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ABSTRACT We describe our approach for mesh adaptation for CFD by metric control for 3D 
configurations including several tools for surface and volume h-adaptation, metric definition 
and flow solver. 

RESUME. Nous decrivons une methode d'adaptation de mail/age 3D pour Ia mecanique des 
jluides. II s'agit d'un h-mithode qui concerne le mail/age des surfaces et des volumes. Cette 
adaptation se fait dans un champ de mitriques qui permet de specifier les tailles et directions 
souhaitables pour les elements du mail/age adapte a construire. 
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1. Motivation 

Mesh adaptation by metric control is an elegant way for mesh generation and op­
timization and also to get solver independent solutions [GEO 98, HEC 97, BOR 96, 
CAS 00, BOR 96a, HAB 00]. 

In the past, we have successfully used these techniques for inviscid and viscous 
laminar and turbulent configurations for problems in two dimensions. This paper 
presents our first results with this approach for configurations in three dimensions. 

2. Flow solver 

Our model problem corresponds to the compressible Euler equations: 

aw Bt + \7.F(W) = 0 on n, [1] 

with suitable boundary conditions. Here, the unknown W correspond to the conser­
vation variables: 

W = [ :il ~ ,] = conservation variables, 

p(e + ~) 
[2] 

where i1 E R 3 . The flux vector is given by: 

[ 
pil l F= pil®il+pld 

(p(e + l"t) + p)il 

[3] 

These equations are discretized by a cell centered Finite Volume scheme. The 
domain n, i.e. the flow, is discretized using node centered cells C; for the convective 
part defined from our unstructured grid. 

Let Dh = UjTj be a discretization by tetrahedra of the computational domain D 
and let nh = U;C; be its partition by means of cells (see the figure below for this 
representation in two and three dimensions). 

Thus, we can associate with each Wh E Vh, where Vh is the set of the continuous 
affine functions on our triangulation, a w~ piecewise constant function on the cells: 

Conversely, knowing w~ piecewise constant, Wh is obtained as wh(S;) = w~IC;. 
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Figure 1. Representation of a cell 

After discretization, the equations at time step n and node i, are given by : 

[4] 

[5] 

Above, the convective flux F ( wn )ij · ni on each interface is computed by the Roe 
[ROE 81] flux difference splitting scheme with second order MUSCL approximation 
of interface variables. The boundary and initial conditions are classical. In partic­
ular, a Stegger-Warming [STE 83] flux splitting scheme is used for in and outflow 
boundaries. 

The resulting algebraic system can be solved by an expiicit Runge-Kutta scheme, 
as follows: 

Loop on n until steady state, then loop on Runge-Kutta sub-steps p: 

1 
wn+l,p wn 

i - i + V' F(Wn,p-l)i = 0. 
c, aptiti 

[6] 

This algorithm is implemented as a succession of different loops, which are called 
at each time step n: 

1. Loop on Elements: 

- gather nodal values of W, 

-compute the gradients V'W (for MUSCL reconstruction), 

- scatter (send and add) results to nodal residuals and gradients. 

2. Loop on Edges: 

-gather nodal values of Wand V'W, 
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-compute convective fluxes fac,nac
1 

F(Wn)ij · n;, 

- scatter results to nodal residuals. 

3. Loop on Nodes: update nodal values as predicted by algebraic solver 

Wt+l,p = Wt- o:ptlt;\1 F(Wn,p- 1);. [7] 

3. Metric definition 

The key idea is to modify the scalar product used in the mesh generator for dis­
tance and volume evaluations. Therefore, the aim, using an automatic mesh generation 
method (in our case, a Delaunay based approach), is to construct equilateral triangles 
(in two dimensions), resp. regular tets (in three dimensions) according to a new ade­
quate metric and not as in a classical case in the Euclidean one. The scalar product is 
then based on the evaluation of the Hessian of the variables of the problem. Indeed, 
for a P 1 Lagrange discretization of a variable u, the interpolation error is bounded by: 

[8] 

where Ih u is the P 1 interpolate of u, his the element size, D2u is the Hessian matrix: 

( 8'uf8x' 82uj8y8x 82uj8z8x ) D2u = 82uj8xay EJ2uj fJy2 82uj8zay 
82uj8x8z 82uj8yaz EJ2ujfJz2 

C' 
0 

: ) n-', =R ~ Az 
0 A3 

where R is the eigenvectors matrix of D 2 u and A; its eigenvalues which are always 
real values. Using this information, we introduce the following metric tensor M: 

[9] 

where: 
- . c£ c£ 
A;= mzn(max(IA;I, ~), ~), 

max m1n 

with hmin and hmax being the minimal and maximal edge lengths allowed in the 
mesh. 

Now, if we generate, using a Delaunay procedure as a mesh generation method a 
mesh with edges close to unit length in the metric Mj(c£), thi.! interpolation error£ 
is equi-distributed over the edges a; of the mesh. More precisely, we have 

1 T 
c[a; Ma; = 1. [10] 
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Nevertheless, the previous definition is not sufficient for a suitable metric in the 
cases where systems, boundary layers, multi-scales phenomena are to be considered 
as will be discued below. 

