating the transfer functions between input excitations 
and output measurements. Measuring the flexibility matrix is a pre-requisite to any 
identification algorithm and it is generally much cheaper and less troublesome than at­
tempting to best-fit mode shapes and frequencies, especially when modally complex 
structures are tested and identified. 

We now emphasize the fact that only a small number of degrees of freedom are 
measured during a modal test, typically no more than 10% in aerospace applications, 
even less in automotive applications. If otherwise, the updating problem offers no 
challenge because it can be solved for in a single iteration. Therefore, any comparison 
between test data and finite element quantities involves a procedure for resolving this 
spatial incompleteness. For example, the dynamic stiffness matrix is reduced to match 
the size of the experimental model. Accordingly, our disassembled, analytic model 
can be reduced down to the measurement points by 

(ZR(P; s)] (T]T ((K(p)]- s 2 (M(p}]) (T] [110] 

([Qk,m] [T]{ [Wk,m(P; s)] ([Qk,m] [T]) [Ill] 

where matrix (T] denotes the model condensation operator. Finally, using the results 
of section 9, the disassembled equation [Ill] can be inverted to provide the model­
based flexibility matrix as 

[112] 

In equation [ 112], the original disassembly matrix [Q •. no) is kept for simplifying the no­
tations although it should actually be replaced with the condensed matrix ([Q •. m]ITI). 

From now on, the former will denote the condensed disassembly matrix. Again, a 
pseudo-inverse matrix is used for clarity in equation [ 112] but the reader should keep 
in mind that it is never actually required, as discussed in section 9. 

10.3. Two-Step Updating Algorithm 

We have seen that a residue matrix [I 09] can be defined based on measured flex­
ibility data and condensed finite element models. The solution procedure for model 
updating as outlined in section I 0.1 is now detailed using this particular choice. It 
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is shown that disassembly can be exploited to greatly reduce the computational bur­
den. Basically, no matrix inversion nor QR factorization needs to be performed for 
updating the model. 

We recall that the computational model is adjusted by solving the parameter cor­
rection equation below with our particular choice of flexibility-based residues 

[113] 

Using the disassembly representation [ 112] for the reduced finite element flexibility 
matrix, the previous system of equations becomes 

( 

Np {) ( _ 1 ) ) T [Qt_,,] {; apk [wk,m(P("l;s)] c5pi"+t) [Qt,m] =- [R.(p("l;s)] 

[114] 
Equation [ 114] holds because only the disassembly values stored in diagonal matrix 
[W k ,m] depend on design variables. This is however not exact strictly speaking since 
[Qk,m) depends on a condensation matrix. The latter would typically be derived from 
the model, therefore, introducing an implicit dependency with respect to the current 
design { p(" l}. However, it is common practice to neglect this relationship in first 
order approximation because the condensation operator [T] is generally computed us­
ing the original finite element model and used for several refinement iterations without 
being updated. When it is assessed that the current model is far away from the starting 
point, test-analysis correlation can be established and the condensation matrix can be 
updated based on the current model. 

We can re-write this correction system using a generic matrix [9) equal to the 
summation of diagonal sensitivity matrices in the left-hand side of equation [ 114]. It 
gives 

[115] 

We may now consider without loss of generality that the problem consists of solving 
equation [ 115] for the unknown quantity [9). However, the solution matrix is not 
arbitrary: it is diagonal and exhibits the specific pattern described by equation [114]. 
This leads to a two-step updating algorithm where equation [ 115] is solved first, then 
the particular form of matrix [9] is best-fitted to the solution. The first resolution is 
referred to as the "global" updating problem because all equations are coupled. It can 
be verified easily that the solution is given simply by 

[116] 

It is remarquable that no matrix inversion nor QR factorization is required to solve 
the global updating problem once the disagreement [ 1 09] between test and analysis 
flexibility matrices has been calculated. Note also that solution [ 116] should yield a 
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diagonal matrix if the connectivity of the model is an exact representation of the test 
structure's load path. This is however rarely the case due to finite element approxi­
mations. Moreover, measurement noise and numerical roundoff prevents the solution 
matrix from being exactly diagonal in most realistic applications. Therefore, the finite 
element parameterization is best-fitted by solving the following system that involves 
the diagonal of matrix [m only 

k·="f.N. ()~k ([wk.,rn(P(nl; s)r
1

) Jpf'+ll = Diag ([~l(p("l: s)]) [117] 

This second resolution is referred to as the "local" updating problem because equa­
tions are actually decoupled for each finite element. In the best-case scenario, solving 
equation [ 117] consists of inverting a diagonal matrix when a single design variable 
is updated per finite element. In the worst-case scenario, solving equation [ 117] con­
sists of inverting as many small-size systems as there are finite elements adjusted. The 
size of an individual system for a specific element is dictated by the number of design 
parameters corrected within this element. Therefore, the local updating problem intro­
duces hardly no computational requirement at all since resolutions can be performed 
in parallel and independently from one another. 

