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ABSTRACT
This paper is concerned with the direct computation of stress
intensity factors (SIFs) in the finite element analysis of the mixed-
mode deformation of homogeneous cracked plates. The direct
computation of SIFs is a natural consequence of a regularisation
procedure, introduced before the finite element analysis takes
place that uses a singular particular solution of the crack problem
to introduce the SIFs as additional problemprimary unknowns. In
this paper, the singular term ofWilliams’ eigenexpansion, derived
for a semi-infinite crack, is used to regularise the elastic field of an
edge-cracked finite plate. Two cracked plates were analysed with
this technique, in order to assess the accuracy and efficiency of
the formulation. The results obtained in this work are in perfect
agreement with those obtained with the dual boundary element
method and other published results. The accuracy and efficiency
of the implementation described herein make this a reliable and
robust formulation, ideal for the study of crack-growth problems,
with the finite element method.

ARTICLE HISTORY
Received 8 April 2017
Accepted 10 July 2017

KEYWORDS
FEM; stress intensity
factor; singularity
subtraction
regularisation; crack tip
elastic field; Williams’
singular solution; cracked
plates

1. Introduction

Within the limits of linear elastic analysis, the stress field is unbounded at the
tip of a crack. This was early reported by Brahtz (1933) and later by Williams
(1952) who, after an investigation of the analytical form of these singularities
demonstrated that under all possible combinations of boundary conditions,
the stress becomes infinite at the tip of a crack. From a physical point of
view, unbounded elastic fields aremeaningless.Nevertheless, unbounded stresses
cannot be ignored as their presence indicates that newphenomena (e.g. plasticity,
fracture, etc.) may occur, leading to localised damage in practical situations. In
this paper, the term singularity is used to denote the cases in which the elastic
stress field becomes unbounded. If r denotes the distance measured from the
crack tip, the stress field is of the order r−1/2 which becomes singular as r tends
to zero. The stress intensity factor (SIF), defined at the crack tip, is a measure of
the strength of this singularity.
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The presence of the stress singularity in the numerical model raises consider-
able numerical difficulties by virtue of the need of simultaneously representing
both the singular and the finite stresses in the numerical model. The most
important approaches that have been devised to overcome this difficulty, in the
standard finite element method (FEM), in the extended finite element method
(XFEM), in the boundary element method (BEM) and in mesh-free methods,
are briefly reviewed in the following.

The use of quarter-point isoparametric finite elements, introduced by
Barsoum (1976) and Henshell and Shaw (1975), suggested the application of
quarter-point boundary elements at the crack tip, as an alternative to the mesh
refinement procedure. However, while quarter-point finite elements both rep-
resent the r1/2 displacement behaviour and introduce a r−1/2 singularity in the
stress field, the use of quarter-point elements in the BEM, inwhich displacements
and tractions are approximated independently, enables only the displacement
behaviour to be properly represented. This feature was early noticed by Cruse
and Wilson (1977), who introduced traction-singular quarter-point boundary
elements for the correct representation of the singularity in the stress field.
SIFs can be computed from quarter-point elements by the displacement correla-
tion procedure. The application of this procedure over quarter-point elements,
first presented by Blandford, Ingraffea, and Liggett (1981), was called a two-
point formula by Smith and Mason (1987). The computation of SIFs from
traction-singular quarter-point boundary elements was presented by Martinez
and Dominguez (1984).

While the above methods represent the stress singularity in the numerical
model, an alternative approach, developed by Symm (1963) in potential theory, is
based on the subtraction of this singularity from the numericalmodel. In fracture
mechanics applications, the singularity subtraction technique is a procedure that
uses a singular particular solution of the crack problem to regularise the stress
field and to introduce, simultaneously, the SIFs as additional primary unknowns
in the problem. This approach was first applied by Xanthis, Bernal, and Atkinson
(1981) for anti-plane problems and by Aliabadi, Rooke, and Cartwright (1987)
to solve symmetrical crack problems using the BEM.

In the case of non-symmetrical problems, the singular tractions are not among
the boundary element unknowns and consequently, there is no singularity in the
numerical model to be subtracted. The application of the sub-regions BEM is an
obvious way to circumvent this difficulty, as shown byAliabadi (1987). However,
artificial boundaries introduced by this method are not strictly necessary in
the analysis of a crack problem. An alternative strategy, developed by Portela,
Aliabadi, and Rooke (1991), first introduces the stress equations of an internal
point, approaching the crack tip, as primary unknowns in the boundary element
formulation. Then, the stress field, singular at this internal point, can now be
regularised with the singularity subtraction technique. The extension of this
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singularity subtraction technique to pure openingmode analysis of sharpnotches
was first reported by Portela, Aliabadi, and Rooke (1989).

