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1. Introduction 

Adaptive finite element methods based on a posteriori error estimation tech
niques have become an indispensable tool in large scale scientific computation. 
Since the pioneering work of Babuska and Rheinboldt in the late seventies much 
work has been invested in putting a posteriori error estimation on a sound basis 
both theoretically and practically. Most of this work was done for linear elliptic 
pdes, much less for non-linear problems and for parabolic pdes, and very little 
for hyperbolic problems. Nowadays the theory seems rather mature for linear 
elliptic problems. Nevertheless there are still some important open questions. 
For non-linear and time-dependent problems there exists a general pathway 
which is rather promising but which must still be inspected more thoroughly. 
For hyperbolic poblems the field is still in its infancy. 

It is the aim of this note to sketch briefly the general methodology which 
leads to a posteriori error estmiates for finite element discretisations of elliptic 
and parabolic pdes. At the same time we want to hint at some related prob
lems which seem important to us and which are not yet completely solved. 
These are: treatment of non-linearities and sensivity estimates with regard to 
perturbations, estimation of constants, robustness with regard to parameters 
(in particular in the context of singularly perturbed problems), treatment of 
anisotropic equations or meshes. Of course this list is not complete and it re
flects our personal point of view. Also we cannot present all existing error 
estimation techniques. Instead we will limit ourselves to two approaches: resid
ual estimates and estimates based on the solution of auxiliary local problems. 
Although these have their particular benefits and drawbacks they are repre
sentative for other error estimation techniques. The above mentioned problems 
are relevant to all known error estimation techniques although they sometimes 
show up in varying disguises. 

One should always keep in mind that any reasonable error estimator should 
satisfy at least three minimal requirements: reliability, efficiency, and locality. 
As usual, reliability means that the error estimator yields upper bounds on the 
error measured in some user-prescribed norm. Similarly, efficiency means that 
it also yields lower bounds on the error (of course measured in the same norm!). 
By locality we mean that the estimator should give information on the local 
(with regard to space and time) distribution of the error. Clearly, reliability is 
mandatory to guarantee a prescribed tolerance. Efficiency is needed to achieve 
this task with a (nearly) minimal amount of work. Locality is indispensable 
for the correct resolution of the relevant physical scales. The upper and lower 
bounds on the error always contain multiplicative constants. The product of 
these constants is a measure for the quality of the error estimator and is similar 
to a condition number. A good knowledge of this quantity is necessary for a 
correct calibration of the error estimator. If the differential equation contains 
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critical parameters, e.g. if it is singularly perturbed, this quantity should stay 
decently bounded for a reasonably large range of these parameters. 

2. Quasilinear elliptic pdes of second oder 

In the next sections we will always consider quasilinear elliptic pdes of sec
ond order with homogeneous Dirichlet boundary conditions: 

aiai(x, u, V'u) = b(x, u, V'u) inn 

u = 0 on r. 
[1] 

Here and in what follows we use the summation convention, i.e. aiai := Li aiai, 
UiVi := Li UiVi etc .. n is a bounded open polyhedron in lRn' n 2': 2, with Lip
schitz boundary r. The functions a 1 , ... , an and bare assumed to be sufficiently 
smooth and the matrix (8p1 ai(x, y,p))I<::,i,j<::;n must be uniformly positive defi
nite on n X lR X lRn. The restriction to Dirichlet boundary conditions simplifies 
the exposition. With obvious modifications all results, however, also hold for 
Neumann or mixed Dirichlet-Neumann boundary conditions. 

In order to obtain a well-posed weak formulation of [1] one generally has 
to consider Sobolev spaces W 1,P(n) with Lebesgue exponents p > 2 (cf. §3.3 
in [VER 96]). In order to simplify the exposition and the notation we, how
ever, restrict ourselves to the Hilbert-space setting. Correspondingly the weak 
formulation of [1] consists in finding u E HJ(n) such that: 

fo ai(x, u, V'u)8iv = fo b(x, u, V'u)v Vv E HJ(n). [2] 

Here, L 2 (n), H 1 (n) := {v E L2 (n): 8iv E L 2 (n),V1::; i::; n}, and HJ(n) := 

{ v E H 1 (n) : v = 0 on f} denote the usual Lebesgue and Sobolev spaces 
equipped with the standard norms, resp. semi-norm: 

{ }

1/2 

llvllo := fo v2 
, 

llvlh o~ {II viii + t.ll8;vlli} 'i', 

lvh o~ { t,ua,vlli} 'i' 

Recall, that 1·11 is a norm on HJ(n) that is equivalent to ll·lk H-1(n) and 
ll·ll-1 denote the dual space of HJ (n) and the corresponding norm. 

If w is an open subset of n with Lipschitz boundary/, we denote by ll·llo;w, 
ll·ll1;w, and l·kw the restrictions of the corresponding (semi-) norms to the set 
w. Similarly, 11.11, denotes the norm of L 2 (r). 
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3. Finite element discretization 

We consider a family Th, h > 0, of partitions of n into n-simplices or n-cubes. 
Here, an n-cube is the image of the standard n-cube [0, l]n under an invertible 
affine mapping. The partitions must satisfy the following two conditions: 
(1) admissibility: any two elements K, K' of Th are either disjoint or share a 

complete k-face, 0 ::; k ::; n - 1. 
(2) shape-regularity: CT :=sup sup hK / PK < oo. 

h>O KE7i, 

Here, hK denotes the diameter of K and PK is the diameter of the largest ball 
which can be inscribed into K. In two dimensions, shape-regularity is equivalent 
to the minimal angle condition. 

Consider a family X h of finite element spaces associated with the family Th. 