This solution procedure yields the following iterative solver: 

1. Disassembly of Matrices [K(p(n)l], [M(p(n)l] [118] 

2.ComputationoftheReductionl\latrix [T(n)J = [T(p("l;s)J [119] 

3. Estimation of Residues : 

[n.(p("l:sl] = [zR(P("l;s)r'- [F;d(s)] 

4. Resolution the of Global Problem : 

[g(p("l;s)] =- [Qk.m] [R.(p("l;s)] [Qk.mf 

5. Resolution of the Element- level, Local Problems : 

- A 1 (' 't · _ (n+l) _ · ( . . ( . (n+l))) I. pp y ·011:; .ramb Pk - mm Pmax, max Pmin, pk 

[120] 

[121] 

[124] 

It is generally not necessary to implement steps 1-2 above at each updating itera­
tion: it suffices to update the condensation matrix only when the finite element model 
has been significantly modified. Many choices are available from the literature that 
yields reduction matrices [T] that preserve the dynamics of the system within a given 
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Figure 12. Finite Element Model and Sensing Configuration of the Ladder Structure 

frequency range and/or that extrapolate the response accuratly for structural modi­
fication. Another reason for avoidin steps 1-2 is that model condensation costs are 
very significant. In comparison, the computational cost of the global problem [ 116] 
increases linearly with the number of measurement points while the cost of the local 
problem [ 117] is linear with the number of finite elements updated. Section I 0.4 dis­
cusses an application example where the finite element model of an automotive frame 
structure is adjusted for improving its joint stiffness characteristics. 

10.4. Validation of Flexibility-based Model Updating 

The flexibility-based reconciliation algorithm is now illustrated using the finite el­
ement model depicted in figure 12. The structure is referred to as the "ladder" structure 
and it represents a simplified model of engine cradle used in the automotive industry. 
The Euler-Bernoulli beam model is chosen for mathematical idealization and the sys­
tem is discretized into 120 nodal joints and 120 finite elements. Boundary conditions 
are free-free. Figure 12 shows the sensing configuration adopted (three translations at 
16 nodal joints are measured) as well as rigid elements introduced in the finite element 
model to account for measurement offsets. A total of 48 out of the 672 active degrees 
of freedom are measured during the simulation. 

Although test data are available, FRFs used for this validation are simulated nu­
merically. This is to provide us with an assessment of the method in a situation where 
the finite element model is a perfect idealization of the structure's load path and where 
no measurement noise is introduced. Sparsity of the master stiffness matrix is equal 
to 0.72% and the corresponding storage requirement is 41.6 KBytes. In comparison, 
the sparsity of disassembly matrix [Qk] is equal to 0.39% and the corresponding stor­
age requirement is 24.9 KBytes. Assembly and disassembly require roughly the same 
amount of computation, with a slight advantage to disassembly. 
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Figure 13. Comparison of FRF Data Before and After Updating. The nominal finite 
element model (before updating) is shown with the dashed/dotted line. The adjusted 
finite element model (after disassembly-based updating) is shown with the dashed line. 
The reference, "truth" structure is shown with the solid line. No difference between 
the test data and response of the optimized model is visible 

Then, a translational spring element is added to the model at each one of the four 
nodal joints where longitudinal and transverse beams are connected. In this example, 
the modeling error consists of underestimating these spring constants by a factor of 
six. In other words, "test" data are simulated using spring stiffnesses six times superior 
to their values in the nominal finite element model. The data set consists of the full, 48 
by 48, FRF matrix at 180 Hertz. This sampling frequency is chosen for no particular 
reason other than for being close to the model's first bending mode (at 178.48 Hertz). 