Alternatively, the evaluation of SIFs can be based on contour integrals which
are path-independent. The J-integral has been used quite effectively in the dual
BEM, as a post-processing technique, for the evaluation of SIFs by Portela, Ali-
abadi, and Rooke (1992). A simple procedure, based on the decomposition of the
elastic field into its respective symmetric and anti-symmetric mode components,
is used to decouple the SIFs of a mixed-mode problem. Although this technique
does not perform a regularisation of the elastic field with the crack tip singularity
subtraction, it is very accurate because it uses the elastic field computed at internal
points which is a highly accurate operation in the BEM due to the fundamental
solutions.

As an alternative to the J-integral post-processing technique, the direct com-
putation of the SIFs, as additional primary unknowns in the dual BEM, was first
presented by Portela, Aliabadi, and Rooke (1992). In order to avoid numerical
difficulties that arise from the presence of a singularity in the numerical model,
it is convenient to subtract this singularity from the original problem, before it is
solved by the numerical method. This regularisation considers a singular partic-
ular solution of the problem and forces the original elastic field to be identical to
this particular solution, at the singular point. By virtue of the analytical structure
of the singular particular solution that represents the crack tip elastic field, the
modified problem includes the SIFs as additional primary unknowns. Finally, the
numerical method can be easily applied to solve the modified problem which is
now regular and consequently can lead to highly accurate solutions simply with
coarse meshes.

In the standard FEM, the hybrid crack tip element (HCE), see Tong, Pian,
and Lasry (1973), can be used for the direct computation of SIFs, as reported
by Karihaloo and Xiao (2001) and Xiao, Karihaloo, and Liu (2004). The HCE
represents a crack by only one super-element which includes the crack tip
and is connected compatible with the surrounding finite elements. The HCE
uses a truncated asymptotic crack tip displacement and stress expansions. It is
important to stress that, while HCEmakes the numerical modelling of the elastic
field with the crack tip singularity included, the formulation presented in this
paper completely removes the singularity before the finite-element analysis of
the regularised elastic field with no convergence difficulties and highly accurate
results.

Mesh-free methods, see Belytschko, Krongauz, and Organ (1996), have re-
ceived much attention recently, since they eliminate the need for a discretisation
mesh and hence, they appear to demonstrate significant potential to the moving
boundary problem inherent in crack-growth processes. Comprehensive reviews
of mesh-free methods can be found in Li and Liu (2002), Liu and Gu (2005), and
Nguyen, Rabczuk, Bordas, and Duflotd (2008). In these methods, the moving
least squares approximation is possibly the most used method to interpolate
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discrete data with a good accuracy. The order of continuity of the approximation
can be set to a desired value, as reported by Sladek, Sladek, Wunsche, and Zhang
(2009). The treatment of crack discontinuities, the main issue of modern mesh-
freemethods, has beenmodelled indifferentways;Carpinteri, Ferro, andVentura
(2003) used a virtual extension of the crack in the direction of the tangent at the
crack tip, while Wen and Aliabadi (2007) considered enriched basis functions
in the moving least squares interpolation. Enriched weight/basis functions, by
incorporating apriori knowledge of the solution that is a jump function along
the discontinuity and the asymptotic crack tip displacement field, have been
successfully applied to fracture problems, as reported by Fleming, Chu, Moran,
and Belytschko (1997), Gu & Zhang (2008) and Lu, Belytschko, and Tabbara
(1995). However, the main difficulty of this strategy is that the enrichment area
must be limited, when multiple cracks are densely distributed or when crack tips
are close to the boundaries which is a drawback of this new generationmesh-free
methods. A new approach was presented by Rabczuk and Belytschko (2007), in
which no representation of the crack topology is needed. In this context it is
worth of mention the work of Bordas, Rabczuk, and Zi (2008), in which only an
extrinsic discontinuous enrichment and no near-tip enrichment is required.

Semi-analytical formulations, in which the singular and finite stress fields
can be represented more accurately, play an important role in the treatment
of crack problems. This is the case of the scaled boundary FEM, presented by
Natarajana, Ooi, Chiong, and Song (2014), Natarajana, Songa, and Belouettarb
(2014), and Ooi, Song, Loi, and Yang (2012) that does not require special
numerical integration technique, does not require a priori knowledge of the
asymptotic fields and the stiffness of the region containing the crack tip is
computed directly.

The XFEM, developed by Belytschko and Black (1999), is a modern numerical
modelling tool that offers great flexibility in the analysis of the fracture process.
The theory and applications of XFEM, in the linear and non-linear problems of
continua and structures were presented by Khoei (2015). The XFEM enriches
the local standard finite-element approximation space to incorporate apriori
knowledge of the solution, with a displacement discontinuity function across the
crack and the asymptotic solution at nodes surrounding the crack tips, with the
use of the partition of unity method (PUM), (see Melenk and Babuska, 1996).
As a result, the numerical model consists of three types of finite elements: non-
enriched elements, fully enriched elements and partially enriched elements, the
so-called blending elements. By virtue of the enrichment process, the XFEM
overcomes the need of using finite-element meshes conforming with the crack
discontinuity, as well as the adaptive remeshing as the crack grows, as is the
case with the standard FEM. The XFEM considerably facilitates the meshing
operations in the solution of complex structures, in the sense that it does not
require the finite element mesh (FEM) to conform to the crack faces, (see
Hedayati and Vahedi, 2014). The solution accuracy of the local fields around
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crack tips is a direct consequence of the choice carried out for the enrichment
functions which define apriori knowledge of the solution. Alternative crack tip
enrichment techniques have been devised to simulate failure and yet allow for
direct estimation of the SIFs. In this regard, Liu, Xiao, and Karihaloo (2004)
introduced a method which is still relying on the PUM, but with specific enrich-
ment functions that are theWilliams’ series. An efficient enrichment strategywas
presented by Akhondzadeh, Khoei, and Broumand (2017), for modelling crack
tips terminating at a bi-material interface within the XFEM framework.