We assume that Xh c HJ(n) and that Xh contains all continuous, piecewise 
linear or n-linear functions. Moreover, the functions in Xh should be piecewise 
(with regard to 7h) twice continuously differentiable. Then the finite element 
discretization of [1] consists in finding Uh E Xh such that 

Note that we always consider affinely equivalent finite element spaces, i.e. 
each element is the image of a reference element under an affine mapping. Since 
the transformation is affine its Jacobi matrix and its functional determinant 
are constant. This is a crucial ingredient in many proofs and constructions, e.g. 
those of estimates [6] and [8] below. When using isoparametric elements, e.g. 
general quadrilaterals in two dimensions, this condition is no longer satisfied 
and one must resort to a perturbation argument, i.e. the transformation is close 
to an affine one. However, the treatment of finite element discretizations which 
are not affinely equivalent is not yet completely understood. 

The shape regularity is also crucial for many estimates such as, e.g., [6] and 
[8] below. Shape regularity in particular implies that for each element all edges 
are of comparable length. In this sense shape regular meshes are isotropic. In 
many applications, however, one needs anisotropic meshes which have a much 
smaller length with regard to a certain direction than with regard to the other 
directions. In this case c7 becomes exceedingly large. Recently, Siebert [SIE 96] 
for cuboidal meshes and Kunert [KUN 98] for tetrahedral meshes have tried to 
extend the theory to anisotropic meshes. But much work has still to be done 
in this direction. 
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4. Auxiliary results 

Given K E Th we denote by N(K) and E(K) the sets of its vertices and of 
its (n -I)-faces, respectively. Set Nh := UKE7i, N(K) and Eh := UKE7i, E(K). 
Both sets can be decomposed as Nh = Nh,O U Nh,r and Eh = Eh,O U Eh,r into 
the set of interior vertices/faces and the set of boundary vertices/faces. With 
each face E E Eh,O we associate a unit vector nE which is orthogonal to E. For 
any piecewise continuous function v we denote [v]E the jump of v across E in 
direction nE. Of course [v]E depends on the orientation of nE, but quantities 
like [8ivnE,i]E or [a;(x, v, 'Vv)nE.JE are independent thereof. 

For each element K E Th, each (n- I)-face E E Eh, and each node x E Nh 
we denote by: 
WK the union of all elements that share an (n- I)-face with K, 
w K the union of all elements that have at least one point in common with K, 
WE the union of all elements that have E as an (n- I)-face, 
wE the union of all elements that have at least one point in common with E, 
Wx the union of all elements that have x as a vertex. 

With each element K and each ( n -1 )-face Ewe associate a cut-off function 
1j; K and 1j; E wich satisfies the following properties: 

0:'S:1/JK:'S:1 on K, 

max 1j; K ( x) = 1, 
xEK 

1/JK = 0 on 8K, 
[4] 

0:'S:1/JE:'S:1 on WE, 

max 1/J E ( x) = 1, 
xEE 

1/JE = 0 on 8wE· 

One possibility to construct these functions is as follows. Given any node x E 

Nh denote by Ax the corresponding nodal bases function, i.e. the continuous, 
piecewise linear or n-linear function that takes the value 1 at x and that vanishes 
at all other nodes y E Nh \ { x}. Then there are real numbers a and fJ such 
that the functions 

1/JK =0' II Ax 

xEN(K) 
[5] 

1/JE =fJ II Ax 
xEN(E) 

satisfy the above requirements. Here, N(E) denotes the set of all vertices of E. 
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Given any integer k, one can prove (cf. §3.1 in [VER 96]) that there are 
constants 1 1 , ... , 1 5 that only depend on k and on the parameter c7 such that 
the inequalities 

/1llvii5;K ::; i 1/JKV
2 

::; llvii5;K' 

II1/JKII1;K::; /2h//llvllo;K, 

r3II1/Je'PII~::::: fe 1/Je'P2::::: II'PII~, 
II1/Je1PII1;wE::; r4h~112 II'PIIe, 
111/Je'PIIo;wE ::::: r5h~2 II'PIIe, 

[6] 

hold for all elements K, all (n- I)-faces E and all polynomials v, 'P of degree 
at most k defined on K and E, respectively. 

Finally, we define a quasi-interpolation operator h by: 

where: 

hv := L Ax1l"xV 

xEN,,n 

1l"xV := {[, vdx} / {[, dx} 

[7] 

denotes the mean-value of v on Wx· In particular, we have hv E Xh for any 
v E L 2 ( n). One can prove ( cf. [VER 99]) that there are two constants c Il and 
c12 which only depend on the parameter c7 such that the error estimates 

llv- hviiK :=:::cnhKivkwK 

llv- hvlle :=:::c12h~ 2 lvl1;wE 

hold for all v E H 1(D.), all K E T,. and all E E Eh. 

[8] 

As we will see in subsequent sections, the constants 1 1 , ... , ')'5 , en, c12 are 
crucial for the quality of an error estimator and for its correct calibration. 
Correspondingly there is a strong need for sharp explicit estimates of these 
constants. 

Estimates [6] are usually proven by passing to a reference element. Thus 
1 1 , ... , 15 can be decomposed into a contribution of cy and of corresponding 
constants )'1 , ... , )'5 referring to the reference element. For fixed polynomial 
degree k, the latter can explicitely be computed by solving an eigenvalue prob
lem of moderate size which depends on k. On the other hand, a simple scaling 
argument shows that these quantities will be proportional to some power of k. 
Explicit bounds are derived in [VER 00] using a dimension-reduction argument. 
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When using anisotropic meshes the reference element must be chosen such 
that it correctly reflects the anisotropy. Correspondingly one has to work with 
a whole family of reference elements and to invoke an additional compactness 
argument. This is the approach of [KUN 98]. However, satisfactory quantitative 
results are still lacking. 

The constants en, c12 are estimated in [VER 99] for shape regular meshes. 
These results are quite satisfactory but not yet optimal when compared with 
numerical estimates. Anisotropic meshes are tackled in [KUN 98]. However, 
quantitative results are again lacking in this case. 