3.1. Systems 

For systems, the previous approach leads to a metric for each variable and we 
take the intersection of all these metrics. More precisely, for two metrics, we find an 
approximation of their intersection by the following procedure: 

Let>.{ and v{, i, j = 1, 2 the eigen-values and eigen-vectors of Mj, j = 1, 2. The 
intersection metric (M) is defined by 

[ 11] 

where M 1 (resp. M2 ) has the same eigen-vectors than M 1, (resp. M 2 ) but with 
eigen-values defined by: 

i = 1, 2. [12] 

The previous algorithm is easy to extend to the case of several variables. Here, one 
difficulty comes from the fact that we work with variables with different physical 
meaning and scale (for instance pressure, density and velocity). We will see that a 
relative rather than a global error estimation permits to avoid this problem. 

3.2. Boundary layers 

The evaluation of the Hessian is done by the Green formula with Neumann bound­
ary condition. However, this does not lead to a suitable mesh for boundary layers. In­
deed, the distance of the first layer of nodes to the wall will be quite irregular. Another 
important ingredient therefore, is a mixed Dirichlet-Neumann boundary condition for 
the different components of the metric on wall nodes for viscous computations. More 
precisely, the eigenvectors for these nodes are the normal and tangent unit vectors and 
the eigenvalue corresponding to the normal eigenvector is a prescribed value depend­
ing on the Reynolds number. The tangential eigenvalue comes from the metric of the 
solution. 

More precisely, along the wall the previous metric M ( x) is replaced by a new 
metric M(x): 

M(x) = TAT- 1
, 

where 

A= diag( h
1
2 , Ar) and T = (ii(x), r(x)). 
n 
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The refinement along the wall can now be monitored through hn. This allows for 
instance for shocks and boundary layers to interact. This metric is propagated through 
the flow by a smoothing operator. This aspect is not used for inviscid solutions. 

3.3. Multi-scale phenomena 

We noticed that when we have several eddies with variable energy, it is difficult to 
capture the weaker ones, especially if there are shocks involved [HEC 97]. In other 
words, [8] leads to a global error when we would like to have a relative one. The 
following estimation takes into account not only the dimension of the variables but 
also their magnitude: 

c -- I u - IIh u h2 D
2 
u 

0 ----Ia < c I Ia, 
max(IIIhul, <) - max(IIIhul, f) 

[ 13] 

where we have introduced the local value of the variable in the norm. f is a cut-off 
to avoid numerical difficulties and also to define the difference between the orders 
of magnitude of the smallest and largest scales we try to capture. Indeed, when a 
phenomena falls bellow f, it will not be captured. This is similar to looking for a 
more precise estimation in regions where the variable is small. Another important 
consequence of this estimation is that it removes the dimensional problems when in­
tersecting metrics come from different quantities. 

3.4. Implementation of the metric evaluation 

We use a weak formulation for the definition of the Hessian because we use P 1 

discretization for the variables. More precisely, we use the following approximation: 

[14] 

with 'P the finite element shape function with value 1 at node Sk and 0 everywhere 
else. We have to specify the physical field u used in such a construction. As specified 
above, we use all the conservation variables and take the intersection between the 
corresponding ellipsoids. 

Hessian definition on the boundaries 

The previous formula does not lead to a suitable metric definition along boundaries 
because the gradients are not correctly evaluated. This is also true in 2D. We use the 
following smoothing operator to enforce the Hessian along the boundaries: 

-b.H = H on n, H(fl/80) =H. [15] 
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This means that we solve this elliptic system with Neumann boundary condition ev­
erywhere, but keep the internal values unchanged. In this way, the boundary values 
are adapted to the internal solution to enforce the Neumann boundary condition. 

This smoothing is enough for 2D applications, but in 3D, we might have tetrahedra 
with four nodes on the boundary. In this case, one of the nodes might never see the 
other nodes of the mesh. This often happens in corners. This of course is to be 
avoided as far as possible, even if not penalizing with slipping or Neumann boundary 
condition for the PDE, with Dirichlet boundary conditions this tetrahedra is blind. To 
correct these values, we tagg such nodes and use another elliptic smoother, this time 
only on the boundary. 

-6.H=H on em, H=H ifnottagged. 

In this way the blind nodes solution is adapted to the solution around and the other 
boundary values remain unchanged. 

This is particularly important for nodes where the normal prescription rule above is 
not used. For this former case, this correction is however applied to tangential values. 

4. Anisotropic mesh generation 

Our aim is to generate a mesh that conforms to a metric coming from the geometry 
of the domain surface and from information related to the solution of the physical 
problem. The mesh construction process consists of two separate steps. First of all, a 
surface mesh is completed based on the above metric specifications. Then, using this 
surface mesh as an entry, a domain (say a tridimensional) mesh is constructed with the 
same metric controls. 