Error estimation for the discretisation error in XFEM calculations for cracks is
a very important subject. Referencework in this areawas presentedbyBordas and
Duflot (2007), Bordas, Duflot, and Le (2008), Duflot & Bordas (2008), Estrada
et al. (2012), Prange, Loehnert, and Wriggers (2012), Rdenas, Estrada, Tarancn,
and Fuenmayor (2008), and Rodenas, Estrada, Diez, and Fuenmayor (2010).

An evaluation of the performances of BEM-based methods and their com-
parison with XFEM, in modelling cracked structures undergoing fatigue crack-
growth,was carried out byDong andAtluri (2013).After a thorough examination
of a large set of numerical examples of varying degrees of complexity these
researchers concluded that the BEM-based methods are far more accurate than
XFEM for computing SIFs and thus the fatigue-crack-growth-rates; they also
require minimal effort for modelling the non-collinear propagation of cracks
under fatigue, without using the Level Set or Fast Marching methods to track the
crack surface and finally, they can easily perform fracture and fatigue analysis of
complex structures, such as repaired cracked structures with composite patches
and damage in heterogeneous materials.

In contrast with the dual BEM, the regularisation of the crack tip elastic field,
to compute the SIFs in the FEM, has not receivedmuch attention, to the author’s
knowledge. Indeed, the different methods that have been developed in FEM,
XFEM and mesh-free methods share a common feature that regards the well-
known difficulties that arise in the numerical modelling of elastic fields with
singularities. Hence, there is a clear need of research in the field of this paper,
in order to develop new robust and efficient numerical methods for the finite
element analysis of these problems.

This paper is concerned with the direct computation of SIFs through the
singularity subtraction technique in the FEM, to provide an efficient and accu-
rate way of analysing the mixed-mode deformation of homogeneous cracked
plates. The organisation of the paper is as follows. In Section 2, the original
elastic field of a cracked plate is presented. The regularisation of the original
elastic field, with the singularity subtraction technique is presented in Section
3. Section 4 presents the singular particular solution of the elastic field used in
the regularisation process which is the first term of Williams’ eigenexpansion.
The singularity subtraction technique is presented for the two-dimensional finite
element analysis of homogeneous elastic cracked plates, in Section 5. In Section 6,
some numerical results are presented illustrating the effectiveness and robustness
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of the present regularisation process that, through the singularity subtraction
technique, allows to the direct computation of the SIFs in the FEM. Finally,
concluding remarks are presented in Section 7.

2. Original elastic field

Consider a two-dimensional cracked plate with domain � and boundary � =
�u ∪ �t . In the absence of body forces, the elastic field satisfies the equations

LTσ = 0 (1)
ε = L u (2)
σ = D ε (3)

in domain �, with boundary conditions

u = u on boundary �u (4)

and
t = n σ = t on boundary �t , (5)

in which the vectors σ and ε represent respectively the stress and the strain
components; D is the matrix of the elastic constants; L is a matrix differential
operator; the vectors u and t represent respectively the displacement and the
traction components; u and t represent prescribed values respectively of the dis-
placements and tractions and n represents the outward unit normal components
to the boundary.

3. Regularised elastic field

Because of convergence difficulties that arise in numerical modelling of elas-
tostatic problems with singular fields, an alternative technique involving the
subtraction of the singularity can be used. Before presenting this techniquewhich
introduces the SIFs as additional primary unknowns in the problem, some basic
definitions will be presented, concerning singular elastic fields.

In this paper, a singular elastic field is defined as one with unbounded stresses
at one point in the problem domain, but with displacements bounded every-
where. In contrast, a regular elastic field has both the stress and the displacement
fields bounded at every point in the problem domain.

It is well known that the stress field is singular in the neighbourhood of a crack
tip. Hence, in order to avoid numerical difficulties arising from the presence of
a singularity in the stress field, it is convenient to modify the original problem
before it is solved by the FEM. Under the assumption of linear behaviour, where
the principle of superposition is valid, the elastic field can be decomposed into a
regular (R) and a singular (S) part as follows:

σij = (σij − σ S
ij ) + σ S

ij = σR
ij + σ S

ij (6)
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and

ui = (ui − uSi ) + uSi = uRi + uSi , (7)

where σR
ij = σij −σ S

ij and u
R
i = ui −uSi are the regular components, respectively,

of the stress and displacement fields of the original problem; σ S
ij and uSi are re-

spectively the stress and displacement components of a particular solution of the
original problem, representing the singular elastic field. If appropriate functions
are chosen for this particular singular field, then Equations (6) and (7) completely
regularise the original problem, in the sense that the stress components σ are
now non-singular.