5. The equivalence of error and residual 

Denote by u and uh solutions of problems [2] and [3], respectively. These 
may not be unique, but are kept fixed in what follows. We want to estimate 
II u - uh ll1· To this end we rewrite [2] and [3] as abstract non-linear equations. 
Define the mapping F of HJ(n) into H- 1 (!1) by: 

(F(v),w) := L {ai(x,v, \lv)oiw- b(x,v, \lv)w} [9] 

Then, problem [2] is equivalent to F( v) = 0. Similarly, equation [3] is equivalent 
to Fh(uh) = 0 where the mapping Fh of Xh into its dual space is given by: 

The Frechet derivative of F at u is given by: 

(DF(u)v,w) := L {op1 ai(x,u, \lu)ojvoiw + ouai(x,u, \lu)voiw 

- op, b(x, u, \lu)oivw- oub(x, u, \lu)vw }. 

Under suitable differentiability and growth conditions on the functions a 1 , ... , 

an and bit is a bounded linear operator of HJ(n) in H- 1 (!1). Its norm is de
noted by A= A(u). Under similar conditions DF is locally Lipschitz continuous 
at u. I.e. there are numbers R0 > 0 and (3 > 0 such that: 

IIDF(u)w- DF(v)wll-1 ::::; f311u- vlldwlll 

holds for all wE HJ(n) and all v E HJ(n) with llu- vll 1 ::::; R0 . 
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Our essential assumption is that DF( u) is invertible and has a bounded 
inverse. This means that the linearization of the pde [1] at u admits for each 
right-hand side f E H- 1 (D.) a unique weak solution w 1 E HJ (D.) which depends 
continuously on f. Denote by o: := o:( u) the inverse of the norm of DF( u)- 1 . 

Note that: 

A= sup sup 
vEHJ (!!)\ {0} wEHJ (!!)\ {0} 

(DF(u)v, w) 

llvll1llwll1 
(DF(u)v, w) 

o: = inf sup 
vEHJ (!l)\{0} wEHJ (!!)\ {0} llvll1llwll1 

Assume that uh is sufficiently close to u in the sense that: 

Since F(u) = 0 and since DF(u) is invertible we have 

Uh- U 

=DF(u)- 1 { F(uh) + 11 

[DF(u)- DF(u + t(uh- u))](uh- u)dt}. 
[11] 

From equation [11] and the previous assumptions we easily conclude ( cf. Propo
sition 2.1 in [VER 96]) that: 

[12] 

This means that the error llu- uhlh is equivalent to the residualiiF(uh)ll-1· 
The condition number of this equivalence is 4o:- 1 A. The residual is measured 
with regard to the dual norm 11-11- 1 . Hence its exact calculation would require 
the solution of an infinite dimensional variational problem. All error estimators 
try to approximate IIF(uh)ll-1 by a quantity which is as close as possible and 
which is much easier to compute. 

The main assumption of this section is the invertibility of DF(u). If DF(u) 
is not invertible, but if its index is known a priori, one can still deduce the 
equivalence of error and residual by augmenting the space X and the function 
F (cf. §2.2 in [VER 96]). An example is the computation of simple eigenvalues 
and of corresponding eigenfunctions. However, up to now, there is no fully satis
factory strategy to determine the index of D F( u) from the computed numerical 
solution uh. 

The quantities o: and A are crucial for the equivalence of error and residual. 
There are various strategies which try to estimate these quantities from the 
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numerical solution uh. One approach consists in computing approximately the 
extremal eigenvalues of D Fh ( uh). Another way consists in solving a related 
discrete adjoint problem ( cf. [BEC 95]). 

The sizes of a and A of course also depend on the norm of HJ(O). In order 
to see how a suitable choice of this norm may influence favorably these con
stants, assume that DF(u) corresponds to the singularly perturbed, constant 
coefficient, reaction-diffusion operator Lev := -E8i8iv + v with 0 < E « 1. If 
we equip HJ(O) with its standard norm 11·11 1, we easily conclude that: 

a rv E' A rv E + 1 ' a - 1 A rv c- 1 . 

Correspondingly, the relation between error and residual is very poor. On the 
other hand, the norm lllvlll := {clvli + llvi16FI2 is the natural energy norm for 
the operator £ 0 • If we equip HJ (0) with this norm, we conclude that: 

When doing this we must of course replace II F( uh) ll-1 by the corresponding 
quantity: 

IIIF(uh)lll_1 := sup 
vEH6 (rl)\ {0} 

(F(uh), v) 

lllvlll 

As we will see in the next section, this severely influences the computation of 
the residual. 

A similar situation arises when DF(u) corresponds to an anisotropic dif
ferential operator such as, e.g. Lu := -8i(Ai1a1u) + u with 0 < Amin(Aij) « 
A max ( Aij). The corresponding energy norm then is the anisotropic H 1- norm 

lllulll := n::::i IIAijajull6 + lluii6F12 . When replacing 11·111 and 11·11-1 by this 
norm and the corresponding dual norm resp. one again obtains 

As we will see in the next section, this will require anisotropic analoga of 
estimates [6] and [8]. 

6. A residual error estimator 

In this section we try to bound the H-1-norm IIF(uh)ll-1 of the residual 
from above and from below by a mesh-dependent £ 2-norm of element and face 
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residuals. To this end consider a function v E HJ (D) with llvll 1 = 1. Integration 
by parts elementwise yields an £ 2-representation of the residual: 

(F(uh),v) =- L L {8iai(x,uh, Vuh) + b(x,uh, Vuh)}v 
KET,, 

+ L L[nE,iai(x, Uh, Vuh)]Ev 
EEEI •. <! 

