
Statics and inverse dynamics solvers
based on strain-mode disassembly

Fran~ois M. Hemez* - Emmanuel Pagnacco**

• Engineering Sciences and Applications (ESA-EA)
Los Alamos National Laboratory, P.O. Box 1663,
MIS P946, Los Alamos, New Mexico 87545, USA
hemez@lanl.gov

•• Laboratoire de Mecanique de Rouen (LMR)
UPRES-A CNRS 6/04 & /NSA de Rouen
BP 8, F-76801 Saint Etienne-du-Rouvray
Emmanuel.Pagnacco@ insa-rouen.fr

ABSTRACT. The finite element method is widely used in design engineering for modeling and
analyzing structural systems. Two approaches have been developed: the force-based method
that exploits the equilibrium of forces and momellts at nodal joillts of the mesh to formulate
the assembly of element-level matrices into master mass and stiffness matrices and its dual
counterpart, the flexibility-based method. An alternative formulation of stiffness-based finite
element assembly is proposed that decomposes element-level matrices even further into strain
mode contributions. This decomposition (referred to as finite element disassembly here) allows
the derivation of an efficient numerical solver. It is shown that a single matrix factorization is
required for analyzing all models characterized by the same topology. This makes finite element
disassembly and the associated inverse solver ideal in cases where multiple design analyzes are
performed. In the first part, this publication derives a framework for an alternative finite el­
ement assembly of mass and stiffness matrices in the colltext of linear elasticity. Basically,
disassembly consists ofrepresentingfinite element matrices as a matrix product where topology
contributions are isolated from constitutive law or inertia law contributions. Application exam­
ples are discussed to illustrate the advantages and limitations of this formulation using various
meshes typically encountered in the automotive and aerospace industries. The second area of
application discussed in the second part of this publication is the correlation between finite
element models and test data. It is shown that numerical models can be updated for improving
their correlation with measured frequency responsefimctions with minimum computational cost
when the model is disassembled.

RESUME. La methode des e/emelltsfinis est l'une des plus populaires en caiCIII des structures.
Deux approches Ollt ere developpees. La formulation en force permet /'assemblage des matri­
ces e/ementaires en matrices globales grace aux conditions d'equilibre des forces et momellts.
La seconde formulation est basee sur Ia notion de matrices de flexibilite. Nous proposons une
representation alternative. La representation conventionnelle en force ou les matrices elemen-

Revue europeenne des elements finis. Volume 9- n° 5/2000, pages 511 a 560

512 Revue europeenne des elements finis. Volume 9- no 5/2000

taires son/ decomposees en modes de deformation. Celie decomposition est appelee desassem­
blage de modele et elle pennet/'implementation de solveurs nwneriques efficaces. Nous demon­
Irons que Ia factorisation d'une seule mat rice estnecessaire a fin d 'analyser les modeles iss us
d'une me me topologie et met rique. Celie propriere rend /es solveurs bases sur le desassemblage
ideaux pour tousles problemes qui necessitent des analyses multiples comme /'optimisation ou
le recalage de modeles. Tout d'abord, WI cadre general est propose pour le desassemblage
de modeles arbitraires en elasticite linea ire. Le desassemblage consiste a represelller chaque
mat rice elbnellls finis comme 1111 produit de matrices oti les contributions de Ia topologie du
mail/age son/ isolees de celles des lois de comportement. Plusieurs applications son/ presen­
tees afin d'illustrer les avail/ages et inconvenients de celle representation pour des maillages
typiques des industries automobile et aerospatiale. Puis, Ia formulation de solveurs inverses est
abordee dans le contexte de Ia correlation calculs-essais. Nous montrons que /'utilisation de
modeles disassembles permet de recalera moindre cotitles modetes numeriques pour ameliorer
leur correlation avec des fonctions de reponse enfrequences mesurees.

KEYWORDS: disassembly, finite element method, numerical method, fast reanalysis.

MOTS-CLES: desassemblage, methode des elements finis, solveurnwnerique, re-analyse rapide.

Nomenclature

Vectors, Matrices and Tensors

A

B

b

v
F

F

1{

H

h

Bilinear form for total energy

Matrix of shape function derivatives

Linear form for energy of applied forces

Generic differential operator (in space)

Static or dynamic flexibility matrix

Applied force vector

Condensation matrix

Generic Hilbert space

Hooke tensor (constitutive law of elasticity)

Thickness of a plate or one of its layers

Identity matrix

Tensor of inertia

Jacobian of a coordinate transform

Stiffness matrix

Generic localization matrix

Interface localization matrix

Vector of resultant moments per unit length

n

p

p

Q

Mass matrix

Matrix of shape functions

Vector of resultant forces per unit length

Outward pointing unit normal vector

Matrix of generic disassembly vectors

Design parameters of the model

Matrix of generic disassembly vectors

Finite Element Model Disassembly 513

Stress-strain matrices of the layer of a laminate

s

T

Frequency

Rotation matrix of a coordinate transform

Time

t 0 Prescribed traction vector

u Continuous generalized displacements

u 0 Prescribed displacement vector

W Diagonal matrix of generic disassembly values

w Finite element test function

w,1 k Weight for numerical integration

X Triad of coordinates (x; y; z)

x Vector of discrete generalized displacements

Dimensions

Greek Symbols

,\

n

cr

Number of finite elements in the mesh

Number of Gauss integration points

Number of disassembly values for the stiffness

Number of disassembly values for the mass

Number of subdomains

Vector of strains

Vector of curvatures

Vector of Lagrange multipliers (interface tractions)

Generic volume

Boundary of prescribed displacements

Boundary of prescribed tractions

Vector of stresses

Orientation of fibers in a laminate

514 Revue europeenne des elements finis. Volume 9- no 5/2000

Subscripts and Upperscripts

(•) k Quantity pertaining to the stiffness matrix

(• lm Quantity pertaining to the mass matrix

(•), Strain-mode quantity

(•)(e) Element-level quantity

(•)(k l Quantity pertaining to the kth layer of a laminate

(•) + Pseudo-inverse quantity

(•)(s) Quantity pertaining to a subdomain

(•) T Transposed of a matrix or vector

1. Introduction

Design engineering in structural dynamics involves the resolution of linear sys­
tems that provide displacement and rotation solutions given loading conditions applied
to the system. Typical applications include structural analysis ([PAZ 91]), topology
or structural optimization ([SUZ 91], [HAF 93]), and finite element model updating
where a distance between measured and computed responses is minimized ([HEM
95]). Such applications are quite different in nature and objectives. However, they
all share the necessity of solving inverse systems repeatedly because the optimization
associated with these problems is nonlinear.

Classical finite element modeling is based on the concept of assembly. It con­
sists of partitioning the elastic domain into elemental volumes with geometries simple
enough that the stress-strain relationship can be derived. Then, equilibrium of forces
and moments at each nodal joint of the mesh are exploited to construct the master mass
and stiffness matrices by adding their element-level counterparts ([HUG 87]). These
matrices represent both the mathematical idealization and the spatial discretization of
kinetic and strain energies, respectively.

Hence, the procedure for solving structural dynamics equations consists of, first,
assembling master matrices for a mesh with given geometrical and material proper­
ties, then, solving the resulting linear system of equations. The solution generally
provides displacements and rotations at nodal joints of the mesh and it is associated
to a design criterion such as minimizing displacements in given areas of the model,
or making sure that stresses do not exceed prescribed levels. In case of finite element
updating, the numerical solution is compared with test data to assess the predictive
quality of the model. Then, this constraint is enforced by bringing changes to the de­
sign and the whole procedure is repeated until convergence. Generally, large numbers
of degrees of freedom are involved which results into multiple assemblies and factor­
izations of large-size, sparse matrices. This motivates the alternative representation
of finite element assembly presented in the first part of this work.

The scope of this paper is restricted to linear, undamped elasticity for simplicity.
Extension to damped dynamics does not seem to offer any particular difficulty other

Finite Element Model Disassembly 515

than implementation issues which involve complex arithmetic because complex vec­
tors must then be handled. The linear systems are described by equations [I] and [2]
below. Equation [I] would typically be solved for the generalized displacements { x}
when external static loadings {F} are applied to the structure

[K(p)] {x} = {F} [I]

Equation [2] is the counterpart of static equation [I] when dynamic systems are ana­
lyzed in the frequency domain

((K(p)]- s2 (M(p)]) {x(s)} = {F(s)} [2]

This last equation models the equilibrium between internal, inertia and applied forces.
It can be seen that it describes a variety of situations including acoustic problems,
eigen-decompositions (when {F} = 0) and static problems (when s = 0). Note
that, in the case of time-domain resolution, the inversion of a similar matrix is in­
volved, typically with s = ~t where Llt denotes the time step selected for numerical
integration. The mass and stiffness matrices depend on design parameters {p} that
represent geometrical and material properties for each finite element. These variables
are precisely the unknown optimization variables considered in inverse problems such
as design optimization or test-analysis reconciliation.

With the stiffness-based method, master mass and stiffness matrices are assem­
bled from contributions of each finite element. In structural dynamics, systems are
analyzed by discretizing them into meshes, adopting a mathematical idealization for
representing the behavior of each individual finite element, then estimating the global
mass and stiffness operators by assembling contributions from each element. The
operation of assembly can be represented with the stiffness matrix, for example, as

[K(p)] = L [L(e)([k(e)(P(e)l] [L(e)] [3]
e=l ··Ne

where [k(e)] denotes the eth element-level stiffness matrix expressed in the coordi­

nate system local to the element and [L(e)] is the corresponding transformation and
localization matrix used for adding together equations in the master stiffness [K]. This
classical and most widely used formulation of finite element assembly is based on the
stiffness method which consists of writing the equilibrium at each nodal joint of a
mesh, then exploiting the equality of displacements contributed by all finite elements
that share a common node to derive equation [3] ([HUG 87]).

This formulation is very popular because most efficient for assembling finite el­
ement matrices. It is however quite inefficient when the final objective is multiple
resolutions with changing designs because the master matrices must be re-assembled,
at least partly, when the control parameters {p} are modified. These control or design
parameters are, typically, constituted of geometrical parameters (thicknesses, cross­
sectional areas, etc.) and material properties (moduli of elasticity, shear moduli, den­
sities, etc.). The main motivation for this work is two-fold. First, we revisit the finite

516 Revue europeenne des elements finis. Volume 9- n° 5/2000

element assembly and provide a very efficient numerical implementation when multi­
ple assemblies are required due to design changes or optimization of parameters { p}.
Secondly, we develop efficient numerical solvers for multiple design analyses. Basi­
cally, the approach proposed here consists of representing the master stiffness matrix
as a product of three matrices

[4)

where the central matrix is diagonal and is the only one that depends on structural
parameters {p }. Such a dependency must be known algebraically for the efficiency
of the procedure and we demonstrate how this property can be achieved for practi­
cal applications. The other matrix [Qk] exhibits, in the general case, a high degree of
sparsity and does not depend on structural parameters. Hence, re-assembling the stiff­
ness matrix based on equation [4) only requires the evaluation of the matrix product
aforementioned.

The paper is organized as follows. The next section addresses the motivation of de­
veloping efficient numerical solvers for multiple design analyses. Section 3 discusses
some of the applications of this work by introducing the resolution of structural dy­
namics equations using domain decomposition and parallel computing. Finite element
theory and matrix assembly are summarized in section 4 to illustrate how disassembly
can be achieved in the classical context of the stiffness method. The alternative rep­
resentation of constitutive law and inertia law leading to finite element disassembly is
introduced in section 5. Then, the theory of finite element disassembly is presented in
section 6. Two simple examples are derived analytically in section 7 to illustrate how
the method would typically be implemented and to present some of its difficulties.
Section 8 details the main steps of the numerical solver associated to finite element
disassembly in the case of a stiffness-based system. Applications are presented with
various finite element meshes to illustrate the numerical performance of the method
and to discuss its domain of applicability. Section lO illustrates the application of fi­
nite element disassembly in the case where the solution to a flexibility-based system is
sought after. Throughout sections 9 and I 0, realistic examples are provided. These in­
volve finite element models typically analyzed in the automotive and aerospace indus­
tries. All performance figures reported are obtained using a Matlab 5.2-based library
of finite element tools implemented on a Silicon Graphics workstation (equipped with
a R I 0,000-180 processor).