As a consequence of this regularisation, the analysis of the elastic problem can
now be carried out on the regular elastic field only, represented by components
σR
ij and uRi ; the components σ S

ij and uSi of the singular field automatically satisfy
identically the field equations, because they are defined as a particular solution of
the original problem. Hence, the elasticity Equations (1)–(3) can now be written
as

LTσR = 0 (8)
εR = L uR (9)
σR = D εR (10)

in domain �, with boundary conditions

uR = u − uS on boundary �u (11)

and

tR = t − tS on boundary �t . (12)

It is important to note that this regularised elastic field is governed by the same
equations of the original field, except for the boundary conditions (11) and
(12) where additional terms, respectively, uS and tS are now included. These
additional terms, components of a particular solution of the original problem,
represent the singular elastic field.

4. William’s singular particular solution

The particular solution used in Equations (6) and (7), denoted by components
σ S
ij and u

S
i , represents the singular elastic field in the neighbourhood of the crack

tip. It can be considered through the first term of the eigenexpansion derived by
Williams (1952), for a semi-infinite edge crack. The stress components are given
by
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and the associated displacements are given by

uS1 = KI

4μ

√
r
2π

[
(2κ − 1) cos

θ

2
− cos

3θ
2

]

+ KII

4μ

√
r
2π

[
(2κ + 3) sin

θ

2
+ sin

3θ
2

]
(16)

and

uS2 = KI

4μ

√
r
2π

[
(2κ + 1) sin

θ

2
− sin

3θ
2

]

+ KII

4μ

√
r
2π

[
(2κ − 3) cos

θ

2
+ cos

3θ
2

]
, (17)

where KI and KII are the SIFs respectively of the opening and sliding modes; the
constant κ = 3− 4ν is defined for plain strain and κ = (3− ν)/(1+ ν) for plain
stress, where ν is Poisson’s ratio; the constant μ is the shear modulus. The polar
coordinate reference system (r, θ) is centred at the crack tip, such that θ = 0 is
the crack axis, ahead of the crack tip, as represented in Figure 1. Notice that the
stress field is of the order r−1/2 which becomes singular as r tends to zero. This
behaviour can be clearly seen in Figure 2, which represents the stress field, in a
neighbourhood of the tip of a horizontal crack, with KI = 1 and KII = 0. Notice
also that the displacement field does not include rigid-body terms, hence leading
to null components at the crack tip.

For general edge and internal piecewise-flat multi-cracked finite plates, under
mixed-mode deformation, Caicedo and Portela (2015) have demonstrated that
the first term ofWilliam’s eigenexpansion, derived for a semi-infinite edge crack,
can also be used to represent the elastic field, in a crack tip neighbourhood, where
the singular behaviour of the stress field is dominant.

The singular stress field, defined in Equations (13)–(15), is used to define the
traction components at a boundary point as

tS =
[
tS1
tS2

]
=

[
σ S
11 σ S

21
σ S
12 σ S

22

] [
n1
n2

]
=

[
g11 g12
g21 g22

] [
KI
KII

]
, (18)
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Figure 1. Reference system for Williams’ singular particular solution.

where ni denotes the ith component of the unit outward normal to the boundary
and the functions gij = gij(r−1/2, θ) have been introduced for a convenient
short-handed notation of Equations (13)–(15).

Similarly, the displacement field, Equations (16) and (17), can be defined in a
vector form as

uS =
[
uS1
uS2

]
=

[
f11 f12
f21 f22

] [
KI
KII

]
, (19)

where the functions fij = fij(r1/2, θ) are a short-handed notation of Equations
(16)–(17).

5. Finite element analysis

Since a formal solution of the regularised elastic model, defined by the field
Equations (8)–(10), with boundary conditions (11) and (12), is generally not
available for practical problems, discretisation must be used in order to obtain
an approximate numerical solution.

The FEM is possibly the most popular discretisation model available in en-
gineering, see Zienkiewicz (1977). When the method is based on weighted
residuals, the starting point of its formulation is the weak form∫

�

σRT δεR d� =
∫

�t

(t − tS)TδuR d�, (20)

in which the virtual displacements δuR, represent arbitrary weighting functions
of Galerkin’s approximation. The details of this weak-form derivation can be
seen in Portela and Charafi (2002).

Computation of the weak form (20) is based on the domain and boundary
discretisation with a FEM, where the continuous domain � is replaced by the
assembled finite elements �e and the continuous boundary � is replaced by the
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assembled finite elements �e. Through this process of discretisation, the FEM
ultimately reduces the infinite number of degrees of freedom of the continuum
problem to a finite number of unknowns defined at element nodes.

5.1. Element equations

Consider the discretisation of the domain � into finite elements �e which leads
to the discretisation of the boundary� into finite elements�e. This discretisation
process is usually represented by

� =
∑
e

�e and � =
∑
e

�e.