=: L 1 RK(uh)v + L 1 RE(uh)v. 
KET,, K EEE:Io..!! E 

From equations [9] and [10], we obtain Galerkin orthogonality: 

[13] 

[14] 

Since Xh contains the space Sh of all continuous, piecewise linear functions, we 
can replace von the right-hand side of [13] by v- vh where vh E Sh is arbitrary. 
This together with the Cauchy-Schwarz inequality for integrals yields: 

Invoking the Cauchy-Schwarz inequality for sums, this implies: 

From estimate [8] we conclude that: 
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Here, c0 is the maximal number of elements that share an arbitrary vertex. 
This number depends on cy. 

With the abbreviation: 

we have thus proven that: 

1/2 

IIF(uh)ll-1 S:: comax{cn,cl2} { L.TI~,K} 
KETh 

Together with the results of the previous section this implies that: 

[15] 

[16] 

is a reliable a posteriori error estimator for llu- uhll 1. The corresponding con
stant is 2a- 1c0 max{ en, c12}. 

In order to prove the efficiency of T/R we approximate the functions a 1, ... , 
an, and b by functions a1,h, ... , an,h, bh which are piecewise (with regard to 
Th) polynomials. Rx(uh) and RE(uh) denote the element and face residuals 
computed with a1,h, ... , an,h, bh instead of a1, ... , an, b. Consider an arbitrary 
element K. From inequality [6] we know that: 

Since wx := Rx(uh)'I/Jx vanishes on EJK we obtain from equation [13] that: 

l Rx(uh)wx = l[Rx(uh)- Rx(uh)]wx + (F(uh), wx) 

:S IIRx(uh)- Rx(uh)llo;xllwxllo;K + IIF(uh)II-IIIwxlh;K· 

Combining these estimates with inequality [6] and recalling that 0 :::; 1/Jx :::; 1, 
we arrive at: 
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and therefore: 

Next consider an arbitrary face E. Using the same arguments as above, in
equaltiy [6], equation [13], and estimate [17] imply that: 

1/2 1 'Y2'Y5 
he IIRe(uh)lle :S-b4 + -]IIF(uh)ll-1 

'Y3 'Y1 
1 1/2 -+ (1 + 

13 
)he IIRe(uh)- Re(uh)lle [18] 

+ 15 
(1 + ~) L heiiRK(uh)- RK(uh)llo;K· 

"(3 11 KCwE 

Since the quantities hKIIRK(uh)- RK(uh)llo;K and h¥2 11Re(uh)- Re(uh)lle 
are higher order perturbations which only depend on the smoothness of the 
functions a 1 , ... , an and b, estimates [17] and [18] together with the results 
of the previous section imply the efficiency and the locality of T/R· The corre
sponding constant is 2A max{ 72 74 72 ~'5 } . 

/'1 ' /'3 ' /'1 /'3 

We have seen at the end of the previous section that it may be advisable to 
replace 11.111 by a problem dependent norm of the form 111.111 = {cl.li + 11·116PI2 

with 0 < c « 1. Then ll·ll-1 has to be replaced by the corresponding dual norm. 
Similarly, one has to replace ll·lh by 111.111 and its corresponding local version 
throughout this section. When doing this in a naive and straightforward way 
by retaining the scalings of the element and face residuals, one arrives at upper 
and lower bounds on the error lllu- uhlll such that their ratio is proportional 
to c- 112 . This means that the corresponding error estimator is not robust with 
regard to the parameter c. This unpleasant situation can be remedied by a more 
refined analysis (cf. [VER 98a, VER 98b]). When replacing the scaling factors 

hK and h¥2 of the element and face residuals by aK := min{1, hKc 112 p12 

and f3e := c-1/4 min{1, hec-112 p12 , resp. one arrives at an a posteriori error 
estimate of lllu- uhlll which is reliable, efficient, local and robust with regard 
to c. 

When using a problem adapted anisotropic H 1-norm as described at the end 
of the previous section, one needs anisotropic analoga of estimates [6] and [8] 
in order to arrive at an a posteriori error estimate which is robust with regard 
to the anisotropy. By rescaling the coordinates one sees that this problem is 
strongly related to the treatment of anisotropic meshes. First results in this 
direction are obtained in [BER 00, KUN 98, KUN 00, SIE 96]. 
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7. Error estimators based on the solution of auxiliary local problems 

The idea is to lift F(uh) E H- 1 (D) to a function v E HJ(D) by solving 
a suitable elliptic pde of second order and to use llvll 1 as an error estimator. 
In order to render this idea operative, the compution of v must be done on a 
local and discrete level. To make things more precise we will consider a variant 
which has its roots in [BAB 78]. 

Choose a vertex Xo E Nh,D.. Set 

Here, 7rh \luh is some average or projection of the possibly discontinuous gra
dient of uh. Choose a finite element space Vxo C HJ ( Wx 0 ) corresponding to Th 
which consists of piecewise polynomials of a sufficiently high degree. This means 
that the polynomial degree of the functions in Vx 0 should be larger than the 
one of uh· One possible choice consists in taking all functions 1/JKRK(uh) and 
1/JERE(uh) where K and E are elements and faces having x 0 as a vertex and 
where RK(uh) and RE(uh) are as in the previous section. Denote by Vx 0 E Vxo 
the unique solution of: 

[19] 

and set: 

T/D x 0 := lvxol1·w · ' ' xa [20] 

Problem [19] admits a unique solution since the matrix (8Pia;(x, v,p)h:Sci,j:Scn is 
assumed to be uniformly positive definite. Denote by ,\ > 0 the minimal eigen
value of the matrix (A;j)· Inserting Vx 0 as a test function in [19] we immediately 
obtain that: 

1 
T/D,xo ~ ~IIF(uh)ll-1· [21] 

Together with the results of Section 6 this implies that TJD,xo is an efficient and 
local error estimator for llu - uh lh. The corresponding constant is 2,\-1 A. 