2. Stiffness Versus Flexibility FE Methods

One of the motivations for this work is the development of efficient numerical
solvers for structural dynamics applications such as design optimization or finite ele­
ment model updating. Consider, for example, the following equation of equilibrium
in the frequency domain

([K(p)]- s 2 (M(p)]) {x(s)} = {F(s)} [5)

Finite Element Model Disassembly 517

The solution procedure consists of solving equation [5] for a known loading case {F}
and prescribed boundary conditions. Whether the problem of interest is structural
design and analysis, structural optimization or finite element model updating, mul­
tiple resolutions of this equation must be obtained. Note that evoking equation [5]
does not restrict our discussion since static problems are obtained when s = 0 while
time--domain resolutions involve the inversion of a similar matrix where s = (1t) as
mentioned previously.

Such solutions are given (in the frequency domain) by the following product be­
tween the flexibility matrix and the right-hand side vector

{x(s)} = [.:F(p;s)]{F(s)} [6]

Obviously, the flexibility matrix (or admittance matrix) defined by equation [6] is
equal to the inverse of the dynamic stiffness matrix at the frequency s of interest

[.:F(p;s)] = ([K(p)]- s 2 [M(p)])-
1

[7]

It can be seen that this solution procedure is quite inefficient in the context of multiple
analyses because it accumulates the disadvantage of multiple assemblies (which could
become expensive with large dimensional models) to the need for factoring a full­
size matrix each time. The alternative is the flexibility-based finite element method
for assembling the flexibility matrix [.:F] directly, therefore, bypassing the need for a
numerical solver ([ARG 60], [FRA 65]). However, flexibility methods have not grown
in popularity basically because they do not provide efficient element-level assembly
as the stiffness method does.

This issue has been indirectly addressed by Gordis who motivates his work on fi­
nite element disassembly as a way, for example, of relating global error estimations
to local finite element matrices. It provides a unique identification of which finite ele­
ments contribute to an error indicator, which is extremely useful in problems such as
mesh refinement, model updating or damage detection [GOR 96]. Gordis' definition
of disassembly is however more general than the one defined by equation [4] and used
here. His disassembly consists of rendering the master matrix block--diagonal

[kP\p(l)l] 0

[K(p)] = [L([k~e)(p(e))] [L]

0 [k~N.)(p(N.))]
[8]

where each diagonal block represents a "strain-mode" element-level matrix, that is,
a reduced matrix where contributions from rigid body motions have been filtered out.
Thus, reduced matrices preserve only the non-rigid dynamics of each finite element,

518 Revue europeenne des elements finis. Volume 9- no 5/2000

which is a characteristics "our" disassembled matrices share too. Matrix [L) is ob­
tained as the transformation between global (coupled) generalized coordinates { x}
and local (element-level, uncoupled) coordinates { x(e)}

{ x(e)} = [L) {x} [9]

A fundamental difference is that Gordis' work takes the form of a unique decom­
position whereas we will show that equation [4] is non-unique. As a result, for the
disassembly [8-9] to provide any practical use, the model must represent a structure
where the load path between any two points is unique, which is extremely restrictive.
Our approach overcomes this major difficulty because, basically, the decomposition
is not required to be uniquely determined. Nevertheless, we will discuss the cost to
pay: a significant numerical implementation effort and the necessity to filter out the
extraneous information.

Ideas for mesh disassembly have also been proposed by Peterson, Doebling and
Alvin for structural damage detection using vibration test data ([PET 95]). Their basic
idea is the starting point ofthis work: partitioning element-level matrices according to
the contribution of their rigid body and strain modes, then representing global matrices
as the superposition of each partition. Relating entries of measured flexibility matrices
to element-level stiffnesses of a finite element model enables efficient localization
of structural damage. However, results presented in reference [PET 95] involve the
disassembly of beam elements only and lack a general framework for generalizing
the procedure to arbitrary elements, which is precisely the contribution of the present
work.

3. Domain Decomposition and Parallel Computing

Finite element disassembly can also be used to improve techniques for solving the
equations of structural mechanics in parallel using a decomposition of the model into
subdomains. In this section, we briefly emphasize this issue with two techniques that
are similar in formulation but aimed at solving two different problems.

One of the most popular technique for solving structural mechanics problems in
parallel is the Finite Element Tearing and Interconnecting (FETI) technique devel­
oped by Farhat and Roux ([FAR 91]). Basically, the equation of equilibrium [5] is
partitioned according to different subdomains, yielding

for each subdomain (s = 1 · · · Ns). The last term of equation [I 0] accounts for bound­
ary tractions on the interface between subdomain #s and all the neighboring subdo­
mains. These tractions are required for satisfying the equilibrium of all the subdo­
mains. Equations [10] are solved in parallel on separate processors once the tractions
{A} have been made available, thus, providing reduced running times compared to a

Finite Element Model Disassembly 519

single-processor architecture. Of course, the compatibility of displacements on the
interface must be added

["II]

where [L} •)] denotes the transformation that extracts coordinates on the interface for

the sth subdomain. Equation [11] basically states that displacements contributed from
separate subdomains that share the same interface nodes must be equal. Equations [I 0]
and [II] are combined for obtaining the interface problem which provides a solution
for the unknown boundary tractions {A}

(~ [L}'lr [:F<•l(p;s)] [L}'l]) {A}=

(t, [L}•lr [:F<•l(p; s)]) { F<•l(s)} [12]

The FETI approach is based on a dual variational formulation of the partitioned equa­
tions of equilibrium that has proven its numerical and computational efficiency for
solving a large variety of structural dynamics problems in the time and frequency do­
mains. One illustration is the development at Sandia National Laboratories of SALI­
NAS, a fully object-<:Jriented and parallel finite element program for linear systems
constituted of several million degrees of freedom. Another illustration is the devel­
opment by Farhat and Geradin of a component mode synthesis method based on the
same framework ([FAR 92]).

Obviously, equations [I 0] and [12] feature factorizations of each subdomain dy­
namic stiffness matrix and the iterative resolution of this system requires multiple
inverse resolutions. This justifies our claim that finite element disassembly might be a
valuable tool for bypassing these computationally expensive steps.

Building on the FETI approach, Park has exploited an idea similar to disassem­
bly for formulating an algebraic partitioning of the equations of dynamics ([PAG 97],
[PAR 97]). Although the overall procedure may not be as efficient as FETI for ar­
bitrary mechanics problems and currently suffers from implementation difficulties, it
clearly offers the advantage of enabling the identification of local mass and stiffness
properties using the same decomposition as the one illustrated in equation [8].

The main step goes as follows: the transformation from global (coupled) general­
ized coordinates to local (element-level, uncoupled) coordinates can be applied to the
force vector as

{F} = [Lf { F(e)} [13]

520 Revue europeenne des elements finis. Volume 9- n° 5/2000

Combining equations [5], [9] and (13] at zero-frequency leads to the transformation
between the full-order static flexibility matrix [F] and decoupled, element-level flex­
ibilities

[F(ll(p(ll;O)] 0

[14]
Then, minimizing a strain-based version of the system's total energy with the compat­
ibility of displacements and equilibrium of forces at the interface between connected
elements provides a Ricatti-like equation. This equation relates local stiffness prop­
erties to the global flexibility matrix

[F,(p)]- [F,(p)] [G,(p)] [F,(p)] = ([L] [Qk])T [F(p; 0)] ([L] [Qk]) [15]

where matrix [G,] is defined as

[16]

In equations [15-16], a block-diagonal partitioning similar to equation [4] is used for
the stiffness matrix from which it can be shown that the flexibility matrix is decom­
posed according to

0

0
[17]

where, by definition, we set [F,] = [W kr 1 . Note that this approach can theoretically
be applied to the decomposition of the mesh into subdomains larger than a single finite
element. It should also be emphasized that domain decomposition usually generates
free-floating subdomains for which master matrices are singular. In this case, inverses
are replaced with pseudo-inverses, for example in equation [16].

The conclusion is that, solving equation [15] for the diagonal matrix [F,] provides
an estimation of local inverse stiffness parameters. Hence, measured frequency re­
sponse functions of a system may replace the flexibility matrix [F] in equation [15]
and the solution procedure may be applied for identifying local stiffness properties
given a description of the topology of the structure. Hence, Park's idea of adding an
additional constraint of algebraic decomposition (what is referred to as "disassembly"
here) provides an elegant framework for solving inverse problems such as health mon­
itoring and damage detection where the main challenge is precisely to relate global
error indicators to local mass and stiffness changes over time.

Finite Element Model Disassembly 521

Each of these two examples demonstrates where finite element disassembly may
be a useful tool for enabling, or at least enhancing, the resolution of direct and inverse
structural dynamics problems. The development of efficient inverse solvers is how­
ever complicated by the non-unicity of disassembly and caution must be observed for
filtering out extraneous information and obtaining meaningful solutions.

4. Finite Element Discretization and Assembly

After having motivated the need for alternative finite element assembly procedures,
a theoretical framework is derived in this section. We start with a brief summary of
the classical, stiffness-based finite element procedure: mathematical idealization, dis­
cretization and weak formulation are addressed. Our purpose is to remind where de­
sign parameters {p} are involved during the matrix assembly because this is critical
to the understanding of the disassembly technique. reference [GER 97] provides the
complete details for those readers who may not be familiar with the notations indro­
duced here.

From now on, we will focus on linear elasticity problems that constitute the core
of structural mechanics applications. Furthermore, Einstein's summation convention
of repeated indices is used for clarity in most equations (A;jUj = L A;jUj). In

j=l···N

the general case, the following boundary value problem is considered

{

a'
Im,

1
;;',' (t) -1Jk (H;Jkl1Jt (uJ(t))) = F;(t)

u; (t) = u 0; (t)
u;j (u) =to; (t)

indomainn
onanu
on an,

[18]

where the boundary an of elastic domain n is partitioned in two disjoint parts an,.
and an, where the displacements and tractions are imposed, respectively. In addition,
equation [18] must be completed with the adequate initial conditions (at t = 0) that
involve the generalized displacements u or the velocities or accelerations. Equation
[18] represents a mathematical idealization of the real behavior of the physical system
where inertia and internal forces in the left-hand side balance the applied forces.

Prior to discretization, problem [18] is cast in a variational form given in equations
[19-21]. This second form of the same problem is commonly referred to as the "weak"
form because its solution u satisfies equation [18] in average. The weak formulation
of equation [18] is given by

A (u; w) = b(w), Vw E 1i [19]

where

A(u;w) [20]

b(w) [21]

522 Revue europeenne des elements finis. Volume 9- no S/2000

It is assumed, as usual, that w = 0 on the boundary cKlu. In equation [19], 1l de­
notes the adequate Hilbert space. In Mechanical Engineering, Sobolev spaces such
as W 1·2(r2) and W 2•2(r2) are usual choices, depending on the order of partial differ­
ential equations analyzed. Applied mathematics tell us that problems [18] and [19-
21] are equivalent under fairly general assumptions relevant to the class of problems
treated here and which essentially consist of satisfying the continuity and coercivity
of the bilinear, symmetric form A over 1l [ODE 76].

For obtaining a computational procedure from the weak formulation, discretiza­
tion is introduced. The element-level stiffness matrix represents the second-order
derivative of the element's strain energy with respect to nodal displacements, that is

[22]

In the context of linear, homogeneous and isotropic elasticity, this element stiffness
matrix can generally be obtained when the element's strain field is expressed in terms
of nodal displacements. Without loss of generality, this can be represented as

[23]

where X = (x;y;z) are spatial variables. In equation [23], matrix (B] [~~]
represents the strain-displacement matrix that features derivatives of the element's
shape functions

{ f(e)} = (B(X)] {X(e)} [24]

while matrix (H] denotes the constitutive matrix that relates the strain and stress fields
to each other

[25]

The same formalism applies to the element's mass matrix. Integration can be per­
formed over individual subdomain fl(e) (or finite elements), then accumulated in the
master quantities. This is the essence of the assembly procedure that is written as

[M(p)] L: [L(e)r [m(e)(p(e)l] [L(e)J [26]
e=l···Ne

[K(p)] E [L(e)r [k(e)(P(e)l] [L(')] [27]
e=l···Ne

{F(t)} 2:: [L(e) r { f(e)(t)} [28]
e=l···Ne

where matrix [L(e)] denotes the localization of master degrees of freedom to the eth
finite element. Practically, these quantities are calculated by numerical integration,

Finite Element Model Disassembly 523

except in the case of simple geometries where analytical solutions are available. For
example, element-level stiffness matrices are obtained as

[k(e)(p(e)l] = L (B(i; j; k)]T [H(p(e)l] (B(i; j; k)] Wijk detJ(i; j; ~~)
i,j,k=I···N9

[29]
where N9 , the number of Gauss integration points, depends on the degree of the poly­
nomial function being integrated.