In each finite element �e a local direct approximation is define as

uR = Nue, (21)

where ue denotes the element degrees of freedom which are the nodal displace-
ments and N denotes the element shape functions assigned to the degrees of
freedom of the element. The assumed displacement approximation implies that
the consequent approximation of strains and stresses is defined also in terms of
the nodal displacements, respectively as

εR = L uR = L N ue = Bue (22)

and

σR = D εR = DBue. (23)

Virtual displacements and virtual strains are defined in terms of the nodal virtual
displacements δue, respectively as

δuR = N δue (24)

and

δεR = L δuR = L N δue = B δue. (25)

When these approximations are introduced in the weak form (20), the following
equation is obtained

δueT
{∫

�e
BTDB d� ue −

∫
�e
t

NT(t − tS) d�

}
= 0. (26)

Since virtual displacements δue are arbitrary, the equation

Ke ue = Pe − Qe (27)



320 J. CAICEDO AND A. PORTELA

holds for each finite element, where

Ke =
∫

�e
BTDB d� (28)

is the element stiffness matrix and the vectors

Pe =
∫

�e
t

NT t d� (29)

and
Qe =

∫
�e
t

NT tS d� (30)

define the element load vector which leads to equivalent nodal forces. When the
singular tractions, defined in Equations (18), are introduced in the element load
vectorQe, Equations (30) can be written as

Qe =
∫

�e
t

NT
[
g11 g12
g21 g22

] [
KI
KII

]
d� = Ge

[
KI
KII

]
= Ge k, (31)

in which the matrix Ge has 2 columns and as many rows as the vector ue of the
element unknowns, while the vector k denotes the SIFs KI and KII . As the SIFs
are not known at this stage of a general problem, they become additional primary
unknowns. Hence, the element Equations (21) can be rewritten as

Ke ue = Pe − Ge k (32)

and rearranged as [
Ke Ge] [

ue

k

]
= [

Pe
]
, (33)

in order to collect the unknowns in the left hand side of the equations.

5.2. Element assembly

The assembly of the element matrices Ke, Ge and Pe, processed in accordance
with the respective element incidences, generates the corresponding global ma-
trices K, G and P for the whole FEM. This operation, supported by the reduced
compatibility condition, is usually represented, respectively as

K =
∑
e

Ke, G =
∑
e

Ge and P =
∑
e

Pe.

Through the assembly process, the element Equations (33) lead to the global
FEM equations represented by

[
K G

] [
uR

k

]
= [

P
]
. (34)
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Note that these global equations introduce two additional unknowns, the SIFs
KI and KII , represented in vector k. Consequently, in order to have a well-
posed problem with a unique solution, it is necessary to specify two additional
constraints that is one for each deformation mode included in the analysis.
These additional constraints will be specified in two additional bottom rows in
Equations (34).

5.3. Additional constraints

Additional constraints can be specified in several different ways. However, they
must enforce the cancellation of the singularity, in the regularised field, intro-
duced through Equations (6) and (7). Themost obvious conditions that do reflect
this consideration are that, either the regular displacement field, or the regular
stress field is cancelled out at the crack tip, that is

uRi = 0 ⇒ ui = uSi , (35)

or
σR
ij = 0 ⇒ σij = σ S

ij (36)

which ensure that the original elastic field is singular at the crack tip.
Since the problem is formulated in terms of the regularised displacement

components uRi , the additional constraints must be defined in terms of the nodal
components included in the vector of the unknowns uR, in order to be effective.
Hence, to fulfill this requirement, conditions (35) can be used as additional
constraints. However, since the displacement components of the singular elastic
field, Equations (16) and (17), do not include rigid-body terms, the use of
conditions (35) leads to null displacement components of the original problem
at the crack tip which can overconstrain the original problem. Therefore, the use
of conditions (35), as the additional constraints to be specified in Equations (34),
is ruled out.

On the other hand, conditions (36) are not defined in terms of the nodal
components of the regularised displacements uRi included in the vector of the
unknowns uR and, therefore, they cannot be used simply as they are, in order to
effectively define the additional constraints required by Equations (34). To over-
come this difficulty, conditions (36) are first rewritten in terms of the respective
traction components, defined at the crack tip, as

tRj = σR
ij ni = 0 ⇒ tj = tSj , (37)

where ni represent the outward unit normal components to the crack faces. Now
consider the patch of finite elements that share the crack tip node. When these
elements are submitted to an arbitrary rigid-body displacement, conditions (37)
are exactly satisfied. This rigid-body displacement can be easily implemented
through a set of multi-constraint conditions, specifying identical displacements
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for the crack tip node and each node of the referred patch of finite elements.
Although this procedure is effective, because the multi-constraint conditions are
defined in terms of the nodal components of the regularised displacements uRi
included in the vector of the unknowns uR, it can affect the solution accuracy.
This is a drawback that can easily be overcome through amesh refinement around
the crack tip, in order to minimise the extension where the multi-constraint of
the rigid-body displacement is applied.

