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ABSTRACT. The finite element discretization of a shell structure introduces two kinds of errors: 
the error in the functional approximation and the error in the geometry approximation. The 
first is associated with the finite dimensional interpolation space and is present in any finite 
element computation. The latter is associated with the piecewise polynomial approximation of 
a curved surface and is much more relevant in shell problems than in any other standard 2D 
or 3D computation. In this work, a residual type error estimator introduced for standard finite 
element analysis is generalized to shell problems. This allows easily to account for the real 
original geometry of the problem in the error estimation procedure and precludes the necessity 
of comparing generalized stress components between non coplanar elements. That is, the main 
drawbacks of flux projection error estimators are avoided. 

RESUME. La discretisation par elements finis d'une coque introduit deux types d'erreurs dif
ferentes: l'erreur dans /'approximation fonctionnelle et l'erreur dans /'approximation de Ia 
geometrie. La premiere est associee a l'espace d'interpolation qui est de dimension finie et 
apparaft dans n 'importe que/ calcul par elements finis. La deuxieme est liee a remplacer Ia 
surface courbe de Ia coque par un domaine polyedrique. Ce phenomene est beaucoup plus 
important dans les coques que dans les problemes standard 2-D ou 3-D. Cet article presente Ia 
generalisation aux elements de coques d'un estimateur d'erreur de type residue/ qui avait ete 
introduit pour des elements finis standard. Cet estimateur permet de tenir compte dans le pro
cessus d'estimation de l'erreur de Ia geomitrie du probleme continu originel. II permet aussi 
d'eviter Ia comparaison des composantes des contraintes generalisees entre des elements non 
coplanaires, dont les estimateurs de projection de flux ne savent pas s 'en passer. 
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1. Introduction 

Structural elements, that is beams, shells or plates, are used to model the behavior 
of 3D structures with one dimension much larger (beams) or much smaller (plates and 
shells) than the other two. For instance, in shells, the thickness is negligible in front 
of the dimensions of the midsurface. If the Reissner-Midlin theory is adopted, the 
displacements in every point of the shell are described through the displacements of 
the points lying on the midsurface and the rotation of the cross section. The domain of 
the mathematical problem to solve is therefore a surface instead of a volume. In fact, 
the equilibrium equation is adapted for this kinematic description and the resulting 
problem is a PDE for which the unknown is a displacement-rotation field (6 d.o.f.) 
taking values on a 2D manifold (a surface). Paradoxically, the kinematic description 
is derived assuming that the thickness is small enough but this formulation locks when 
the thickness tends to zero. Consequently, the formulations of thin shell finite elements 
have to be manipulated in order to avoid shear locking [AYA 98]. These manipulations 
are often introduced in the discrete form of the problem[DON 87] and, therefore, they 
lead to a discrete equation which is not derived from a continuous weak form. In fact, 
for this kind of problem, the formulation is intrinsically discrete, that is, there is no 
continuous form of the equation to solve. In other words, the only available equation is 
written in the discrete form and this equation cannot be seen as the direct discretization 
of a continuous weak equation. Thus, once the discrete solution is computed it is not 
possible to define a residual as is usual in standard finite element analysis because this 
approximate solution cannot be introduced in a continuous equation. Following this 
rationale, the use of residual type error estimators has been precluded in the context 
of shell formulations [LEE 99]. 

Consequently, the first attempts of adaptivity in shell elements are driven by flux 
projection error estimates, see [BAU 97, CIR 98, RIC 97]. Flux projection error esti
mates have become very popular due to their simplicity and robustness. Nevertheless, 
they lack a sound theoretical background and are difficult to justify in the absence of 
superconvergent phenomena. In the shell context two additional drawbacks must be 
pointed out: 1) the flux smoothing averages stress components over different elements 
that may have different physical meaning if the tangent planes are different, and 2) the 
error estimation process uses only the approximate solution and hence, the discretized 
forces and the computational mesh: the data describing the real geometry and load is 
therefore not accounted for. This implies, for example, that the flux projection error 
estimate cannot account for the error associated with the geometrical discretization, 
that is, the effect of replacing the real geometry of the structure by a finite element 
mesh. 

Thus, in this work a residual type estimator [DIE 98] is generalized for shell el
ements in order to obtain reliable estimates and to drive adaptive procedures. As 
previously stated, the use of residual type error estimators must be carefully handled 
because there is no available residual equation for the error. In fact, this is due to the 
interpolation tricks used in the shell formulation to avoid shear locking because these 
tricks are formulated at the discrete level. Then, the computation of the residual in the 
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local error equations that has to be solved in the error estimation strategy requires a 
special treatment. The main idea is to introduce a reference solution associated with 
an h-refined mesh and to define a residual in this "almost continuous" equation. Atten
tion must be paid, then, to the transfer of data from the rough computational mesh to 
the refined reference mesh. Moreover, the geometry of the mesh is also approximated 
by the finite element mesh. In standard 2D or 3D problems the geometric approxi
mation affects only the boundary of the domain but in structural shell elements this 
affects the whole domain. Thus, it can be stated that the finite element discretization 
induces two sources of error: 

- The error in the functional approximation is related to the approximation of 
the infinite dimensional functional space to whom the solution belongs by a finite 
dimensional interpolation space induced by the mesh. This source of error is present in 
any finite element computation and the usual error estimators are designed to account 
for it. 