Figure 13 compares FRF data before and after updating for a particular input­
output pair but over the entire frequency range of interest. The improvement brought 
to the model after three updating iterations is clearly visible since the updated model 
(dashed line) matches the "test" data (solid line) over the entire frequency range, even 
though only FRFs at 180 Hertz were provided to the updating algorithm. Figure 14 
compares the final stiffnesses to their exact value. The solution has undoubtedly been 
identified with acceptable accuracy after three iterations only. This example illustrates 
the performance of updating algorithm [ 118-124] when the finite element model is 
disassembled. The advantage of this procedure over modal-based techniques should 
be emphasized: here, the input data consist of small-size FRF blocks that can be 
obtained more easily than resonant frequencies and mode shapes. 
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Figure 14. Adjustment Brought to the Disassembled Ladder Model. Updated stiff­
ness values (shown with the dashed line) are compared to their reference, "truth" 
value (shown with the solid line) after the disas~mbled finite element model has been 
updated using a single FRF block 
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Figure 15. Adjustment Brought to the Assembled Ladder Model. Updated stiffness 
values (shown with the dashed line) are compared to their reference, "truth" value 
(shown with the solid line) after 100 iterations of updating the assembled finite element 
model using a single FRF block 
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Figure 16. Convergence During Model Updating of the Ladder Structure. Case 1 is 
shown with the solid line: the disassembly-based solver [ 1 18-124] is implemented. 
Case 2 is shown with the dashed line: finite element matrices are not disassembled 
and equation [ 1 13] is inverted numerically 

In terms of computational requirement, the solver [ 118-124] is compared with a 
similar version where the finite element model is not disassembled. When no dis­
assembly is available, global and local inverse problems (steps 4 and 5, respectively) 
must be replaced with equation [ 113] that is inverted numerically. This second version 
therefore proceeds with finite element assembly and model reduction at each updating 
iteration, next, the correction system [ 113] is solved for in a least-squares sense. In 
both versions, the cost of constructing the condensation matrix [T] and reducing the 
finite element model from 672 degrees of freedom down to the 48 measurement points 
remain similar. Figure 15 compares the stiffness parameters obtained after 100 itera­
tions to their exact value. Two parameters converge rapidly; Obtaining the other two 
requires over I ,000 updating iterations. After I 00 iterations, these two parameters are 
increased by 15.3% only. This example clearly illustrates that the disassembly-based 
solution procedure [ 118-124] is more efficient than its numerical counterpart because, 
in the first case (with disassembly), algebraic solutions are implemented while, in 
the second case (with assembly), matrices must be inverted numerically which yields 
approximate, least-squares solutions. 

Figure 16 depicts the convergence of both algorithms. It can be observed that 
convergence of the second solver is slowed down significantly after the third iteration 
when two of the updating parameters have reached their solution. Small incremental 
changes are then brought to the remaining two springs, which explains why the residue 
[I 09] decreases very slowly. Finally, figure 17 illustrates the cumulated CPU require­
ments as a function ofthe updating iteration. It demonstrates that significant computa­
tional savings are provided when finite element disassembly is exploited: CPU times 
required to complete the first four optimizations are reduced by a factor of three with 
finite element disassembly (6.23 seconds as opposed to 17.62 seconds). 
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Figure 17. CPU Time Requirements for Model Updating of the Ladder Structure. 
Case I is shown with the solid line: the disassembly-based solver {I 18- I 241 is im­
plemented. Case 2 is shown with the dashed line: finite element matrices are not 
disassembled and equation [I 131 is inverted numerically 

11. Conclusion 

This publication deals with the disassembly of finite element models for structural 
dynamics applications and inverse problem solving. Disassembly consists of parti­
tioning element-level matrices into inertia modes (for the mass operator) and strain 
modes (for the stiffness operator). These contributions can be collected in global stor­
ages to yield the disassembly of master mass and stiffness matrices. Although imple­
menting the algebraic disassembly of finite element matrices may involve significant 
programming efforts as well as important computational resources, it is shown that 
this particular representation can be exploited for deriving efficient inverse solvers. 

Since disassembly decouples information regarding the design from information 
regarding the topology and the metric of the structure, updating a disassembled model 
can be performed at a fraction of the cost required for re-assembling the system ma­
trices when the design is modified. Basically, only a diagonal matrix is updated. 

Within this context, numerically efficient solvers for inverse structural dynamics 
problems are derived. Problems of interest include multiple analyses, structural opti­
mization and finite element model updating. These share the need for solving linear 
systems repeatedly with multiple designs and, most often, with a known topology and 
metric. In this situation, finite element disassembly provides a very efficient numeri­
cal procedure that involves a single, incomplete QR factorization, no matter how many 
analyses are performed. Then, solving a linear system only requires two matrix multi­
plications. Similarly, solving a linear system with a modified design only adds to this 
cost the updating of a diagonal matrix. 
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Application examples are presented that feature models typically encountered in 
the automotive and aerospace communities. In all cases considered (multiple analysis, 
fully stressed design and flexibility-based model updating), the disassembly-based 
solver is shown to provide significant computational speed-up ratios compared to tra­
ditional solvers. Future work includes the investigation of numerical disassembly that 
reduces the implementation effort and that may be interfaced with any commercially­
available finite element package. 
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