For the sake of simplicity, the strategy adopted in this paper, to define the
additional constraints required inEquations (34), to fulfil the conditions of awell-
posed problem with a unique solution in the regularisation process, considers
identical displacements only for the crack tip node and its neighbour node just
ahead of the crack tip, which minimises the referred drawback of the rigid-body
condition applied to all the nodes of the finite elements that share the crack tip
node. Thus, the additional constraints that must be specified in Equations (34)
are finally defined as

uRr = uRs , (38)

in which r represents the crack tip node and s represents the node ahead of
the crack tip; uRr represents the displacement components of the crack tip node,
while uRs represents the displacement components of the node ahead of the crack
tip.

The implementationof this strategy is quite simple.Consider, for instance, that
the crack tip node numbering is r which leads to the assignment of the degrees
of freedom 2r − 1 and 2r to the node. Consider also that the numbering of the
neighbour node ahead of the crack tip is s, which now leads to the assignment
of the degrees of freedom 2s − 1 and 2s to this node. Under this assumption,
the additional constraints (38) can be included in the analysis through a simple
modification of the global system of Equations (34) as[

K G
C 0

] [
uR

k

]
=

[
P
0

]
, (39)

in which matrix C is given by

C =
[
0 · · · 1 0 · · · −1 0 · · · 0
0 · · · 0 1 · · · 0 −1 · · · 0

]
, (40)

where, for the numbering assumption considered, the identity terms are in
columns 2r − 1 and 2r, to be multiplied by the corresponding terms of uRr and
the−1 terms are in columns 2s−1 and 2s, to bemultiplied by the corresponding
terms of uRs .

5.4. Displacement boundary conditions

As a domain method, the finite element model satisfies exactly some of the
boundary conditions which therefore generate trivial residuals that are
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not included in the weighted residual equation. This is the case of the essen-
tial boundary conditions (11) that were not included in the weighted residual
Equation (20) which led to the system of algebraic Equations (39). Consequently,
this system of equations must be modified in order that its solution satisfies the
essential boundary conditions.

There are several procedures of introducing the essential boundary conditions
in the system of equations, see Bath and Wilson (1976). To use the simplest
of these methods, consider that the node number i, with assigned degrees of
freedom 2i − 1 and 2i, has constrained displacements given by the essential
boundary conditions (11) as

uR = u − uS (41)

that is [
uR2i−1
uR2i

]
=

[
u2i−1
u2i

]
−

[
f11 f12
f21 f22

] [
KI
KII

]
. (42)

The simplestmethod is carried out in four steps. In the first step, the knownnodal
values of the boundary condition, respectively u2i−1 and u2i, are multiplied by
the respective columns 2i − 1 and 2i of the matrix K and the result is added to
the right hand side P, in Equation (39). In the second step, the rows 2i − 1 and
2i as well as the columns 2i − 1 and 2i of the matrix K are filled in with zeros,
while the respective diagonal terms are replaced by the unit. In the third step,
the corresponding rows of the right hand side, respectively, P2i−1 and P2i are
replaced by the known nodal values, respectively, u2i−1 and u2i. Eventually, the
rows 2i − 1 and 2i of the matrix G are replaced, respectively, by

[
f11 f12

]
and[

f21 f22
]
. Now, the rows 2i − 1 and 2i of the system of equations are given by

[
uR2i−1
uR2i

]
+

[
f11 f12
f21 f22

] [
KI
KII

]
=

[
u2i−1
u2i

]
. (43)

Alternatively, the method of Lagrange multipliers, see Felippa (2013), can be
used to introduce the essential boundary conditions in the system of equations.
In this case, the weighted-residual weak form (20) is expanded to include the
essential boundary conditions (11) through Lagrange multipliers λ, as∫

�

σRTδεR d� =
∫

�t

(t − tS)TδuR d� +
∫

�u

(uR − u + uS)Tδλ d�

+
∫

�u

λTδuR d�, (44)

in which δλ represent arbitrary variations of Lagrangemultipliers. This extended
weak form generates the element equations

[
Ke Ge AeT

Ae Fe 0

] ⎡
⎣ue

k
λ

⎤
⎦ =

[
Pe

Ve

]
, (45)
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in which

Ae =
∫

�e
u

NT d�, (46)

Ve =
∫

�e
u

NTu d�, (47)

and, using Equations (19)

Fe =
∫

�e
u

NT
[
f11 f12
f21 f22

]
d�. (48)

After the assembly of the element equations and the introduction of the addi-
tional constraints (38), the extendedweak form (44) eventually leads to the global
system of equations ⎡

⎣K G AT

C 0 0
A F 0

⎤
⎦

⎡
⎣uR

k
λ

⎤
⎦ =

⎡
⎣P
0
V

⎤
⎦ (49)

that can be solved.

6. Numerical results

This paper is concerned with the direct computation of SIFs in the FEM, through
the crack tip singularity subtraction, to provide an efficient and accurate way of
analysing the deformation of homogeneous cracked plates.