It is much more tedious to prove the reliability of this error estimator. If Vxo 
contains the functions 1/JKRK(uh) and 1/JERE(uh), one may compare TJD,xo with 
the estimator of the previous section. The definition of TJD,xo and the second 
part of the previous section then imply that: 

1/2 { } 1/2 

{ L TJR,K} ~ C L TJh,x 
KETh xENh,n. 
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The constant c isproportional to 11 1
, 'Y3 1 and to 1 2 , "(4 , 'YS· This estimate and 

the results of Sections 5 and 6 establish the reliability of the error estimator: 

{ }

1/2 

1JD := L 7Jb,x 
xENh,w 

The strategy just described also applies to singularly perturbed problems, 
provided the matrix ( Aij), the functions in Vxo, and the norm in the definiton 
of 7JD,xo take into account the singular perturbation ( cf. [VER 98a, VER 98b]). 
First results for anisotropic meshes can be found in [KUN 98]. 

Problem [19] is a discrete analogue of the Dirichlet problem: 

-oi(Ai/)Ju) = F(uh) in Wx 0 

u = 0 on OWxo· 

Similarly, one can also consider error estimators which are based on the solution 
of discrete analoga of the Neumann problem ( cf. § 3.3 in [VER 96]): 

-oi(Ai/1Ju) = RK(uh) inK 

nK,iAijOjU = RE(uh) on oK. 

This idea was first introduced in [BAN 85]. 

8. Quasilinear parabolic pdes of second order 

The parabolic counterpart of problem [1] is 

OtU- Oiai(x, u, V'u) = b(x, u, V'u) inn X (0, T) 

u=O 

u(., 0) = uo 

on r X (O,T) 

inn. 

[22] 

Here we assume for simplicity that the functions a 1 , ... , an and b do not depend 
on the time t. T is a given, fixed, finite final time. 

For the weak formulation of problem [22] we must introduce some function 
spaces. Let V and W be two Banach spaces with corresponding norms 11.11 v 
and ll·llw such that V '----+ W is a continuous and dense injection. £ 2 (0, T; V) 
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denotes the space of all functions v on (0, T) with values in V such that the 
function t -----+ llv(., t) II v is square integrable. The corresponding norm is: 

{ 

T } 1/2 
llviiL2 (0,T;V) := 1 jjv(., t)jj~dt 

Set W 2 (0, T; V, W) := { v E L2 (0, T; V) : OtV E L2 (0, T; W)} and equip it with 
the norm: 

{ 

T T }1/2 
llvllw2(o,r;v.w) := 1 liv(., t)ii~dt + 1 ll8tv(., t)iirvdt 

Here, the time derivative OtV must be understood in the distributional sense. 
L2 (0, T; V) and W 2 (0, T; V, W) are Banach spaces. One can prove that for 
any v E W 2 (0, T; V, W) the quantity v(., T) exists and is an element of W. 
Therefore: 

W5(0, T; V, W) := { v E W 2 (0, T; V, W) : v(., T) = 0} 

is well-defined. For abbreviation we set: 

X :=L2 (0, T; H~(n)) 

Y :=W5(0, T; H~(n), H- 1(n)). 
[23] 

Then we may consider the following weak formulation of problem [22]: Find 
u E X such that: 

-1T L u8tv- L uov(., 0) 

+ 1T L {a;(x,u,\lu)a;v-b(x,u,\lu)v}=O VvEY. 

[24] 

Define a mapping F of X into the dual space of Y by: 

T 

(F(u), v) := -1 L UOtV- L u0v(., 0) 

T 

+ 1 L { a;(x, u, \lu)a;v- b(x, u, \lu)v}. 

[25] 

Then problem [24] is equivalent to F(u) = 0. Thus it fits into the abstract 
framework of Section 5. DF(u) is locally Lipschitz continuous at u if the func
tions a1, ... , an and b satisfy appropriate differentiability and growth conditions 
(cf. [VER 98c, VER 98d]). 
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9. Discretization with space-time finite elements 

There are three main approaches to discretize parabolic pdes: the method 
of lines, Rothe's method, and space-time finite elements. Often, all approaches 
lead to the same discrete problem. But the analysis is completely different, 
in particular concerning the necessary regularity requirements. This is also 
reflected by the a posteriori error analysis. In [ADJ 88, BIE 82a, BIE 82b] an 
a posteriori error analysis for the method of lines is given; Rothe's method is 
investigated in [BOR 90, BOR 91, BOR 92]. Here we will concentrate on space
time finite element methods. This approach has several advantages: it requires 
minimal regularity assumptions and it has a variational structure. The latter 
allows us to put this discretization into the abstract framework of Section 5. 

We first subdivide the interval [0, T] into NT subintervals J 1 = [t 1 , t2 ), 

... , JNT = [tNT,tNT+I) with respective length T1, ... ,TNT· The subintervals 
are arranged in a natural way, 0 = t1 < t2 < ... < tNT < tNr+l = T. We 
assume that this partition is shape regular, i.e. the ratios T;jTi+l and Ti+l/Ti 
are bounded from above uniformly with regard to i and T. With each j E 

{1, ... , NT} we associate a partition ~ of n, which satisfies the assumptions 
of Section 3, and a corresponding finite element space Vj C HJ (D). Denote by 
>..1 the continuous, piecewise linear function that takes the value 1 at t1 and 
vanishes at all other points ti, i =J j. Set: 

with the obvious modification for j = 1. Here, B E [0, 1] is a parameter which 
will be chosen later. Denote by Xi the characteristic function of the j-th subin
terval and set: 

Xh := span{x_j(t)vj(x) : 1:::; j:::; Nn Vj E Vj}, 

Yh := span{>..YI)(t)v1(x): 1:::; j:::; Nn v1 E Vj}. 