Finally, the well-known linear system of equations is obtained by substituting
shapes functions (Ritz-Galerkin formulation) into the weak formulation [19-21]

{
8

2
x } (M(p)] ot
2

(t) + (K(p)] {x(t)} = {F(t)} [30]

Note that a transformation in the frequency domain (using the Fourier transform, for
example) yields the previous equation [5]. It can be seen that quantities depending on
the order of the interpolation performed, that is, the triplet (i; j; k) in equation [29],
and quantities depending on the element's design parameters {p(e)} are decoupled.
This property is exploited in the next section for a practical formulation of finite ele­
ment disassembly.

For completeness, the following remarks can be made about these developments:

- Although a Ritz-Galerkin formulation is used for simplicity, nothing prevents
us from choosing the test functions w differently from the shape functions
{N1 }. Hence, more general approximation methods can be implemented within
this framework ([ODE 83]).

- Similarly, mixed or hybrid variational principles are not excluded from this for­
mulation [FEL 89]. Actually, the critical, enabling condition for finite element
disassembly is that only inertia and constitutive matrices depend on design pa­
rameters {p }, which is shared by all approaches.

5. Alternative Representation of Linear Elasticity

Section 4 has established the natural decoupling between topology-dependent and
design parameter-dependent quantities in the elemental mass and stiffness matrices.
Our goal is now to show that inertia and constitutive laws can be decomposed as

[Im(P(e)J]

[H(p(e))]

(Pm]T [wm(Pe)l] (Pm]

(Pkf [wk{p(e)l] (Pk]

[31]

[32]

where matrices (Wm] and (Wk] are diagonal and where matrices (Pm] and (Pk] do
not depend on geometrical and material properties. Because the inertia law can be rep­
resented by a diagonal matrix (Im]. we will focus on the constitutive law of elasticity
in this section.

524 Revue europeenne des elements finis. Volume 9- n° 5/2000

In the following, I D, 2D, then 3D elasticity is investigated. The main result is to
show that, no matter what type of isotropic elasticity is considered, the decomposition
[31-32] can always be written algebraically because it involves (at worse) three by
three symmetric matrices that can be decomposed "by hand."

5.1. Monodimensional and Isotropic Elasticity

The most trivial case is to consider axial deformations only because the stress­
strain relationship can be expressed as (j = EE, where E represents the material's
modulus of elasticity (Young's modulus). Therefore, the decomposition [31] is simply
W k = E and P k = 1.

The second interesting case involving pseudo- I D elasticity is that of beam ele­
ments. Consider, for example, the 4th-order, 2-node Euler-Bernoulli beam with the
degree of freedom ordering given in equation [33]

Design variables are {p(<)} = {E,A,v,J,Iy.I:}T and it can be verified that, in
this particular case, the disassembly [4] may be achieved by hand because numerical
integration is not required. We can write

[34)

where

EA. 0 0 0 0 0
0 GJ 0 0 0 0

[wie)(p(e))J 1 0 0 Ely 0 0 0
- --:!

§ [35)
L 0 0 0 :! 0 0

0 0 0 0 !il... 0 :!

0 0 0 0 0 !il...
:!

Finite Element Model Disassembly 525

. hC E d Wit , = 2(1+v) an

1 0 0 0 0 0
T

0 0 _w w 0 0 L L

0 0 0 0 _w w
L L

0 1 0 0 0 0
0 0 0 0 1 + J3 1- J3

[Qke)] = 0 0 -(1 + J3) -(1- J3) 0 0
-1 0 0 0 0 0
0 0 w _w 0 0 L L

0 0 0 0 w _w
L L

0 -1 0 0 0 0
0 0 0 0 -(1- y'3) -(1 + J3)
0 0 1- J3 1 + J3 0 0

[36]
This decomposition is equivalent to the one given in reference [PET 95]. The six-row

vectors in matrix [Qke) J can be interpreted as the element's static deformation shapes

associated with nonzero strain energy, or strain modes. Their number is always equal
to the rank of the stiffness matrix. It can be verified that the main two assumptions of

disassembly are satisfied: l) Coefficients of the diagonal matrix [Wke l] are known

explicitely; and 2) Matrix [Qke)] does not depend on design parameters {p(e)}. Note

also that a similar decomposition can be obtained with the Timoshenko beam where
shear coupling is involved.

5.2. Bidimensional and Isotropic Elasticity

Bidimensional finite elements such as plates and shells involve membrane and
bending deformations. For constant-thickness elements, these constitutive laws are
generally equal to

Eh [~ v 0 l [Hmembrane (p(e))] 1 0 [37]
(1- v 2) 0 1-v

~

[Hbending (p(e)) J ~: [Hmembrane(p(e))] [38]

where h is the element's thickness. It can be verified easily that the decomposition
[31] for membrane deformations is obtained with

[wi')membrane (p(<))]

1
2(1+v)

0
0

0
1

2(1-v)

0 ,,L l [39]

526 Revue europeenne des elements finis. Volume 9- n° 5/2000

[Pke)membrane] li T n [40]

Similarly, the decomposition [31] for bending deformations is obtained with

[
w(e)bending((e)l] = h2

[w(e)membl"ane((e)l]
k p 12 k p [41]

d [p(e)bending] [(e)membrane] b f · 3 8 h · an k = P k • It can e seen rom equattons [7-3]t at, m

the case of 2D elasticity, the design parameters of interest are restricted to { p(e)}
{E,v,hf.

5.3. Tridimensional and Isotropic Elasticity

Volume elements rely on the following constitutive matrix in the case of linear,
homogeneous and isotropic elasticity

1-v v v 0 0 0 1-2v 1-2v 1-2v
v 1-v v 0 0 0 1-2v 1-2v 1-2v

[H(p(e))] E v v 1-v 0 0 0 1-2v 1-2v 1-2v [42)
1+v 0 0 0 1 0 0 2

0 0 0 0 1 0 2
0 0 0 0 0 1

2

It can be decomposed into

E 0 0 0 0 0 1-2v

0 E 0 0 0 0 1+v
0 0 E 0 0 0

[wke\p(e)l] 1+v
0 0 0 E 0 0

[43]
2(1+v)

0 0 0 0 E 0 2(I+v)

0 0 0 0 0 E
2(I+v)

1 1 1 0 0 0 73 v'3 v'3
1 0 1 0 0 0 72 -72

[Pke)]
1 2 1 0 0 0 -./6 --./6 -./6 [44]
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0

with design parameters defined as {p(e)} = {E, v f.
We emphasize that the decomposition [31-32] is not an eigenvalue factorization

that could be performed numerically. Doing so would not provide any computational

Finite Element Model Disassembly 527

advantage over the classical assembly technique. The key point here is to obtain al­
gebraically the expression of matrices [W] and [P] so that the decomposition [31-32]
can be implemented in any finite element program.

6. Theory of Finite Element Disassembly

In this Section, the procedure for disassembling an arbitrary finite element model
is presented, based on decomposition [31-32) of inertia and constitutive laws. Here,
we are mostly concerned with decomposing the element-level matrices. Next, the
partitioning is collected for each finite element to generate representations of master
matrices similar to equation [4].

We assume that the inertia and constitutive laws have been partitioned into Nm
and N k vectors, respectively, according to the procedure detailed in section 5 for the
homogeneous and isotropic elasticity. Equations [31-32] can also be written as an
accumulation of rank-one matrices

[I,(p(e))]
Nm

LWmdd(p(e)) {Pmd} {Pmdf [45)

d=l

[H(p(e))]
Nk

L Wkdd (p(e)) {PkJ {PkJT [46)
d=l

These equations are simply substituted to matrices [Im) and [H] in the definition of
element-level mass and stiffness matrices, respectively. Accounting for numerical
integration provides

where we have defined the following sets of vectors

{Q~!(i;j;k)}

{Qie}(i;j;k)}

Jwijk det J(i; j; k) [N(i; j; k)] {Pmd}

Jwijk det J (i; j; k) [B(i; j; k)] {Pkd}

[47)

[48)

[49)

[50]

Note that the square roots involved in equation [49-50] should not be a concern be­
cause integration weights Wijk are generally positive (see, for example, [BAT 96)) and
so are the determinants det. J of the Jacobian's coordinate transform if the element's
outward normals are defined correctly. If these quantities are not positive, a nega­
tive sign can always be assigned to the corresponding entry in the diagonal matrix W
without loss of generality.

528 Revue europeenne des elements finis. Volume 9- no 5/2000

Finally, the decomposition can be written compactly as

[Ql,~)r [w;,~)(p<e)l] [q;,~)]

[Qke)r [wke)(p<e)l] [Qke)]

[51]

[52]

Consider the stiffness matrix: since [Wie)] is a diagonal matrix, equations [48] and

[52] emphasize the mechanism of finite element construction. It is a summation of
(Nk x N9) rank-one matrices. The same remark applies to the mass and it is easy
to understand that similar representations hold for the master matrices because the
assembly consists in adding together the element matrices. The disassembled master
matrices are denoted by

[M(p)]

[K(p)]

[Qmf [Wrn(P)] [Qm]

[Qkf [Wk(p)] [Qk]

[53]

[54]

where matrices [Wm] and [Wk] are diagonal and collect values Wmdd and Wkdd'

respectively, for each finite element. Similarly, vectors { Q~~} and { Qi:)} are col­

lected in columns of matrices [Qm] and [Qk], respectively, with the usual ordering of
master degrees of freedom, that is

This explains why these matrices exhibit, in general, a very high degree of sparsity.
This procedure is illustrated in section 7 using a simple example for which all compu­
tations can be performed analytically.

We now have achieved the main result of this work: equations [51-54] show that
element-level and master quantities can be decomposed in a summation of rank-one
matrices, each multiplied by a scalar value known explicitely and that depends on
the model's design parameters. In general, these rank-one matrices require numerical
integration and they can not be derived explicitely. However, the key point is that they
do not depend on design parameters and they stay constant once the topology and the
metric of the mesh has been set. Re-analysis techniques or inverse solvers can take
great advantage of this property because only the diagonal matrices [W m] and [W k]
need to be updated.

7. Demonstration Examples

To illustrate how finite element models can be disassembled, two examples are
now presented. They both involve simple, planar models because our purpose is to
offer a complete overview of the procedure before demonstrating its application to
re-analysis, structural optimization and inverse problem solving.

Finite Element Model Disassembly 529

Node 1 Ne>de 2 Node 3

"''

Noda 4

Figure 1. Finite Element Model Used for Illustration

7.1. Example 1: Disassembly of a Two-Beam Structure

Figure l depicts the finite element model used for this first illustration. It consists
of a uniform, cantilever planar beam connected to a spring. Two Euler-Bernoulli
beam elements are used for the discretization. For simplicity, the beam's local axes
are aligned with global axes (x; y) and it can be verified that the two element stiffness
matrices are equal to

[EA 0 0 l [k(ll(p(l)l] = ~ 12EI 6EI

iii HI
"£2 --y-

[56]

and

EA 0 0 EA 0 0 T -y
0 12EI 6EI 0 12EI 6EI

61/!I HI -&I HI
[k(2)(p(2)l]

0 "£2 --y- 0 -TF' --y-
EA 0 0 EA 0 0 ---y;- T
0 12EI 6EI 0 12EI 6E/

-6B -4Fr -yr- -4kl
0 0 6E/

"£2 --y- -""'[2 --y-

[57]

In equations [56-57], only the active (unrestrained) degrees of freedom are kept. Sim­
ilarly, the element stiffness matrix of the spring is equal to

[58]

where k denotes the sping rigidity. Finally, the boolean table that provides the one­
to-one equivalence between local and global degrees of freedom can be defined as

DOF Ux! Uy! Bz! Ux2 Uy2 Bz2 Ux3 Uy3 Bz3 Ux4 Uy4 Bz4

I 0 0 0 I 0 0 0 0 0 0 0 0
2 0 0 0 0 I 0 0 0 0 0 0 0
3 0 0 0 0 0 I 0 0 0 0 0 0
4 0 0 0 0 0 0 I 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0

530 Revue europeenne des elements finis. Volume 9- no 5/2000

It can easily be verified that the resulting master stiffness matrix for this simple
example is equal to