A computer code that implements this new formulation, with constant-strain
triangular finite elements with exact integration, was developed and used to
solve some numerical examples which include two different cases of edge-
crackedfinite plates, respectively under openingmode and sliding-mode loading.
The results obtained clearly demonstrate the accuracy and reliability of this
formulation.

6.1. Edge-cracked plate under opening-mode loading

Consider a square plate, with a single crack normal to one edge, as represented
in Figure 3. The crack length is denoted by a, the width of the plate is denoted
by w and the height by h = w/2. The crack position is defined in Cartesian
coordinates by 0 ≤ x ≤ a and y = 0. The plate is subjected to the action
of a uniform traction t = σ , acting in a direction perpendicular to the crack
and applied symmetrically at the ends which corresponds to an opening-mode
loading. Results have been obtained for the cases in which h/w = .5, in order to
be compared with the highly accurate values published by Civelek and Erdogan
(1982). Five cases were considered, with a/w = .2, .3, .4, .5 and .6, respectively.
A convergence study, of the stress intensity factors, was carried out with three
different meshes; convergence was achieved, for all the five cases of crack-length
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Figure 3. Square plate with a single edge crack under opening-mode loading (h/w = .5).

Figure 4. Finite element mesh and the boundary conditions used for the case a/w = .6 under
opening-mode loading (h/w = .5).

considered, with a mesh of 576 finite elements, in which the discretisation was
refined around the tip.

The results obtained with this FEM are presented in Table 1 and show a
high level of accuracy when compared with those of Civelek and Erdogan
(1982). Also, FEM results compare quite well with the results obtained from the
J-integral technique in the dual boundary element method (J-DBEM) which
is considered a highly accurate technique, (see Portela & Aliabadi, 1993). The
discrepancies obtained for small crack lengths are very difficult to overcomewith
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Table 1. Stress intensity factors for a single edge crack in a square plate under opening-mode
loading (h/w = .5).

KI/(t
√

πa) % Error

a/w FEM J-DBEM Portela and Aliabadi (1993) Reference Civelek and Erdogan (1982) FEM J-DBEM

.2 1.454 1.495 1.488 .023 .005

.3 1.825 1.858 1.848 .012 .005

.4 2.311 2.338 2.324 .006 .006

.5 3.014 3.028 3.010 .001 .006

.6 4.147 4.184 4.152 .001 .008

Notes: FEM represents the values obtained in this paper, while J-DBEM Portela and Aliabadi (1993) represents the
corresponding values obtained with the J-integral in the dual boundary element method. Percentage errors are
computed from the accurate values of reference (Civelek & Erdogan, 1982).

Table 2. Stress intensity factors for a single edge crack in a square plate under sliding-mode
loading (h/w = .5).

KII/(t
√

πa)

a/w FEM J-DBEM Portela and Aliabadi (1993) % Error

.2 .437 .435 .005

.3 .356 .358 .006

.4 .303 .304 .003

.5 .263 .262 .004

.6 .223 .223 .000

Notes: FEM represents the values obtained in this paper, while J-DBEM Portela and Aliabadi (1993) represents the
corresponding values obtained with the J-integral in the dual boundary element method. Percentage errors are
computed from the accurate values of J-DBEM.

constant-strain triangular elements used in FEM. It is important to note that
the stress intensity factors of the sliding deformation mode are always below
10−7 as expected, since this is mainly an opening deformation mode crack
problem. Figure 4 shows the FEM and the boundary conditions for the case
a/w = .6. Figure 5 shows the initial and deformed FEMes of both the original
and regularised elastic fields, for the case a/w = .6. Notice the difference of the
opened crack surfaces in both cases of the original and regularised elastic fields.
Notice also the influence of the boundary conditions (41) in the regularised
displacement field.

6.2. Edge-cracked plate under sliding-mode loading

Consider a square plate, with a single crack normal to one edge, as represented in
Figure 6. The crack length is denoted by a and the ratio between the height and
the width of the plate is given by h/w = .5. The plate is loaded with a uniform
traction t = σ , acting now in a direction parallel to the crack and applied anti-
symmetrically at the sides which corresponds to a sliding-mode loading. This is
a very difficult case, for which there are no published benchmark results, as far
as the authors knowledge is concerned. Therefore, results have been obtained
with the present formulation, in order to be compared with those obtained by
J-DBEM, using the software (Portela & Aliabadi, 1993). This combination of the
dual boundary element method with the J-integral technique is an extremely-



328 J. CAICEDO AND A. PORTELA

Figure 6. Square plate with a single edge crack under sliding-mode loading (w = 2h).

Figure 7. Finite element mesh and the boundary conditions used for the case a/w = .6 under
sliding-mode loading (h/w = .5).

accurate tool because it uses the elastic field computed at internal points which is
a highly accurate operation in the BEM due to the presence of the fundamental
solutions. Five cases were considered, with corresponding a/w = .2, .3, .4, .5 and
.6. A convergence study, of the stress intensity factors, was carried out with three
different meshes; convergence was achieved, for all the five cases of crack-length
considered, with a mesh of 512 finite elements, in which the discretisation was
refined around the tip.