Note that the functions in Xh are piecewise constant with regard to time and 
that the functions in Yh are continuous, piecewise quadratic functions with 
regard to time which vanish at the final time T. These properties ensure that 
Xh c X and Yh c Y. 

The space-time finite element discretization of problem [22] then consists in 
finding Uh E Xh such that: 

-1T fo UhOtVh- fo Uovh(.,O) 

+ 1T fo { ai(x, Uh, V'uh)oivh - b(x, uh, V'uh)vh} = 0 

[26] 
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Problem [26] fits into the abstact framework of Section 5. The function Fh of 
xh into the dual space of yh is given by: 

(Fh(uh),vh) =-loT L uhatvh- L uovh(.,O) 

+loT L {a;(x, uh, Vuh)8;vh- b(x, uh, Vuh)vh} 

=(F(uh), vh)· 

[27] 

At first sight problem [26] may look rather strange. But it corresponds to the 
popular B-scheme. The parameters e = 0, e = 1, and e = ~ in particular yield 
the explicit Euler, implicit Euler, and Crank-Nicolson scheme, respectively. To 
see this, denote by u~ the constant value of uh on the j-th subinterval and 

insert ),.;0\t)vj(x), Vj E vj, as a test-function Vh in [26]. Since: 

lt~! .A~(t)dt = (1- Bh-1' ljti+l .A;
0
)(t)dt = BTj, 

intergration by parts with regard to time on the subintervals yields: 

L u~vJ + BTJ L {a;(x,u~, Vu~)8;v1 - b(x,u{, Vu~)v1 }, 
r j-1 (1 e) r { ( j-1 n j-1)8 b( j-1 n j-1) } =Jnuh Vj+ - Tj-1Jn a;x,uh ,vuh ;v1 - x,uh ,vuh v1 , 

if j 2 2, and: L (u~- uo)v1 = 0, 

if j = 1. 

The previous approach can be extended to polynomials of degree k 2 1 with 
regard to time (cf. [VER 98c, VER 98d]).It then corresponds to an implicit k+ 
1-stage Runge-Kutta method which, fore=~' has the corresponding diagonal 
Pade approximation as its stability function. Hence, the time-discretization is 
A-stable and of order 2k + 2. The previous approach strongly resembles the 
popular discontinuous Galerkin method [ERI 85]. The latter, however, uses the 
same space of discontinuous (with regard to time) functions as test and trial 
spaces. In particular, the lowest order method corresponds to the implicit Euler 
scheme. The higher order methods correspond to implicit k + 1-stage Runge
Kutta schemes which have the corresponding sub-diagonal Pade approximation 
as their stability function. Hence, this time-discretization is £-stable and of 
order 2k + 1. Since both test and trial functions are discontinuous with regard 
to time, the discontinuous Galerkin method is non-conforming with regard to 
any variational formulation of [22]. This makes its a posteriori error analysis 
more difficult. 
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10. Auxiliary results 

We adapt the notations of Section 4. In particular, an index j indicates that 
the given quantity corresponds to the partition 'Fj of n. The intervals JJ and the 
partitions 'Fj induce a partition PT of the space-time cylinder Qr := n X (0, T) 
into prisms of the form Q = K x JJ with K E ~. Given any of these prisms, 
we denote by aQL := aK x JJ its lateral boundary and by aQB := K x {tJ} 
its bottom. The corresponding jumps are labeled by an index aQ L or aQ B, 
respectively. The jumps across lateral boundaries are again in the direction 
ne, those across the bottoms are in the direction of increasing time. 

With the help of the basis functions AJ of the previous section and of the 
cut-off functions 1/J K, 1/J E of Section 4 we define cut-off functions with regard to 
space and time by: 

1/JQ := 4>-.j(t)>..J+l(t)'I/JK(x) 

1/JE,j := 4>-.J(t)>..J+l(t)'I/Je(x) 

1/JK,j := Aj(t)'I/JK(x) 

,Q = K X Jj, 

,E E £J, 

,KE~. 

[28] 

With these functions one can prove the following analogue of estimate [6] ( cf. 
[VER 98c, VER 98d]): 

8dviii2(Q) :::; k 1/Jqv
2

:::; llviii2(Q)' 

II1/JqviiL2(Jj;H' (K)) :s;82h[/ llviiL2(Q), 
11at ( 1/Jqv) IIL2(Q) :::;83Tj- 1 llviiL2(Q), 

11at ( 1/Jqv) II L2{JJ ;H-' (K)) :s;841Jn (hK) 11at ( 1/Jqv) II £2 (Q), 

85114'11i2(ExJJ) :::; r 1/JE,j4'
2

:::; 114'11i2(ExJJ)' 
}JixE 

111/J E,j4'11L2(J;H1 (wE)) :s;86h ~ 112 114'11 L2 (Ex JJ)' [29] 

II at( 1/JE,j<p) II L2(wE x Ji) ::=;87Tj-l h ~2 114'11 £2(Ex Ji), 

II at ( 1/J E ,j<p) II £2 (Jj ;H- 1 (wE)) :s;bs!J n (he) II at( 1/J E ,j<p) II L2 (wE X Jj), 

bgllwiii2(K) :::; L 1/JK,JW
2 

:::; llwiii2(K)> 

111/JK,JwiiL2(Jj_, uJi ;H 1 (K)) :s;bwh ]/T]12 IIwiiL2(K), 
II at( 1/JK,jW) II L2(Kx [Ji_ 1uJill :::;811 Tj- 112 llwll L2(K), 

II at( 1/JK,jW) IIL2(Ji_ 1uJi ;H- 1 (K)) ::=;8121Jn(hK) 11at ( 1/J K,jW) II L 2 (Kx [Ji_ 1uJi]) · 
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Here, Q = K X Jj is an arbitrary prism, E c aK is a face of K, v, I(J, w are 
polynomials of an arbitrary but fixed degree and: 

i7n(h) := {~llnhl if n = 2 
if n;::: 3. 