'.lEA 0 0 EA 0 0 -r- -y
0 24£! 12EI 0 12£! t3EI

1~EI iii - 611I iii
[K(p)] = 0 --y;2 --y;- 0 -TT --y;- [59] EA 0 0 EA 0 0 -y T

0 12EI 6EI 0 (11./F +k) 6EI

0
-6kl -1k/

0 6EI -1k/
--v- --y;- ---v- --y;-

where the unrestrained degrees of freedom consist of the two translations and in-plane
rotations at nodes 2 and 3

[60]

We now use equations [34-36] to generate the disassembly of beam elements. It
provides the following decompositions

[k1'>1p!l>l]= ~ £{!- -£{!- ;I
[

1 0 0 l [E~LA 0

0 1-v'3 l+v'3 0

0
EI
'IT:
0

with [Qi2)r =

The spring element is simply disassembled as

0

0
-1

0

0

0
_£fl

L
-(1 + v'3l

0
w

L
1- y'3

0
£il

L
1- y'3

0 l T _£fl
1+~

[61)

0
£il

L
-(1-v'3)

0
[62)

_w
L

1 + v'3

[63]

Partitioning the master stiffness matrix simply consists of collectingthe disassembly
values and the corresponding vectors in the diagonal matrix [W k] and columns of
matrix [Qk], respectively. Of course, degrees of freedom must be ordered in matrix
[Qk] the same way they are ordered in the master stiffness matrix [59]. It can be
verified that the disassembled master stiffness matrix is given by

EA 0 0 0 0 0 0 T
0 EI 0 0 0 0 0 2L
0 0 EI 0 0 0 0 2L

[Wk(p)] = 0 0 0 EA 0 0 0 [64] T
0 0 0 0 EI 0 0 2L
0 0 0 0 0 EI 0 2L
0 0 0 0 0 0 k

Finite Element Model Disassembly 531

Node 3

Figure 2. Illustration Example of a Planar Beam Model

and

-1 0 0 1 0 0 0
T

0 £il _M 0 _M £il 0 L L L L

[Qk) = 0 1- v'3 1 + v'3 0 -(1+v'3) -(1- v'3) 0
[65]

0 0 0 -1 0 0 0

0 0 0 0 £il _M 0 L L
0 0 0 0 1- v'3 1 + v'3

A total of seven disassembly values are obtained for this particular example, that
is, more than the dimension of the model. This is because finite elements are dis­
assembled independently of one another, therefore, redundant information may be
introduced such as illustrated here. This is not a concern for the assembly of master
matrices. The second part addresses this issue when disassembly is used for alge­
braically inverting the master matrices.

7.2. Example II: Disassembly of a Planar Frame Structure

Before proceeding with the derivation of efficient numerical solvers, we illustrate
the disassembly of the simple finite element model depicted in Figure 2. The structure
consists of a planar frame where four beams are connected at four nodal joints. The
mathematical idealization chosen for this structure is, once again, the Euler-Bernoulli
beam model. Nodes I and 2 are clamped so that the total number of active degrees of
freedom is equal to six.

532 Revue europeenne des elements finis. Volume 9- no 5/2000

7.2.1. Assembly of the Planar Beam Frame Model

The element stiffness matrix for the Euler-Bernoulli planar beam element is first
expressed in each element's local frame system. It yields

EA 0 0 EA 0 0 T --y;-
0 1'2EI 6EI 0 1'2EI 6E/

[k(e)(p(e))] = 0 itJ £I 0
- ltJ ?l;

""[2 -y- -yr -y- [66] EA 0 0 EA 0 0 --y;- T
0 12£/ 6EI 0 1'2EI 6EI

0
-68 -... B

0 t~J -... B
""[2 -y- -""[2 -y-

where the element's design parameters are defined as {p(e)} = {E; A; l}T and rep­
resent the Young modulus, the cross-sectional area and the moment of inertia of the
beam. The local-to-global coordinate transform consists of the following 6 by 6 ma­
trix where B denotes the in-plane angle of the element (measured positive from the
horizontal to the element's axial direction)

cos(B) - sin(B) 0 0 0 0
sin(B) cos(B) 0 0 0 0

[L(e)] = 0 0 1 0 0 0
[67]

0 0 0 cos(B) -sin(B) 0
0 0 0 sin(B) cos(B) 0
0 0 0 0 0

The master stiffness matrix for this model is obtained by substituting definitions [66]
and [67] in the assembly equation [27]. The ordering of active degrees of freedom is
provided below

[68]

7.2.2. Disassembly of the Planar Beam Frame Model

As before, both disassembly values and vectors can be obtained algebraically in
the case of beam elements

0
EI
2[
0

with

;I l [Q(<)]
2L

(q'·'r ~ I j, 0
_M

L
-{1 + v'3l

0
£.J&

L
1- V3

0

I
£.J&

L
-(1- v'3l

[69]
0

_M
L

1 + V3
Equation [69] shows that each planar beam contributes to three strain-deformation

modes. The three vectors of matrix [Q~e)) represent each one of the element's non­

rigid deformation modes. It can be verified that the local matrix [66] is recovered
exactly when the product [69] is performed. In addition, the element's three rigid

Finite Element Model Disassembly 533

body modes have been filtered out from the disassembly because all three entries of

diagonal matrix [Wke)] are nonzero. Therefore, the total number of disassembly

values and vectors is equal to N v = :3 x 4 = 12 (three values contributed by each
one of the four beams). Then, combining the decomposition of each element stiffness
matrix and the local-to-global coordinate transform [67] provides the disassembly of
the master stiffness matrix. Each element-level disassembly vector is stored in a row
of matrix (Qk] below with the same degree of freedom ordering as the one described
by equation [68]. The main diagonal of master matrix (W k] is composed of twelve
entries equal to

{ (EA)Ill (EJ)Ill (EJ)Ill ... (E.4)14l (EJ)I4l (E/)14)}
L ' 2L ' 2L ' ' L ' 2L ' 2L

1701

and the corresponding twelve disassembly vectors are

0 0 0 0 0

0 2.il 1- v'3 0 0 0 L

0 _2.il l+v'3 0 0 0 L
0 0 0 -1 0 0

0 0 0 0 2.il I- y'3

0 0 0 0
:tn

I+ y'3
[Qk] = L

0 -I 0 0 I 0
_£;il 0 -(I+ v'3) £:il 0 I- y'3
:Ji L

0 -(1- v'3) _2.il 0 I+ y'3 L L
cos(B) - sin(B) 0 -cos(B) sin(B) 0

_£;il sin(B) _£;ilcos(l:l) -(1 + v'3) '¥sin(B) '¥cos(l:l) I- y'3

¥sin(l:l) ¥cos(B) -(1-v'3) -iz'lsin(l:l) -iz'lcos(B) 1 + v'3
[71]

Note that the main two assumptions of finite element disassembly are satisfied: matrix
(Wk] is diagonal and components of disassembly vectors {QkJ do not depend on
design parameters {p} of the model.

This example shows that several designs can be analyzed simply by modifying

the diagonal entries wk(_e), then performing the matrix product [54]. For large-size
dd

meshes, this procedure becomes much cheaper than re-assembling the entire model.
Of course, this is valid only to the extent where the topology of the structure does not
change because modifications of the load path generally affect disassembly vectors
{ Qkd}. Using our simple example, we now illustrate the case of topology modifica­
tion to show that situations may occur where finite element disassembly continues to
apply.

7.2.3. Structural Removal

First, we are interested in removing a structural member. This case is the sim­
plest one because it consists of deleting contributions from the element that is being
removed. For example, we want to remove the transverse beam number 4. This ele­
ment contributes to disassembly values and vectors I 0, II and 12. Simply removing
them from vector [70] and matrix [7l]leads to the disassembled model described by
elements I, 2 and 3 only.

534 Revue europeenne des elements finis. Volume 9- no 5/2000

When the removal of one or several finite elements generates a "free-floating"
nodal joint (this would arise in situations where all elements contributing to a given
degree of freedom are removed), structural integrity may be re-gained by grounding
the corresponding nodal joints. Practically, it would simply mean deleting all entries
of vectors { Qkd} that correspond to the free degrees of freedom. This simple example
demonstrates that finite element disassembly can be applied to such problems as topol­
ogy optimization where the load-carrying capability of a system is optimized. The
topology optimization algorithms generally attempt to minimize a given cost function
by carving the optimum load path out of an elastic domain. The conclusion is that
element removal can be handled easily within the general framework of finite element
disassembly.

7.2.4. Addition of Finite Elements

The second situation considered consists of adding finite elements to an existing
mesh. In cases where no nodal joint or degree of freedom is created, adding a new
element can be handled by classical assembly as

[K(updated)(p)] = [K(original)(p)] + [L(e)r [k(e)(p(e))] [L(e)] [72]

Similarly, the disassembled model can be updated by adding to matrices [W k] and
[Qk] the diagonal entries and vectors corresponding to the new finite element. For
example, introducing a spring element in figure 2 between nodes I and 4 simply con-

sists of adding the disassembly value (ELA) (
5

) at the 13th position on the diagonal of
matrix [W k] and adding the following vector

{ Qk5
)} = {-cos(},- sin 0, 0, cos(},- sin 0, 0} T [73]

as the 13th column of matrix [Qk]. The reason that a single strain mode is considered
is because the spring element exhibit extensional stiffness only.

When the mesh is modified in such a way that new degrees of freedom are intro­
duced, the procedure remains basically the same except that components of existing
vectors { Qkd} may have to be re-ordered to match the new degree of freedom num­
bering. Nevertheless, it should be noted that performing this operation on individual
vectors is generally much easier than re-ordering rows and columns of an existing
master matrix.

8. Numerical Validation

In this section, the technique for disassembling arbitrary finite element models is
illustrated. Implementation and numerical aspects are discussed. Our goal is to illus­
trate the technique using a variety of structures typical of the aerospace and automotive
industries. Our first example is a wing structure formed of I D and 2D finite elements,
then, a volume model is disassembled. Finally, a truss structure is used for illustrating
the computational advantage of disassembly over classical assembly in the context of
repeated analysis.

Finite Element Model Disassembly 535

Figure 3. Reduced-Scale Model of a Wing Structure

Number of Nodes
Number of Elements
Number of Equations
Sparsity of [K]
Storage of [K]

Wing Model
432

1, 708
2,556
1.81%

1.43 Mbytes

Volume Model
4,805
2,727

14,415
0.39%

9.8 Mbytes

Table 1. Properties of the Finite Element Models Used

8.1. Wing Model

Truss Model
44

135
120

5.00%
9, 172 bytes

Our first example features the finite element model of a reduced-scale wing shown
in figure 3. The model counts a total of I ,708 elements among which 434 stiffeners
(with axial deformation only), 178 Euler-Bernoulli beams and I ,096 3-node shell
elements. The wing is cantilevered and it results into a total of 2,556 active degrees
of freedom. Table I lists the characteristics of the models used. It can be seen that
the sparsity of the stiffness matrix is 1.81 %, meaning that only 1.81% of its entries
(potentially, 2,556 x 2,556 entries) are nonzero. This very low ratio of nonzero terms
is typical of aerospace structures. Table 2 lists characteristics of the disassembled
model for this system and the other two used. For the stiffness matrix, a total of 17,752
vectors are generated by disassembly. However, the sparsity ratio of matrix [Qk] is
only 0.62%: as a result, it requires only a little less than three times the memory
required to store the master stiffness matrix.

536 Revue europeenne des elements finis. Volume 9- n° 5/2000

Figure 4. Simplified Model of a Cylinder-head Block

As far as computation times are concerned, it can be observed in table 3 that clas­
sical assembly and disassembly techniques are very similar for all three examples
presented. These examples illustrate that it may even be less expensive to perform a
disassembly of the stiffness matrix than to assemble it. Table 3 shows CPU times ob­
tained for various operations with a Matlab-based finite element program. Relatively
large assembly times are measured because 1) Programs are interpreted by Matlab
rather than compiled; and 2) The program used is a research software in finite ele­
ment methodologies that is not optimized for computational efficiency as commercial
programs would be. However, both assembly and disassembly suffer from the same
disadvantages. Hence, the merit of table 3 is to provide a relative comparison between
various operations. The CPU times are obtained on the R I 0,000 processor of a Silicon
Graphics workstation. Each time presented is an average of 30 executions of the same
operation. In our first example, the computational cost of 2.5 seconds for constructing
the master stiffness matrix from its disassembly is approximatively two orders of mag­
nitude less than the cost of classical assembly. Thus, if the design is changed without
altering the topology of the structure, master matrices can be reconstructed at a small
fraction of the cost of the assembly (about I%).