The results obtained with this FEM, presented in Table 2 are remarkably
accurate; FEM results match those obtained with J-DBEM (Portela & Aliabadi,
1993) within two decimal places. It is important to note that the stress intensity
factors of the opening deformation mode are always below 10−3, since this is
mainly a sliding deformation mode crack problem. Figure 7 shows the FEM and
the boundary conditions used for the case a/w = .6. The initial and deformed
finite element meshes of both the original and regularised elastic fields, for the
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case a/w = .6, are shown in Figure 8, where the influence of the boundary
conditions (41) in the regularised displacement field can be seen.

7. Conclusions

This paper is concerned with the direct computation of SIFs, to provide an
efficient and accurate way of analysing the deformation of cracked plates with
the FEM. This feature that is the direct computation of SIFs in the finite element
analysis, is a natural consequence of a regularisation procedure that uses a singu-
lar particular solution of the crack problem, to introduce the SIFs as additional
primary unknowns in the finite element analysis. In this paper, the singular term
of Williams’ eigenexpansion is the particular solution used in the regularisation
process of any crack problem.

After a thorough review of the most important approaches that have been
devised to overcome the well-known difficulties that arise in the numerical
modelling of elastic fields with singularities, in the standard FEM, in the XFEM,
in the dual BEM and in mesh-free methods, it was concluded that there is room
for a radically different approach, of the ones adopted by these methods, which
completely removes the crack tip singularity, before the finite element analysis of
the regularised elastic field is carried out, leading conveniently to no convergence
difficulties with smooth and highly accurate solutions.

The reliability of this robust modelling strategy, that regularises the elastic
problem through the crack tip singularity subtraction, before its solution with
the FEM, was assessed with the analysis of the edge-crack plate under opening-
mode and sliding-mode loading; the results obtained clearly demonstrate the
excellent accuracy of this new formulation of the FEM.

Despite the highly accurate results obtained in this paper, it is necessary to
carry out further research, in order to improve the efficiency of the singularity-
subtraction modelling strategy of this paper. Effectively, since the finite element
analysis is carried out on a regularised elastic problem, it does not require
the use of refined meshes around the crack tip, because the singularity was
already removed in the regularisation process. However, the lack of rigid-body
displacement terms in Williams’ eigenexpansion does not allow using the addi-
tional constraints (35), to fulfil the conditions of a well-posed problem with a
unique solution in the regularisation process, because the crack tip displacement
becomes overconstrained, and therefore, the additional constraints (36) must be
used instead.Hence, considering the additional constraints (38), which represent
a rigid-bodydisplacement constraint aheadof the crack tip that implicitly satisfies
the additional constraints (36), requires the use of refined meshes around the
crack tip, in order to minimise the extension where the rigid-body displacement
constraint is applied and consequently obtain accurate results. This is a drawback
of the present formulation that is a direct consequence of the lack of rigid-
body displacement components inWilliams’ eigenexpansion. Therefore, aiming
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highly accurate results, obtained with a finite element analysis carried out on
regular meshes, instead of refined ones, it is necessary to consider the alternative
additional constraints (35) which in general is not possible, without including
in Williams’ eigenexpansion additional terms to account for the possibility of
describing rigid-body displacements of the crack tip. This enhancement is not in
the scope of the paper and is a matter for further research work that eventually
will lead to accurate results, with an even more efficient singularity-subtraction
modelling strategy in the FEM.

The modelling strategy presented in this paper, concerned with the direct
computation of SIFs, can be easily extended to the analysis of 3D crack problems.
Effectively, whenever the crack tip asymptotic elastic field is available, it can
be used in the regularisation of the elastic field, as in the case of 2D crack
problems. The 3D stress field ahead of a partially through the thickness crack
was investigated analytically byFolias (1975),whoderived an asymptotic solution
valid at the base of a partially through the thickness crack, similar to Williams’
expansion, based in 2D considerations. In this context see also the works of
Bethem (1977) and Shivakumar and Raju (1990) for cylindrical and vertex
singularities.

The direct computation of SIFs, with the modelling strategy presented in this
paper, can be easily implemented in XFEM. Effectively, it is well-known that in
XFEM, the solution accuracy of the local fields around a crack tip is a direct
consequence of the choice carried out for the enrichment functions that define
apriori-knowledge of the solution. The closer these enrichment functions are to
the exact asymptotic fields, the better is the solution accuracy. Modern XFEM
formulations rely on truncated Williams’ expansion that is dedicated to straight
cracks only. In the general case of non-straight cracks, the singular enrichment
zone must be defined on the scale on which the crack can be considered straight.
Therefore, the finite-element mesh must be fine enough to fit with this scale,
which is a drawback of the current XFEM. However, this drawback can be easily
overcome through the implementationof thedirect computationof SIFs,with the
singularity subtraction technique presented in this paper, to regularise the elastic
field prior solution and consequently simplify the XFEM enrichment process
over a regular mesh.
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