[30] 

The constants 81 , ... , 812 depend on the polynomial degree of v, I(J, w and on 
the shape-regularity of the Tj via cT = supjsupKETi hK/PK· The factor 17n is 
due to the non-local nature of the H- 1-spaces (cf. Lemma 3.5 and Remarks 
3.1 and 3.2 in [VER 98c]). 

Finally, we must define an interpolation operator with regard to space and 
time. Denote by Ij the interpolation operator of Section 4 corresponding to Tj. 
Given j E {1, ... , NT} we define a projection operator 7rj of Y into HJ(D) by: 

1 ltj+l 
7rjV := v(., t)dt 

Tj-1 + Tj t1 _ 1 

with the obvious modification if j = 1. The operators 7rj and Ij commute. We 
define the interpolation operator in space and time by: 

NT 

lTv := L >..j'J) (t)1rjljv. 
j=1 

[31] 

One can prove (cf. [VER 98c,VER 98d]) that this interpolation operator satis
fies the following analogue of estimate [8]: 

iiv- ITvllu(Q) :::; en {hKIIviiL2(Jj,H 1(wK)) 

+ TjhJ/ IIOtVIIL2(t 1_,,t1 +2;H- 1(K)) }, 

llv- ITviiL2(ExJ;) ::::: ei2{h1{2 llviiL2(J;,H 1(wE)) 

+ TJ h £312
llatv IIL2(t7_, ,tj+2;H-' (wE))}, 

L lwll(v- lTv)(., tJ)I ::::: ei3{r]12
llwiiH'(K) ll8tviiL2(t1_ 1 ,tJ+ 1 ;H-'(K)) 

+ TJ-
112

hKIIwi!L2(K) 

llvll £2(t1 _, ,tJ+t ;H 1 (wK )) } · 

[32] 

Here, Q = K x Jj is an arbitrary prism. E is a face of K, v is an element of 
Y, and wE H 1(K) is arbitrary. The constants en, ... ,e13 only depend on the 
shape-regularity via cT defined above. 
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11. Equivalence of error and residual 

Since Problems [24] and [26] fit into the general framework of Section 
5, we immediately obtain the equivalence of the error llu - uhllx = llu -
uhiiL2(0,T;H'(O)) and of the residual: 

IIF(uh)IIY' = sup 
vEY\ {0} 

(Recall that II·IIY = ll·llw2(0,T;H'(!1),H-'(!1))·) 

The Lipschitz continuity of DF(u) is satisfied if the functions a 1 , ... , an and 
b fulfill suitable smoothness and growth conditions. The invertibility of DF(u) 
is equivalent to the unique solvability of the linearized parabolic pde [22]. The 
corresponding constants a and A now also depend on the final timeT. Usually 
a- 1 A will be a monotonically increasing function ofT. This introduces new 
difficulties. In particular it in generally excludes estimates which are global in 
time. A satisfactory general theory for long-time a posteriori error estimates is 
still lacking; first results are given in [ERI 91, ERI 95a, ERI 95b]. 

12. A residual error estimator 

In order to obtain computable upper and lower bounds for the residual 
IIF(uh)IIY' we proceed as in Section 6. Consider a function v E Y with llviiY = 
llvllw2(0,T;H'(!1),H-'(!1)) = 1. Performing integration by parts with regard to 
space and time on each prism Q we conclude that: 

(F(uh), v) 

= L {1 {OtUh- aiai(x, uh, \luh)- b(x, Uh, \luh)}v 
QEPr Q 

+ ~ r [ne,iai(X, Uh, \Juh)]aQL V + r [uh]BQaV} 
2}aQL laQa 

[33] 

L { r RQ(uh)v + ~ 1 RaQL (uh)v + 1 RaQa(uh)v }· 
QEPr JQ BQL BQa 

The integrals along the lateral boundaries are weighted with a factor one half 
since each face is counted twice. Note that for Q = K x J: 

[1/!]aQ 8 = 1/!(., Tj + 0) -1/J(., Tj- 0). 
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In order to obtain the compact form of [33] we therefore used the convention 
that: 

uh(., 0- 0) := uo [34] 

where u0 is the given initial value. 

Thanks to equation [27] we still have the Galerkin orthogonality [14]. Hence, 
we may replace v on the right-hand side of equation [33] by v- Irv· Applying 
the Cauchy-Schwarz inequality for integrals we thus arrive at: 

(F(uh),v) :S: L {11RQ(uh)IIL2(Q)IIv- Irvii£2(Q) 
QEPT 

1 
+ 2IIRaQ~. (uh) ll£2(aQ~.) llv - IrviiL2(8QL) 

+ r IRaQu(uh)llv-Irvl}· 
laQH 

Inserting the estimates [32] and using the inverse inequality: 

we conclude that: 

(F(uh), v) ::::: L { cll[hK + Tjh]/JIIRQ(Uh)IIL2(Q) llviiYiwq 
QEPT 

1- 1/2 -3/2 + 2c12[hE + T]hE JIIRaQL(uh)llu(aQL)IIviiYiwq 

+ CJ3h-
112

hK + T]
12

hi/JIIRaQn(uh)llu(aQu)llviiYiwq }· 

Here, 11-IIYiwc; denotes the natural restriction of 11-IIY to the set WQ which is the 
union of all prims that have at most one point in common with Q. Using the 
Cauchy-Schwarz inequality for finite sums we finally arrive at the upper bound: 

[35] 

where c is the maximal number of prisms contained in WQ and where: 