8.2. Cylinder-head Model

The second example features a simplified, "shoe-box" model of a cylinder-head
block from the automotive industry (see figure 4). The model is constructed from
2,727 8-node brick elements with free-floating boundary conditions and it results
into a total of 14,415 active degrees of freedom (see table I). The sparsity ratio of
the stiffness matrix is now equal to 0.39%, which basically means that less degrees of
freedom are coupled than for the case of the wing model.

Table 2 shows that the stiffness disassembly generates 112,886 vectors stored in
columns of matrix [Qk]· However, the high degree of sparsity of matrix [Qk] (with

Length of [W,]
Sparsity of [Q,]
Storage of [Qm]
Length of [W k]
Sparsity of [Qk]
Storage of [Qk]

Wing Model
24,468
0.39%

0.44 Mbytes
17,752
0.62%

3.99 MBytes

Finite Element Model Disassembly 537

Volume Model
65,448
0.007%

1.11 Mbytes
112,886

0.14%
29.20 MBytes

Car Model

113,540
0.06%

18.7 MBytes

Table 2. Properties of Disassembled FE Models

Wing Model Volume Model
(in seconds) (in seconds)

Assembly of [M] 32.2 343.3
Disassembly of (M] 53.7 471.8

Product of [Q,f (W,] [Qm] 0.3 2.8
Assembly of (K] 280.2 3,023.1
Disassembly of (K] 237.6 5,294.9

Product [Qkf [Wk] [Qk] 2.5 78.6

Table 3. Typical CPU Times Obtained for the Disassembly

Car Model
(in seconds)

3,700
3,000

6.7

0.14% of nonzero entries only) yields a memory requirement multiplied by a factor
three only compared to storing the master stiffness. The second column in table 3
shows, again, that reconstructing master matrices once their disassemblies are avail­
able can be achieved at a fraction of the original cost: 78 seconds with disassembly
compared to 3,023 seconds with classical assembly for the stiffness matrix, that is,
about 38 times less.

It can be observed that, in general, disassembly tends to generate large numbers of
vectors in matrices (Qm] and [Qk]. This is because finite elements are disassembled
individually, as mentioned previously. Hence, extraneous (or redundant) information
is introduced because the master matrices only span a subspace of dimension equal to
their rank. Practically, a filtering technique would be implemented to recover the cor­
rect number of independent columns in matrices [Q,] and [Qk] but the figures listed
in table 2 do not take such a filtering into account. Therefore, the CPU times obtained
correspond to a worst-<:ase scenario since much more information is generated than
actually needed.

8.3. Car Model

Finally, we illustrate the disassembly procedure with the body in white of a car
shown in figure 5. This model features a total of 3,930 nodal joints and 8,110 triangu­
lar shell elements leading to 23,480 degree of freedoms. The DKT18 shell presented
in reference [BAT 92] is used for this discretization.

538 Revue europeenne des elements finis. Volume 9- no 5/2000

Figure 5. Finite Element Model of the Car Structure

Since the DKTI8 shell element exhibits a rank order of II, the number of columns
stored in matrix [Qk) is equal to 11, 3540 after applying boundary conditions. Statis­
tics and CPU times are provided, again, in tables 2 and 3, respectively. They illustrate
that the CPU time required for this example is less than the time of assembling the
master stiffness matrix. It can also be seen that reconstructing the master matrices
once their disassembly is available can be achieved at a marginal fraction of the orig­
inal cost. Finally the high degree of sparsity of matrix [Qk) (with 0.06% of nonzero
entries only) yields again a memory requirement multiplied by a factor three compared
to storing the symmetrical part of master stiffness.

9. Numerical Solver for Repeated Analysis

In this section, we focus on the problem of solving equations [1-2] with multiple
models (that is, when various sets of design variables {p} are tested). Typically, we
require multiple resolutions of an equation written as

[74]

corresponding to the static equilibrium [I]. In this equation, the design {p} is modi­
fied at each analysis cycle, and it is assumed that the system matrix is disassembled.
For eigenmode extraction equation [74] still hold with the right-hand side defined as

{F} = [M) {x}

if~ subspace iteration solver, for example, is implemented ([GER 97]). We amphasize
that the deviation that followsis not restricted to static problems.

Next, in the next section, we introduce the incomplete QR factorization of the dis­
assembly matrix [Qk) required for establishing the baseline numerical solver proposed
in section 9.2.

Finite Element Model Disassembly 539

9.1. QR Factorization

In general, finite element disassembly generates large numbers of vectors. For
example, disassembling the model shown in figure 2 generates a total of twelve vectors
(Nv = 12) whereas the number of active degrees of freedom is equal to six (N =
6). Obviously, some of the information generated during disassembly is redundant
because the elements are decomposed into strain mode contributions independently
from one another.

This section addresses this issue by showing how redundant vectors may be elim­
inated without loss of vital information about the model. We assume in the remainder
that the rank of the matrix decomposed is equal to N R which is less than or equal to
N, the number of equations. Hence, we always work with the following assumption

[75]

The first step to derive a numerical solver for equations [I -2] using disassembly is
to "invert" matrix [Qk]. Since this matrix is generally rectangular and exhibits a high
degree of sparsity, a QR factorization is best suited. The QR factorization is denoted
by

[Q]
Nv x Nv

where matrix [Q] is orthogonal, that is, it satisfies

[Qf [Q] =(I]

[R]
Nv x N

[76]

[77]

and where matrix [R] would typically feature a N x N upper triangular part followed
by a (N D - N) x N zero-block matrix. In equations [76] and [78] below, the conven­
tion Nraw x Neal indicates the number of rows (Nraw) and the number of columns
(Neal) of each partition.

It can be seen from equation [76] that the full QR factorization would be prohibitly
expensive because it involves the computation of an orthogonal matrix [Q] of dimen­
sion N D. We could rather implement an incomplete QR factorization. This algorithm
is widely available for sparse matrix algebra based either on Householder transforma­
tions ([BUS 65]) or Givens rotations ([GEO 80]), the latter being less computationally
efficient than the former but offering the advantage of introducing less fill-in. An in­
complete QR factorization is denoted in the following by

[78]
where the orthogonality condition [77] becomes

[79]

540 Revue europeenne des elements finis. Volume 9- no 5/2000

Decomposition [78] is called incomplete because the partition (Q 2] is not actually
computed. However, the incomplete QR factorization provides the same information
regarding the subspace spanned by the original matrix as a complete decomposition,
that is

Range ([Qk]) = Range ([Qi]) [80]

Equation [80] proves that redundant information generated during finite element dis­
assembly may be filtered out because a minimum number of column-vectors can be
collected in matrix [Q t) that span the same subspace as the master stiffness matrix. In
equation [78], matrix (R11] is a square, upper triangular and non-singular matrix of
dimension N R. The second non-zero block [R12] gathers all singular columns of the
triangular matrix. For a mechanical system with no mechanism, a maximum of six
rigid body modes are extracted from the stiffness matrix. Therefore, the rank would
typically be obtained in the range (N- 6) :S NR :S Nand partition [Rt:!] would
collect no more than six columns. In the case where the stiffness matrix is full-rank
(that is, N R = N), it can be shown that the upper triangular matrix [R1 i] is equal to

the Choleski factorization of matrix ([Qkf (Qk]) ([GOL 90]).

The advantage of an incomplete QR factorization is that partition [Q 2] need not to
be calculated. This results in significant computational savings. Reference [GOL 90]
provides several numerical procedures for computing the incomplete QR factorization,
the cost of which can be estimated to (2ND N 2) floating point operations (Flops).
In comparison, it requires approximatively (~Nb2) Flops for factoring the master
stiffness matrix where b denotes the sparse storage's bandwidth. Practically, partitions
(R11] and [Rt:!] are extracted from the upper triangular matrix (R] by identifying
which columns possess nonzero diagonal entries and which columns possess zero
diagonal entries, respectively. The latter characterizes the singular columns that are
stored in partition (Rd. Then, we are left with the non-singular part (R11]. The
inverse of this matrix is denoted by (R11r 1 in the remainder; However, it should be
kept in mind that this operation is simply a backward substitution since the "inverted"
matrix is upper triangular.

We now investigate the derivation of a pseudo-inverse matrix using the incomplete
QR factorization obtained previously. For solving a rectangular system of equations
[A] {x} = {b }, a pseudo-inverse matrix (A+] is generally defined as the matrix that
minimizes the Frobenius (or Euclidean) norm of the following residue

Going over the derivation of the minimization problem [81] where (A] [Qk]
provides the following solution

Finite Element Model Disassembly 541

An alternative way of establishing this result is to verify that the pseudo-inverse matrix
satisfies the four necessary and sufficient Moore-Penrose conditions listed in equation
[83-86] below. The pseudo-inverse is the unique matrix that satisfies these conditions

[83]

[Qt] [Qk) [Qt] = [Qt] [84]

([Qk] [Qt]) is symmetric and equal to ([QI] [Qif) [85]

([Qt] [Qk]) is symmetric and equal to [I] [86]

Again, we emphasize the fact that partition [Q2] is not required in the solution pro­
cedure [82]. Similarly, the notation [Qt J is employed in the following for the sake
of clarity. However, this pseudo-inverse needs not to be calculated explicitely which
also saves a great deal of memory and CPU requirements. Therefore, implementing an
incomplete QR factorization provides a computationally efficient procedure for "in­
verting" matrix [Qk] while featuring at the same time a practical filtering of redundant
information introduced by finite element disassembly. Of course, this procedure is
significantly more expensive than a simple Choleski factorization of the master ma­
trix. Nevertheless, we will show that this initial higher cost is rapidly compensated by
the very efficient disassembly-based solution procedure for repeated analysis.

9.2. Baseline Numerical Solver

The solution to equation [74] can now be expressed as

[87]

where the pseudo-inverse matrix [Qt J is provided symbolically by equation [82]. Of
course this solution is obtained in a least square sense since the number of disassembly
vectors generated is usually greater than the dimension of the problem (N D 2: N), as
illustrated by previous numerical examples. However, the obtained solution could be
seen as an excellent starting guess for an iterative solving procedure, which necessitate
only few step refinement for leading to an acceptable solution. But in practical appli­
cations shown in sections 9.3 to 9.6, no refinement steps are involved since solutions
obtained with [87] are readily acceptable.

Practically, the solution procedure only involves forward-backward substitutions
and it takes advantage of orthogonality conditions [79] to avoid constructing and stor­
ing the pseudo-inverse matrix. The numerical implementation of this solver is pro­
vided and discussed briefly below:

1. Solve { x(I)} = [R11rr {F} [88]

2. Multiply { x(:?)} = [QI] { x(I)} [89]

542 Revue europeenne des elements finis. Volume 9- no 5/2000

:3. Solve { x(3)} = (W k (p W1
{ x!2)} [90)

4. Multiply { x(4)} = [QI]T { x(3)} [91)

5. Solve {x} = [R11r 1
{ x(4

)} [92)

Step I of solver [88-92) consists of a forward substitution with a system of N R

linearly independent equations. It requires approximately (~ N b) Flops where b de­
notes the sparse storage's bandwidth. Note that the load vector possesses a total of
N entries. However, if the system is rank-deficient (that is, N R ::=; N), only N R

components need to be solved for. Typically, these components are identified during
the QR factorization by storing indices of columns where a nonzero entry is found
on the diagonal of triangular matrix [R]. Step 2 of solver [88-92] is a matrix-vector
multiply that results into a maximum of (N D N R) Flops. Step 3 involves the inversion
of a diagonal matrix and Step 4 is another matrix-vector multiply: these totalize a
maximum of N R (N D + 1) Flops. Finally, Step 5 consists of a backward substitution
with N R equations. The computational burden of solver [88-92) is therefore equal to
NR (2Nv + b + 1), at most, if it is assumed that the orthogonal matrix [Qd is full
and that the triangular matrix (R1 d is stored using a skyline profile of bandwidth b.
Obviously, this requirement is marginal compared to the (2ND N 2) Flops required for
QR factorization.

Also, we see that implementing the solution procedure [88-92] using a second
set of design parameters {p} only requires to modify Step 3 because only matrix
[W k] depends on the model's design variables. If the load vector {F} is unchanged,
repeating Steps 3 to 5 involves a maximum of N R (N D + % + 1) Flops in addition
to the cost of re-assembling the diagonal of matrix (Wk],-which can be kept to a
minimum given the adequate implementation effort. In the remainder of this section,
the procedure is illustrated using two different finite element models.