4.1. Anisotropic surface meshing 

The geometry of the surface is provided by means of a triangulation enriched with 
some geometrical informations (ridges, singular points, node normals, ... ). This mesh 
along with these values are used to define the geometry come from the CAD definition 
of the initial surfaces. 

The need for these informations is also to avoid any call to a CAD system during 
the adaptation process. 

Our surface adaptive mesh generation includes the following steps: 

- The first step in surface adaptation is to build a geometrical metric integrating 
the curvatures and local main directions for all the nodes of the triangulation. 

-Using this metric, we define a reference geometry called 'the geometry'. As we 
said, we need this entity as we want to avoid any call-back to CAD. 
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- Intersect the metric coming from the solution of the physical system with this 
metric following the procedure described above. 

- Generate an equilateral triangulation in this metric with all the edges of length 
one in this metric. This step is based on four classical ingredients, i.e.: 

- Adding nodes over the surface, 

- Removing points from the surface, 

- Optimization by mesh deformation with respect to the geometry, 

- Optimization by edge swaps. 

In all these steps, the reference geometry is the one defined in Step 2. To this end, 
we need the link between the nodes over the new surface and the reference mesh. This 
implies that we keep this link during mesh adaptation. 

In addition, we need an extra link between the new nodes and the triangles of 
the previous mesh to make the interpolation of the previous solution defined over the 
former mesh over the new surface mesh possible. In other words, only a link in the 
volume level is not enough for an accurate interpolation. 

4.2. Volume meshing 

The method used in this work is a Delaunay based mesh generation method. Fol­
lowing [GEO 98, GHS 90, FRE 99], such a method includes several steps. An incre­
mental Delaunay point insertion procedure allows us to: 

Insert a point in a given mesh. This procedure is a variation of the classical Delau­
nay method. Actually, it extended the latter to the case where a metric is specified to 
which the mesh must conform to. Then, the well-known steps of the mesh generation 
method concern the boundary enforcement, the way in which the field points are de­
fined (they will be inserted by the above point insertion procedure) and, finally, some 
extent of optimization. 

Specific to our mesh generation context are the way in which the points are created 
and the optimization procedures used in the final step. 

At the time the above surface mesh is ready, the point insertion method enables us 
to complete a mesh of the domain including the vertices of this surface mesh. Then, a 
boundary enforcement method completes a mesh of the domain including the triangles 
of this mesh as element faces. 

Now, a mesh of the domain is available whose sole vertices are the surface vertices. 
The point is to create an appropriate set of field points. The key-idea is as before to 
obtain, in some, a mesh with unit length edges. To this end, the edges of the current 
mesh serve as support for the point creation. Based on the length of a given edge, 
zero, one or several points are constructed in such a way as the distance between two 
neighboring points is close to the unit value. Once all the edges have been examined, 
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we have a set of points. The latter are inserted and the process is iterated as long as 
some edges of the current mesh are greater than one. 

The field points having been constructed and inserted, an optimization phase en­
ables us to obtain the final mesh. The tools used in this task are basically those of 
any classical optimization procedure. In this respect, node relocations and edge swaps 
are mostly used to optimize a quality function based on both the aspect ratio of the 
elements and their sizes. 

At present, while following the above description, we have restricted ourselves 
to an isotropic context (since the corresponding anisotropic mesh generation method 
is not fully available at this time). To make sense, the anisotropic metric provided 
initially has been converted into an isotropic metric in a very simple way. Despite this 
simplification, the resulting meshes, used in different numerical simulations, proved 
to be reasonable. Obviously, at the time the anisotropic method will be available, it 
will be of interest to examine the benefits of such an approach as we would like to do 
in the near future. 

Figure 2. 3D mesh adaptation: initial and background geometry mesh. 

5. Numerical experiences 

We show results for the applications of our 3D adaptive loop to the computation 
of the flow around a complex geometry. The flow is weakly compressible. The flow 
is considered as being inviscid. The initial mesh has about 12,000 elements and the 
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final mesh about 640,000 tetrahedra. We can see that the metric intersection between 
geometry and solution is efficient and that the surface adaptation without CAD inter­
face is effective. One drawback for the moment is the time spent in this former point. 
Current effort therefore is focused on improveming this point. The next step is to in­
troduce adptivity in the volume level. For the moment only the surface mesh has been 
adapted. 

Figure 3. 3D mesh adaptation: final mesh. 

6. Concluding Remarks 

The application of a 3D adaptive loop to the flow around a complex body has been 
presented. This loop involves several ingredients: flow solver, metric computation, 
metric intersection between geometry and solution, surface adaptation and surface 
mesher, volume mesher. The volume mesh generation is an isotropic Delaunay mesh 
generator. Several numerical difficulties still exist for an efficient use of this approach 
for general geometry. In particular, the surface mesh adaptation is still too slow. Cur­
rent work is focused on improving these two points. 
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Figure 4. 3D mesh adaptation: zoom of the final mesh. 
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