[36] 
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In order to prove the efficiency of the error estimator we proceed in exactly 
the same way as in Section 6. We first define modified residuals Rq ( uh) and 
RaqL(uh) by approximating the functions a 1, ... , an, and b by functions a1,h, 
... , an,h, and bh which are piecewise polynomials. The residual Raq 8 (uh) may 
not be modified since it only involves jumps of Uh which is a piecewise poly
nomial. Then we use estimate [29] to bound the contributions to 1JR,Q· For the 
element residual, e.g., we thus proceed as follows. From estimate [29] we get: 

Inserting wq := 1/JqRq(uh) as a test-function v in eqation [33] we obtain: 

h Rq(uh)wq =(F(uh),wq) + h[Rq(uh)- Rq(uh)]wq 

..SijF(uh)iiY'ilwqiiY + IIRq(uh)- Rq(uh)ii£2(Q)iiwd£2(Q)· 

Estimate [29] yields: 

{ }
1/2 

llwqjjy = llwqlli2(J1,H'(K)) + IIBtwqlli2(J
1
,H-'(K)) 

..S{6~h}/ + 6~0'n(hK ) 2 6~Ti- 2 } 112 IIRq(uh)iiP<Ql 

'.S max{62, 63, 64}{h// + O'n(hK )Tj- 1 }IIRq(uh)iiL2(Q)· 

Since llwd£2(Q) '.S IIRq(uh)ii£2(Q) we obtain: 

[hK + Tjhj(1]IIRq(uh)ii£2(Q) 
1 

'.S 
61 

max{62, 63, 64}[hK + Tjhj(1][hj(1 + O'n(hK )T1-
1]jjF(uh)iiY' 

1 1 -+ (1 + 
61 

)[hK + Tjhj( JIIRq(uh)- Rq(uh)ii£2(Q)· 

The remaining terms in 1JR,Q are treated in exactly the same way. Summarizing 
all estimates we finally obtain the estimate: 

'I)R,Q ..ScdhK + Tjh}(1][hj(1 + O'n(hK )T1-
1]IjF(uh) IIY' 

1 -+ c2[hK + Tjhj( ]IIRq(uh)- Rq(uh)ii£2(Q) [37] 

+ c3[hE + TJhE/ ]h~ 112 IIRaq~. (uh) - RaqL ( uh) IIP(BQL). 

The second and third terms on the right-hand side of estimate [37] are again 
higher order perturbations which only depend on the smoothness of the func
tions a1, ... , an and b. The constants c1, ... , c3 depend on 61, ... , 612· We thus 
obtain the efficiency and locality of the error estimator. 
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But in contrast to corresponding results for elliptic problems, we now have 
an additional factor [hK +rjh](1][h](1 +o-n(hK)Tj- 1

]. This factor is of order one 
if and only if the CFL condition Tj ~ h1< is satisfied. This condition is annoying 
when recalling that the choice () = ~ yields the Crank-Nicolson scheme which 
is of second order. On the other hand this condition is very natural when 
recalling that the pde [22] is of second order with regard to space but of first 
order with regard to time. In this sense [22] is the limit case of a second order 
equation which is singularly perturbed with regard to time. Thus one may 
perhaps avoid this CFL condition if one succeeds in adopting the methods 
for singularly perturbed elliptic pdes. Finally, we stress that the above CFL 
condition does not show up in the existing literature, e.g. [ERI 91, ERI 95a, 
ERI 95b], since only upper bounds on the error are established there. 

The error estimator contains contributions from the lateral faces and form 
the bottoms of the space-time prisms. Thus their relative sizes could be used for 
an anisotropic refinement with regard to space and time. This would correspond 
to a local time-stepping. But up to now the correct treatment of local time 
stepping within a variational framework is a completely open problem. 

13. Error estimators based on the solution of auxiliary local problems 

The techniques of Section 7 may be extended to parabolic pdes too ( cf. [LON 
98]). This gives rise to error estimators which are based on the approximate 
solution of auxiliary local parabolic problems. To give an example, consider an 
arbitrary space-time prism Q = K x Jj, K E ~- Denote by WQ the union of all 
prisms that share at least one point with the lateral boundary and the bottom 
of Q. Choose a finite element space VQ consisting of piecewise polynomials of a 
sufficiently high degree which vanish on OWQ· For example VQ may be choosen 

such that it contains the functions 1/JQRq(uh), 1/Je,jRaQL(uh), 'l/JK,jRaQ 8 (uh) 
with Q' c WQ, E c oK. Set Aij = Op;'lrQai(x, uh(x), 'Vuh(x)), where 7rQ 

denotes a suitable average on WQ, i.e. the £ 2-projection onto lR. Since the 
functions in VQ vanish on OWQ, the problem: 

~ 1 VOtW + 1 Aijoivo1w = (F(uh), w) 'Vw E YQ [38] 
wq wq 

admits a unique solution VQ E VQ. Set: 

'TJD,Q := llvd£2(Jj-!UJ;,H1(wK))· [39] 

Inserting VQ as a test-function w in [38] and using a scaling argument, one 
concludes that: 
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Inserting the functions 'l/JQRQ(uh), WE,jRaQL (uh), and V'K,jRaQ 8 (uh) as test
functions in [38] and using the estimates of the previous section, one obtains 
that: 

'f/R,Q :S:cl[l + Tjhj/ + Un(hK)hKTj- 1]TJD,Q 
1 -+c2[hK + Tjh/( ]IIRQ(uh)- RQ(uh)IIL2(Q) 

+c3[hE + Tjh:E/ ]h~112 IIRaQ 1" (uh) - RaQL (uh) II£2(8QL)· 

Hence, 'f/D := { I::QEPT TJb,Q} 
112 

is a reliable, efficient and local error estimator 

for llu- uhllx provided the CFL condition Tj "'h'k is satisfied. 

Note that problem [38] is a discrete analogue of the parabolic pde: 
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