9.3. Disassembly of a Truss Structure

Our first example is the truss structure shown in figure 6 and presented in tables 1-
3. It features a total of 44 nodal joints and it is modeled using 135 bar elements (with
extensional stiffness only). The ten-bay truss is cantilevered, its number of active
degrees of freedom is equal to 120 and each finite element contributes to essentially
one strain mode. Therefore, disassembly yields a matrix (Qk] formed of 120 rows
and 135 columns. Its sparsity is 2.12%, meaning that 97.88% of its entries are not
stored because they are equal to zero. The CPU time required for total finite element
disassembly is equal to 0.84 seconds and QR factorization is achieved in 0.03 seconds.
In comparison, the CPU time required for assembly of the master stiffness matrix is
equal to 1.15 seconds and a Choleski factorization is obtained in 0.003 seconds. The
sparsity ratio of the master stiffness matrix is equal to 5.00%.

Finite Element Model Disassembly 543

Figure 6. Finite Element Model of NASA Langley's DSMT Truss Structure

9.4. Re-analysis of a Truss Model With Various Solvers

Figure 7 compares CPU times obtained with three implementations as the design
is changed and multiple solutions to equation [74] are sought after: 1) The stiffness
matrix is re-assembled, re-factored and multiple load cases are analyzed; 2) No new
assembly or factorization is necessary and only forward-backward resolutions are car­
ried out; and 3) The disassembly technique is implemented together with solver [87].
Note that the second strategy is not realistic as soon as the design is changed be­
cause the stiffness matrix must be re-factored. However, since the forward-backward
resolution is the most efficient solver for sparse matrices, a comparison with case 2
provides us with insight regarding the computational efficiency of disassembly. In
figure 7, five loading cases are analyzed for each design and I 0 design cycles are con­
sidered. As expected, figure 7 shows that case I is by far the most expensive solution
procedure. Cases 2 and 3 are very similar in terms of computational efficiency for this
example. The reader should however keep in mind that these results depend on the
problem's size, its degree of sparsity and the type of finite elements involved.

Next, we apply a loading in the vertical direction at each of the four nodes at
the free end of the truss and we are interested in computing the structural response
for various combinations of design parameters {p }. Three solvers are compared in
the following. The first one consists of re-assembling the master stiffness matrix,
performing a Choleski factorization and forward-backward resolutions for each model
considered. The second solver implements the Woodbury method: in the case where
modifications brought to the stiffness matrix can be represented as a superposition of
rank-one updates, the solution of a modified system of equations can be obtained from
the previous solution without having to perform a new factorization. Equations [93]

544 Revue europeenne des elements finis. Volume 9- n° 5/2000

70

60

~50

I
::>
~ 40

130
0

20

10 ' ·A·

o,L--~--~----~--~.----.~--~--~--~--~,0

Design lleration

Figure 7. Comparison of Three Solvers for Structural Re-analysis. Case I is shown
with the dashed line: the master matrix is re-assembled andre-factored for each new
analysis. Case 2 is shown with the solid line: only forward-backward resolutions are
implemented for each new analysis. Case 3 is shown with the dashed/dotted line:
model disassembly and solver [87] are implemented

to [95] below summarize the formulation of this second solver. We assume that the
"new" stiffness matrix is obtained from the previous one by

[93]

where [Dw) is a diagonal matrix that collects changes brought to the model and [Ew) is
a localization matrix used for propagating these changes to entries of the master stiff­
ness matrix. Design changes would, for example, represent rank-one perturbations
assigned to individual finite elements between two successive design cycles. Then, it
can be verified that the "new" solution can be expressed as a function of the previous
solution by

where

[95]

The solution procedure of the Woodbury-based solver goes as follows: the first analy­
sis consists of solving the linear system [K) { x} = { F}. Then, the model is perturbed
according to equation [93] and solution [94] is implemented for any subsequent anal­
ysis. Since a Choleski factorization of the original stiffness matrix is available, equa­
tion [94] consists only of forward-backward resolutions and matrix-vector multipli­
cations, which is cheaper than having tore-factor the new stiffness matrix.

Finite Element Model Disassembly 545

25

Figure 8. Comparison of Three Solvers for Structural Re-analysis of a Truss Model.
Case I is shown with the dashed line: the master matrix is re-assembled and factored
for each new analysis. Case 2 is shown with the dashed/dotted line: the Woodbury­
based solver [93-95] is implemented with updates of rank (n-1) at the n-th design
cycle. Case 3 is shown with the solid line: the disassembly-based solver [88-92] is
implemented

It can be seen that the numerical efficiency of this second solver depends to a
great extent on the size of matrix [W w] that is the only one to require factorization.
Equation [95] shows that this matrix is full and that its size is equal to the number
of column vectors in matrix [Ew]. Typically, an update of rank N R involves exactly
Nn linearly independent vectors and, therefore, matrix [Ww] in equation [95] is a
square matrix of size N R· To maximize the numerical efficiency of this solver in
our numerical example, we restrict ourselves to rank-one updates: the cross-sectional
area of a single bar element is modified at each new design cycle. Hence, the size of
matrix [W w] is equal toN R = (n - 1) at the nth design cycle. Note that, for a rank­
one update, equations [93-95] degenerate into the well-known Sherman-Morisson
update.

The third solver is the disassembly-based algorithm described in equation [88-92].
The CPU times obtained are equal to 0.95 seconds, 0.13 seconds and 0.03 seconds for
the Choleski-based, Woodbury-based and disassembly-based solvers, respectively.
We emphasize that these figures represent the average CPU time required for a single
static resolution.

Figure 8 illustrates the cumulated CPU requirements for each one of the three al­
gorithms. It can be observed that the cost of the first solver increases linearly with
the number of design cycles: this makes sense since similar operations (assembly,
factorization and forward-backward resolutions) are repeated each time. With the
Woodbury-based solver, the first analysis is the same solution procedure as before.
Then, figure 8 shows that additional iterations are much cheaper because a matrix of

546 Revue europeenne des elements finis. Volume 9- no 5/2000

small size N R = (n - I) is factored at iteration n. It also shows that the Woodbury­
based solver loses its numerical efficiency as .\' R· the rank of the update, increases.
Clearly, our disassembly-based solver provides the best result. In a worst-case sce­
nario, the computational cost associated to finite element disassembly and QR fac­
torization would be greater than that of solver one, although this is not observed in
our numerical simulation. In any case, these expensive manipulations are performed
only once and the computational requirement of each subsequent iteration represents
a marginal fraction of that cost. Moreover, this requirement does not depend, as in
the case of a Woodbury-based solver, on the rank of the update. The conclusion is
that our disassembly-based solver is best suited to situations where enough designs
are analyzed to absorb the potentially higher initial cost.

9.5. Re-analysis of a Wing Model With Various Solvers

We will now discuss the re-analysis of the wing model presented in section 8.1
(see figure 3) using the same three solvers as before. Disassembly yields a matrix
[Qk] formed of 2,556 rows and 17,752 columns. Since we are essentially interested
in constructing an inverse stiffness matrix, the largest disassembly values Wkdd are
filtered out because their inverse would be very small compared to other components,
therefore, the contribution from corresponding disassembly vectors { Qkd} can be ne­
glected. Hence, the number of disassembly vectors is reduced down from 17,752 to
3,039 which greatly lowers the computational burden, yet yields a solution accurate
up to the second decimal (the maximum error is I%).

Next, static forces and moments are applied at the free end of the wing to simulate
a structural response similar to the first torsional mode. Again, a total of n = 30
resolutions are repeated in the same condition as before, that is, a single perturba­
tion (or rank-one modification) is introduced between any two consecutive design
cycles. CPU times obtained for a single static resolution are equal to 279.03 sec­
onds, 39.75 seconds and 133.04 seconds for the Choleski-based, Woodbury-based
and disassembly-based solvers, respectively. Figure 9 illustrates the cumulated CPU
requirements for the three algorithms. The Woodbury-based solution procedure now
appears to be cheaper than the other two: this is because any two successive designs
only differ by a rank-one update, which is the best possible situation for this solver, yet
not the most realistic one. Nevertheless, the cost of the second solver grows quadrat­
ically each time as the rank of the update is increased because matrix [95] is full
and it must be factored. The cost of the disassembly-based solver, to the contrary, is
independent of the amount of change brought to the model.

9.6. Application to Fully Stressed Design

One last illustration of the applicability of finite element disassembly is the prob­
lem of minimum mass design given known operating conditions. The baseline truss
model shown in figure 6 is optimized to decrease its total mass as much as possible

8000

7000

8000

j
• 5000

~
ir
"4000

~
~ 3000

"

Finite Element Model Disassembly 547

,/

1000 ,.J" .a· -EJ· -o -a

_r~~o-o-·13--·B-·&·Iit e e-~--£1-.-o-o-c:J-o-o-o-o-·tr·&·B-·e·a
10 15

Design Cycle
20 25 30

Figure 9. Comparison of Three Solvers for Structural Re-analysis of a Wing Model.
Case 1 is shown with the dashed line: the master matrix is re-assembled and factored
for each new analysis. Case 2 is shown with the dashed/dotted line: the Woodbury­
based solver [93-95] is implemellted with updates of rank (n-1) at the n-th design
cycle. Case 3 is shown with the solid line: the disassembly-based solver [88-92] is
implemented

given the same static loading as before (vertical forces are applied at each of the four
nodes at the free end of the truss). The optimization algorithm described briefly below
is implemented and performance is compared using two static solvers: the first solver
involves classical assembly followed with a Choleski factorization and the second
solver features finite element disassembly and implementation [88-92].

Many formulations and solution procedures have been proposed for this problem
([RAZ 65], [ROZ 89)), among which we choose to implement the fully stressed de­
sign algorithm developed by Souza de Cursi and Pagnacco because of its simplicity
([SOU 95]). The problem is formulated as the minimization of the total mass of the
structure

min (mass)
{p}

[96]

given a constraint on the stress distribution generated in the model by the applied
loading. This limitation can be expressed as

[97]

where the design criterion \II typically represents a Von Mises-like criterion of plastic
failure and lit mar represents the material's limit of elasticity. Using mathematical con­
siderations, it is shown in reference [SOU 95] that the optimum design {p(opt)} can

be obtained by seeking the solution to the equation {p(opt)} = f(\ll(p(optl)) {p(opt)}
where f is a somewhat arbitrary, user-defined function. This problem is solved by con-

548 Revue europeenne des elements finis. Volume 9- no 5/2000

Figure 10. Finite Element Model of NASA Langley's DSMT Truss Structure After
Fully Stressed Design Optimization

structing a sequence of models {p(n)} that converge to the optimum design {p(opt)}
using the following numerical procedure:

1. Assembly of Matrix [K(p(n)l] [98]

2. Resolutionof [K(p(n))] {x(n)} = {F} [99]

3. Determine the Stress Distribution { (j(n)} = { 0"(X(n))} [I 00]

4. Determine the Design Objective w!" l = llt(x!" l; (j(n l) [101]

5. Optimization {P(n+l)} = (1- w) {P(nJ} +wf (w(n)) {P(n)} [102]
\II max

6 A I C t . t (n+l) . (((n+l))) [103] . pp y ·OilS ram s Pk = 111111 Pmax; max Pmin; Pk

In the application example below, f(x) = x is chosen for simplicity. Step 6 of the
algorithm is implemented to ensure that each design parameter Pk is optimized within
user-defined bounds [Pmin; Pmaxl· The relaxation parameter w can be optimized for
improving the convergence rate of the algorithm. In our example, it is kept constant at
w = ~. Convergence is assessed by estimating the total amount of change brought to
the m~del between any two iterations.

The total mass of the truss illustrated in figure 6 is optimized using the same static
loading as in section 9.4. The fully stressed design algorithm [98-103] requires multi­
ple inverse resolutions during step 2 and two implementations are tested. The first one
involves classical assembly and a Choleski-based solver. The second one involves
finite element disassembly (performed at iteration n = 1 only) and the solver [88-
92]. Note that the Woodbury-based solver [93-95] would typically be inadequate in
this situation because all of the model's design variables are modified simultaneously
at each iteration. Figure I 0 illustrates the optimum design reached after 15 iterations

Finite Element Model Disassembly 549

18

16

rr
14

rr

rr

8 10 12 14
Design Cycle

Figure 11. CPU Time Requirements for Fully Stressed Design Optimization. Case
I is shown with the dashed line: the master matrix is re-assembled and factored for
each new analysis. Case 2 is shown with the solid line: the disassembly-based solver
{88-92] is implemented

only. Optimization variables consist of the cross-sectional areas of the 135 truss mem­
bers. The solution makes perfect engineering sense since stiffer members (indicated
by thicker cross-sectional areas in figure 10) are placed near the cantilever bound­
ary condition where strain energy is the highest. At the same time, cross-sectional
areas are decreased to minimize the mass as much as possible in areas that do not
carry significant loading. This optimization results into a minimization of the total
mass by 83%: the structure's weight is decreased from 0.0574 lbf (or 10.05 kg) be­
fore optimization to 0.0097 lbf (or 1.71 kg) after. Both solvers provide the same
design because assembly-based and disassembly-based solutions at step 2 are identi­
cal. However, computational requirements are quite different, as illustrated in figure
11. Although a small number of iterations are necessary to achieve convergence, finite
element disassembly and its associated solver provide a dramatic reduction ofthe total
computational requirement.

10. Inverse Problem Solving Using Flexibility Data

An application to test-analysis reconciliation is now discussed. First, we formu­
late the inverse problem of finite element model updating. This discussion is aimed
at showing that most updating techniques result into similar resolutions ; the only
difference between any two methods being the definition of a residue vector. It is
shown here that the particular choice of flexibility data offers significant advantages
in the context of finite element disassembly, not to mention that flexibility matrices
are easily measured during modal tests.

550 Revue europeenne des elements finis. Volume 9- no 5/2000

10.1. Formulation of Finite Element Model Updating

Updating methods can generally be formulated as the minimization of residue vec­
tors. Residues measure the (lack ot) correlation between test data and responses simu­
lated using the finite element model. Typical examples include the difference between
identified and simulated frequencies or vectors. Indirect measures of the correlation
between the test article and the model can also be defined, such as out-of-balance
forces in the model. Reference [HEM 98] provides a description of these popular
residues.

No matter what definition is used, design parameters are sought after that minimize
residues at the (n + 1)th iteration given a distribution of residues at the n-th iteration.
The best-case scenariowould consist of reaching zero-residues, that is

[104]

where the updated design parameters are obtained from current ones as

[105]

Usually, substituting definition [I 05] into equation [I 04]leads to a nonlinear system of
equations. First-order linearizations are attractive alternatives to the implementation
of computationally intensive nonlinear solvers. It yields

At any updating iteration, the system [I 06] is solved for the unknown correction pa­
rameters { Jp} by inverting in a least-squares sense a correction matrix [9] that col­
lects the residue's gradient vectors in its columns. The compact form of system [106]
is provided below

[107]

with

[g(p(n); s)] = [{ 8R (p(n); s)} I { 8R (p(n); s)} I·. ·I { 8R (p(n); s)}]
8p1 8p2 OPNp

[108]
Regularization can be added to improve the condition # of matrices to invert. This
would typically modify the definition of matrix [I 08] but it does not change the con­
clusion reached below. For clarity, regularization is not assumed in the following.

It can be seen from equation [I 07] that the solution procedure consists of forming
matrix [I 08], then inverting it to get the solution and adjust the model. All updating
algorithms using gradient-based optimization techniques involve a similar procedure.
In the following, we show that the computational burden associated to this procedure
can be greatly reduced when the correlation involves flexibility data.

Finite Element Model Disassembly 551

10.2. Using Flexibility Data and Reduced FE Models

Using flexibility data consists of defining the residue vectors as the difference be­
tween measured and analytical Frequency Response Functions (FRFs). Since FRFs
are obtained by inverting the dynamic stiffness matrix at a given frequency s, a flexi­
bility-based residue matrix can be defined as

[109]

The advantage of this definition is that the measurements [Fid] can be obtained di­
rectly from test data by estimating the transfer functions between input excitations
and output measurements. Measuring the flexibility matrix is a pre-requisite to any
identification algorithm and it is generally much cheaper and less troublesome than at­
tempting to best-fit mode shapes and frequencies, especially when modally complex
structures are tested and identified.

We now emphasize the fact that only a small number of degrees of freedom are
measured during a modal test, typically no more than 10% in aerospace applications,
even less in automotive applications. If otherwise, the updating problem offers no
challenge because it can be solved for in a single iteration. Therefore, any comparison
between test data and finite element quantities involves a procedure for resolving this
spatial incompleteness. For example, the dynamic stiffness matrix is reduced to match
the size of the experimental model. Accordingly, our disassembled, analytic model
can be reduced down to the measurement points by

(ZR(P; s)] (T]T ((K(p)]- s 2 (M(p}]) (T] [110]

([Qk,m] [T]{ [Wk,m(P; s)] ([Qk,m] [T]) [Ill]

where matrix (T] denotes the model condensation operator. Finally, using the results
of section 9, the disassembled equation [Ill] can be inverted to provide the model­
based flexibility matrix as

[112]

In equation [112], the original disassembly matrix [Q •. no) is kept for simplifying the no­
tations although it should actually be replaced with the condensed matrix ([Q •. m]ITI).

From now on, the former will denote the condensed disassembly matrix. Again, a
pseudo-inverse matrix is used for clarity in equation [112] but the reader should keep
in mind that it is never actually required, as discussed in section 9.

10.3. Two-Step Updating Algorithm

We have seen that a residue matrix [I 09] can be defined based on measured flex­
ibility data and condensed finite element models. The solution procedure for model
updating as outlined in section I 0.1 is now detailed using this particular choice. It

552 Revue europeenne des elements finis. Volume 9- no 5/2000

is shown that disassembly can be exploited to greatly reduce the computational bur­
den. Basically, no matrix inversion nor QR factorization needs to be performed for
updating the model.

We recall that the computational model is adjusted by solving the parameter cor­
rection equation below with our particular choice of flexibility-based residues

[113]

Using the disassembly representation [112] for the reduced finite element flexibility
matrix, the previous system of equations becomes

(

Np {) (_ 1)) T [Qt_,,] {; apk [wk,m(P("l;s)] c5pi"+t) [Qt,m] =- [R.(p("l;s)]

[114]
Equation [114] holds because only the disassembly values stored in diagonal matrix
[W k ,m] depend on design variables. This is however not exact strictly speaking since
[Qk,m) depends on a condensation matrix. The latter would typically be derived from
the model, therefore, introducing an implicit dependency with respect to the current
design { p(" l}. However, it is common practice to neglect this relationship in first
order approximation because the condensation operator [T] is generally computed us­
ing the original finite element model and used for several refinement iterations without
being updated. When it is assessed that the current model is far away from the starting
point, test-analysis correlation can be established and the condensation matrix can be
updated based on the current model.

We can re-write this correction system using a generic matrix [9) equal to the
summation of diagonal sensitivity matrices in the left-hand side of equation [114]. It
gives

[115]

We may now consider without loss of generality that the problem consists of solving
equation [115] for the unknown quantity [9). However, the solution matrix is not
arbitrary: it is diagonal and exhibits the specific pattern described by equation [114].
This leads to a two-step updating algorithm where equation [115] is solved first, then
the particular form of matrix [9] is best-fitted to the solution. The first resolution is
referred to as the "global" updating problem because all equations are coupled. It can
be verified easily that the solution is given simply by

[116]

It is remarquable that no matrix inversion nor QR factorization is required to solve
the global updating problem once the disagreement [1 09] between test and analysis
flexibility matrices has been calculated. Note also that solution [116] should yield a

Finite Element Model Disassembly 553

diagonal matrix if the connectivity of the model is an exact representation of the test
structure's load path. This is however rarely the case due to finite element approxi­
mations. Moreover, measurement noise and numerical roundoff prevents the solution
matrix from being exactly diagonal in most realistic applications. Therefore, the finite
element parameterization is best-fitted by solving the following system that involves
the diagonal of matrix [m only

k·="f.N. ()~k ([wk.,rn(P(nl; s)r
1

) Jpf'+ll = Diag ([~l(p("l: s)]) [117]

This second resolution is referred to as the "local" updating problem because equa­
tions are actually decoupled for each finite element. In the best-case scenario, solving
equation [117] consists of inverting a diagonal matrix when a single design variable
is updated per finite element. In the worst-case scenario, solving equation [117] con­
sists of inverting as many small-size systems as there are finite elements adjusted. The
size of an individual system for a specific element is dictated by the number of design
parameters corrected within this element. Therefore, the local updating problem intro­
duces hardly no computational requirement at all since resolutions can be performed
in parallel and independently from one another.

This solution procedure yields the following iterative solver:

1. Disassembly of Matrices [K(p(n)l], [M(p(n)l] [118]

2.ComputationoftheReductionl\latrix [T(n)J = [T(p("l;s)J [119]

3. Estimation of Residues :

[n.(p("l:sl] = [zR(P("l;s)r'- [F;d(s)]

4. Resolution the of Global Problem :

[g(p("l;s)] =- [Qk.m] [R.(p("l;s)] [Qk.mf

5. Resolution of the Element- level, Local Problems :

- A 1 (' 't · _ (n+l) _ · (. . (. (n+l))) I. pp y ·011:; .ramb Pk - mm Pmax, max Pmin, pk

[120]

[121]

[124]

It is generally not necessary to implement steps 1-2 above at each updating itera­
tion: it suffices to update the condensation matrix only when the finite element model
has been significantly modified. Many choices are available from the literature that
yields reduction matrices [T] that preserve the dynamics of the system within a given

554 Revue europeenne des elements finis. Volume 9- no 5/2000

Figure 12. Finite Element Model and Sensing Configuration of the Ladder Structure

frequency range and/or that extrapolate the response accuratly for structural modi­
fication. Another reason for avoidin steps 1-2 is that model condensation costs are
very significant. In comparison, the computational cost of the global problem [116]
increases linearly with the number of measurement points while the cost of the local
problem [117] is linear with the number of finite elements updated. Section I 0.4 dis­
cusses an application example where the finite element model of an automotive frame
structure is adjusted for improving its joint stiffness characteristics.

10.4. Validation of Flexibility-based Model Updating

The flexibility-based reconciliation algorithm is now illustrated using the finite el­
ement model depicted in figure 12. The structure is referred to as the "ladder" structure
and it represents a simplified model of engine cradle used in the automotive industry.
The Euler-Bernoulli beam model is chosen for mathematical idealization and the sys­
tem is discretized into 120 nodal joints and 120 finite elements. Boundary conditions
are free-free. Figure 12 shows the sensing configuration adopted (three translations at
16 nodal joints are measured) as well as rigid elements introduced in the finite element
model to account for measurement offsets. A total of 48 out of the 672 active degrees
of freedom are measured during the simulation.

Although test data are available, FRFs used for this validation are simulated nu­
merically. This is to provide us with an assessment of the method in a situation where
the finite element model is a perfect idealization of the structure's load path and where
no measurement noise is introduced. Sparsity of the master stiffness matrix is equal
to 0.72% and the corresponding storage requirement is 41.6 KBytes. In comparison,
the sparsity of disassembly matrix [Qk] is equal to 0.39% and the corresponding stor­
age requirement is 24.9 KBytes. Assembly and disassembly require roughly the same
amount of computation, with a slight advantage to disassembly.

Finite Element Model Disassembly 555

20~--r---~--.---.---.---.---,----.---.--~

iii
~15
u.
a:
u.

II
~ 10

~ -------------it --r- ------------
~ 5 ~~
0 '~
oL---L---L---~--~--~--~--~--~--~--~
1M IT2 IT4 1M ITB UO ffi2 1~ 1~ 1M 100

Frequency (Hertz)

20~---.-------.-------,-------,--------w-~

iii
~15
u. a:
u.
i 10 I
E ,i, I I
~ -.·'i-.- ,. -· ---1-.--. -· -· -· -· --~·-· -·- -· -·-·-
~ 5 1 0

200 250 300
Frequency (Hertz)

350 400

Figure 13. Comparison of FRF Data Before and After Updating. The nominal finite
element model (before updating) is shown with the dashed/dotted line. The adjusted
finite element model (after disassembly-based updating) is shown with the dashed line.
The reference, "truth" structure is shown with the solid line. No difference between
the test data and response of the optimized model is visible

Then, a translational spring element is added to the model at each one of the four
nodal joints where longitudinal and transverse beams are connected. In this example,
the modeling error consists of underestimating these spring constants by a factor of
six. In other words, "test" data are simulated using spring stiffnesses six times superior
to their values in the nominal finite element model. The data set consists of the full, 48
by 48, FRF matrix at 180 Hertz. This sampling frequency is chosen for no particular
reason other than for being close to the model's first bending mode (at 178.48 Hertz).

Figure 13 compares FRF data before and after updating for a particular input­
output pair but over the entire frequency range of interest. The improvement brought
to the model after three updating iterations is clearly visible since the updated model
(dashed line) matches the "test" data (solid line) over the entire frequency range, even
though only FRFs at 180 Hertz were provided to the updating algorithm. Figure 14
compares the final stiffnesses to their exact value. The solution has undoubtedly been
identified with acceptable accuracy after three iterations only. This example illustrates
the performance of updating algorithm [118-124] when the finite element model is
disassembled. The advantage of this procedure over modal-based techniques should
be emphasized: here, the input data consist of small-size FRF blocks that can be
obtained more easily than resonant frequencies and mode shapes.

556 Revue europeenne des elements finis. Volume 9- no 5/2000

12

10

I
2 1

I
I

I

I

1.5

I

I

I

I

P,
I '

' ' ' ' ' ' ' ' ' ' ' ' ' '

2.5 3 3.5
Updating Iteration

4.5

Figure 14. Adjustment Brought to the Disassembled Ladder Model. Updated stiff­
ness values (shown with the dashed line) are compared to their reference, "truth"
value (shown with the solid line) after the disas~mbled finite element model has been
updated using a single FRF block

~------------------------------------

10 20 30 40 50 60 70 80 90 100
Updating Iteration

Figure 15. Adjustment Brought to the Assembled Ladder Model. Updated stiffness
values (shown with the dashed line) are compared to their reference, "truth" value
(shown with the solid line) after 100 iterations of updating the assembled finite element
model using a single FRF block

Finite Element Model Disassembly 557

10-S .._S -& -~ -~-G--o--o- -o- -Q--(>- --o- -o- -Q- -Q- ~- -El- -e- E)-

lO-uL_~-~-~--7----c,0:------:,::-2 --:,':-4 ---.,,-;;:6------:;,.------;;2'0
Updating Iteration

Figure 16. Convergence During Model Updating of the Ladder Structure. Case 1 is
shown with the solid line: the disassembly-based solver [1 18-124] is implemented.
Case 2 is shown with the dashed line: finite element matrices are not disassembled
and equation [1 13] is inverted numerically

In terms of computational requirement, the solver [118-124] is compared with a
similar version where the finite element model is not disassembled. When no dis­
assembly is available, global and local inverse problems (steps 4 and 5, respectively)
must be replaced with equation [113] that is inverted numerically. This second version
therefore proceeds with finite element assembly and model reduction at each updating
iteration, next, the correction system [113] is solved for in a least-squares sense. In
both versions, the cost of constructing the condensation matrix [T] and reducing the
finite element model from 672 degrees of freedom down to the 48 measurement points
remain similar. Figure 15 compares the stiffness parameters obtained after 100 itera­
tions to their exact value. Two parameters converge rapidly; Obtaining the other two
requires over I ,000 updating iterations. After I 00 iterations, these two parameters are
increased by 15.3% only. This example clearly illustrates that the disassembly-based
solution procedure [118-124] is more efficient than its numerical counterpart because,
in the first case (with disassembly), algebraic solutions are implemented while, in
the second case (with assembly), matrices must be inverted numerically which yields
approximate, least-squares solutions.

Figure 16 depicts the convergence of both algorithms. It can be observed that
convergence of the second solver is slowed down significantly after the third iteration
when two of the updating parameters have reached their solution. Small incremental
changes are then brought to the remaining two springs, which explains why the residue
[I 09] decreases very slowly. Finally, figure 17 illustrates the cumulated CPU require­
ments as a function ofthe updating iteration. It demonstrates that significant computa­
tional savings are provided when finite element disassembly is exploited: CPU times
required to complete the first four optimizations are reduced by a factor of three with
finite element disassembly (6.23 seconds as opposed to 17.62 seconds).

558 Revue europeenne des elements finis. Volume 9- no 5/2000

100

90

~

' 80 J

' ~
70 '

~

i
J

~ '
60

~ ' -
=> ----l3 50

~ '

I ' -40 ,--"'

5 ~ '
" -30 '

.T"

' ~

20 -' /
' 10

~-=
0

10 12 14 16 18 20
Updating Iteration

Figure 17. CPU Time Requirements for Model Updating of the Ladder Structure.
Case I is shown with the solid line: the disassembly-based solver {I 18- I 241 is im­
plemented. Case 2 is shown with the dashed line: finite element matrices are not
disassembled and equation [I 131 is inverted numerically

11. Conclusion

This publication deals with the disassembly of finite element models for structural
dynamics applications and inverse problem solving. Disassembly consists of parti­
tioning element-level matrices into inertia modes (for the mass operator) and strain
modes (for the stiffness operator). These contributions can be collected in global stor­
ages to yield the disassembly of master mass and stiffness matrices. Although imple­
menting the algebraic disassembly of finite element matrices may involve significant
programming efforts as well as important computational resources, it is shown that
this particular representation can be exploited for deriving efficient inverse solvers.

Since disassembly decouples information regarding the design from information
regarding the topology and the metric of the structure, updating a disassembled model
can be performed at a fraction of the cost required for re-assembling the system ma­
trices when the design is modified. Basically, only a diagonal matrix is updated.

Within this context, numerically efficient solvers for inverse structural dynamics
problems are derived. Problems of interest include multiple analyses, structural opti­
mization and finite element model updating. These share the need for solving linear
systems repeatedly with multiple designs and, most often, with a known topology and
metric. In this situation, finite element disassembly provides a very efficient numeri­
cal procedure that involves a single, incomplete QR factorization, no matter how many
analyses are performed. Then, solving a linear system only requires two matrix multi­
plications. Similarly, solving a linear system with a modified design only adds to this
cost the updating of a diagonal matrix.

Finite Element Model Disassembly 559

Application examples are presented that feature models typically encountered in
the automotive and aerospace communities. In all cases considered (multiple analysis,
fully stressed design and flexibility-based model updating), the disassembly-based
solver is shown to provide significant computational speed-up ratios compared to tra­
ditional solvers. Future work includes the investigation of numerical disassembly that
reduces the implementation effort and that may be interfaced with any commercially­
available finite element package.

12. References

[ARG 60] ARGYRIS, J.H .. and KELSEY, S., Energy Theorems and Structural Analysis, But­
terworths, London, U.K., 1960.

[BAT 92] BATOZ J.L., and DHATT G., Modelisation de Structures par Elhnents finis, Vol. 3,
Hermes Editeur, 1992.

[BAT 96] BATHE K.J., Finite Element Procedures, Prentice Hall, M.I.T. Press, 1996.

[BUS 65] BUSINGER, P.A., and GOLUB, G.H., "Linear Least Squares Solutions by House­
holder Transformations," Journal of Numerical Mathematics, Vol. 7, 1965, pp. 269-276.

[CAL 83] CALLADINE, C.R., Theory of Shell Structures, Cambridge University Press, New
York, NY, 1983.

[FAR 91] FARHAT, C., and Roux, F.-X., "A Method of Finite Element Tearing and Intercon­
necting and its Parallel Solution Algorithm," International Journal of Numerical Methods
in Engineering, Vol. 32, 1991, pp. 1205-1227.

[FAR 92] FARHAT, C., and GERADIN, M., "A Hybrid Formulation of a Component Mode
Synthesis Method," 33rd AIAA/ASMEIASCEIAHS/ASC Structures. Structural Dynamics
and Materials Conference,# AIAA-92-2383-CP, Dallas, TX, Apr. 13-15, 1992, pp. 1783-
1796.

[FEL 89] FELIPPA, C.A., and MILITELLO, C., "Developments in Variational Methods For
High Performance Plate and Shell Elements," Analytical and Computational Models of
Shells, Edited by Noor, A.K., Belytschko, T., and Simo, J.C., ASME Winter Annual Meet­
ing, San Francisco, CA. Dec. 10-15, 1989, pp. 191-215.

[FRA 65] FRAEIJS DE VEUBEKE, B.M., "Displacement and Equilibrium Models in the Finite
Element Method," Stress Analysis, Edited by Zienkiewicz, O.C, and Hollister, G., Wiley,
London, U.K., 1965,pp. 145-197.

[GEO 80] GEORGE, J.A .• and HEATH, M.T., "Solution of Sparse Linear Least Squares Prob­
lems Using Givens Rotations," Journal of Linear Algebra and Its Applications, Vol. 34,
1980, pp. 69-83.

[GER 97] GERADIN, M., and RIXEN, D., Mechanical Vibration, Theory and Application to
Structural Dynamics, J. Wiley & Sons, New York, N.Y .. Second Edition, 1997.

[GOL 90] GOLUB, G.H., and VAN LOAN, C.F., Matrix Computations, The Johns Hopkins
University Press, Baltimore, Maryland, Second Edition, 1990.

[GOR 96] GORDIS, J.H., "On the Analytic Disassembly of Structural Matrices," Modal Anal­
ysis: the International Journal of Analytic and Experimental Modal Analysis, Vol. II, No.
I & 2, July 1996, pp. 39-48.

560 Revue europeenne des elements finis. Volume 9- no 5/2000

[HAF 93] HAFTKA, R.T., AND GORDAL, Z., Elements of Struc/1/ra/ Optimization, Solid Me­
chanics and Its Applications, Kluwer Academic Publishers, Third Edition, 1993.

[HEM 95] HEMEZ, F.M .. and Farhat, C., "Structural Damage Detection Via a Finite Element
Model Updating Methodology," Journal of Modal Analysis. Vol. I 0, No. 3, July 1995, pp.
152-166.

[HEM 98] HEMEZ, F.M., "Can Model Updating Tell the Truth?," 16th SEM International
Modal Analysis Conference. Santa Barbara, CA, Feb. 2-5, 1998, pp. 1-7.

[HUG 87] HUGHES, T.J.R., The Finite Element Method: Linear, Static and Dvnamic Finite
Element Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1987.

[JON 75] JONES, R.M., Mechanics of Composite Materials, Taylor & Francis, 1975.

[MeG 90] McGOWAN, P.E., SMITH, S.W., and JAVEED, M., "Experiments For Locating Dam­
aged Members in a Truss Structure," 2nd USAF/NASA Workshop on System Identification
and Health Monitoring of Precision Space Structures, Pasadena, CA. Mar. 27-29, 1990, pp.
571-615.

[ODE 76] ODEN, J .T., An Introduction to the Mathematical Theory of Finite Elements, Wiley,
New York, NY, 1976.

[ODE 83] ODEN, J.T., and REDDY, J.N., Variational Methods in Theoretical Mechanics,
Springer-Verlag, Berlin, Germany, 2nd Edition, 1983.

[PAG 97] PAGNACCO, E., and PARK, K.C., "Damage Location Using a Localized Flexibility­
Based Method," Center for Aerospace Structures, University of Colorado at Boulder, Boul­
der, CO 80309-0429, Nov. 1997.

[PAR 97] PARK, K.C., REICH, G.W., and ALVIN, K.F., "Structural Damage Detection Using
Localized Flexibilities," Center for Aerospace Structures, University of Colorado at Boul­
der, Boulder, CO 80309-0429,# CU-CAS-97-14, July 1997.

[PAZ 91] PAZ, M., Structural Dynamics, Theory and Computation, Van Nostrand Reinhold,
New York, NY, Third Edition, 1991.

[PET95] PETERSON, L.D., DOEBLING, S.W., and ALVIN, K.F., "Experimental Determi­
nation of Local Structural Stiffness by Disassembly of Measured Flexibility Matrices,"
36th AIAA/ASMEJASCEIAHS/ASC Structures. Structural Dynamics and Materials Con­
ference,# AIAA-95-1090-CP, New Orleans, LA, Apr. 10-13, 1995, pp. 2756-2766.

[RAZ 65] RAZANI R., "Behavior of Fully Stressed Design of Structures and Its Relationship
to Minimum-Weight Design," AIAA Journal, Vol. 3, No. 12, 1965.

[ROZ 89] RoZVANY G.I.N., Structural Design Via Optimilaty Criteria, Kluwer, Dordrecht,
The Netherlands, 1989.

[SOU 95] SOUZA DE CURS I, J.E., and PAGNACCO, E., "Minimum Mass Spare Parts in 2D
Elasticity," Structural and Multidisciplinary Optimization, Edited by Olhoff. N., and Roz­
vany, G.I.N., Pergamon Press, 1995, pp. 23 I -236.

[SUZ 91] SUZUKI, K., and KIKUCHI, N., "A Homogenization Method for Shape and Topology
Optimization," Computer Methods in Applied Mechanics and Engineering, Vol. 93, 1991,
pp. 291-318.