- The error in the geometric approximation is only relevant in the shell context and 
the generalization of the error estimator must be carefully designed to account for it. 
In fact, flux projection error estimates use only the approximate solution to compute 
the error estimate and, therefore, the user cannot introduce data describing the real 
geometry of the shell in the error estimation process. Consequently, the resulting flux 
projection error estimate does not account for the error in the discretization of the 
geometry. 

The remainder of the paper is structured as follows. In section 2 the shell element 
formulation used in the computations is described. The goal of this presentation is to 
highlight the interpolation tricks, used to preclude the shear locking, that affect the 
implementation of the error estimator. Next, section 3 briefly describes the basis of 
the residual type error estimator that is generalized to deal with shell elements. In 
section 4 a strategy to transfer data from one mesh to another in the context of the 
shell formulation is introduced. This strategy is required to compute the residual in 
the local error equations but can also be used for other purposes. Finally, in section 5 
numerical examples demonstrating the effectiveness of the error estimation procedure 
and its capability to drive adaptive procedures are shown. 

2. Shell element formulation 

This section introduces the main characteristics of the shell formulation that has 
been selected in this work. The main objective of this presentation is to introduce 
notation and to emphasize the particularities of the interpolation that are introduced 
to avoid shear locking. These particularities affect the implementation of the error 
estimator described in section 3. 

The Reissner-Midlin theory for plates and shells decouples the rotation of the plate 
(or shell) cross section from the slope of the midsurface. This allows to take into 
account shear deformation and only requires C0 kinematic continuity. The unknowns 
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of the Reissner-Midlin formulation are the displacement of the midsurface points, ux. 
Uy and Uz, and the rotation of the cross section, Bx .By and Bz. Thus, the displacement 
of every point of the shell is recovered from these six values. 

Contrary to the Kirchhoff formulation that neglects the effect of transverse shear 
and requires the use of C1 interpolates, the Reissner-Midlin theory behaves well for 
moderately large or large thicknesses but exhibits a severe degradation of accuracy 
when the span-to-thickness ratio becomes very large. This numerical pitfall is known 
as transverse shear element locking. 

Many authors have proposed solutions to overcome the appearance of shear lock
ing in beams, plates and shells, see reference [AYA 98] for a short review. In this 
work, the shell formulation introduced by Donea and Lamain [DON 87] is used to test 
the capability of the proposed error estimation approach to be generalized to struc
tural shell problems. This formulation uses a particular interpolation of the rotation 
terms that must be carefully treated in the implementation of the error estimator. A 
discussion on the selection of the optimal formulation for the shell problem is out of 
the scope of this paper. 

Donea and Lamain [DON 87], have introduced a special representation of trans
verse shear components that excludes the occurrence of transverse shear locking com
pletely. The idea of Donea and Lamain adopted in the computations presented in this 
paper is based on constructing modified shear strain polynomials in terms of the nor
malized coordinates ( ~, 7J) using the usual isoparametric transformation. This results 
in a peculiar computation of the generalized shear strain and, hence the shear stress. 
In fact, the interpolation of the rotation components used to compute the shear terms is 
different from the isoparametric interpolation that is still used to compute the bending 
and membrane terms. Thus, two different interpolations for the same rotation field are 
used simultaneously in the same element. That results in a non-unique description of 
the rotations inside the elements. 

Let us illustrate the modifications imposed on a shear component in the particular 
case of a plane element in the Oxy plane. The shear strain rx is expressed by 

[I] 

The usual isoparametric interpolations for the displacements and rotations read 

ncn nen 

ua(~, 'T}) = L Ni(~, 7J)u~ and Ba(~, 7J) = L Ni(~, 'T})B~, [2] 
i=l i=l 

where n .. is the number of element nodes, Ni ( ~, 7J) are the normalized shape functions 
and a = x, y, z. Then, replacing Eq. [2] in Eq. [1] 

[3] 
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The isoparametric transformation is written as a geometric interpolation: 

ncn ncn 

x(~, 17) = L N;(~, ry)x; and y(~, 17) = L N;(~, ry)y; , [4] 
i=l i=l 

where ( x;, y;) are the coordinates of the i-th node of the element. The cartesian deriva
tives g~ and g~ are related with the derivatives with respect to the normalized coordi-

nates, g{ and g~ by the Jacobian matrix J and the Jacobian determinant IJI: 

[5] 

and 

[6) 

Following these notation, the shear strain 'Yx· see Eq. [3], may be expressed in terms 
of the normalized coordinates ( ~, 17): 

[7] 

This may be expressed in a simpler manner 

[8] 

where P~ and P'f/ are polynomials in(~, 17) whose expression can be determined by 

[9] 

The shear locking appears when the Kirchhoff constrain ('Yx -+ 0 as thickness-+ 0) 
leads to an non physical restriction upon the rotation terms that artificially increases 
the bending stiffness. This is precluded by forcing P{ and P'f/ to belong to the same 
interpolation spaces where ~ and ~ belong, see [DON 87] for details. The trans

verse displacement term Uz is given by the usual C0 isoparametric transformation but 
the rotation terms are suitably modified. In fact, for the four-noded (n,. = 4) quadri
lateral element, the expressions for ~ and ~ are 

[10] 

= 
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and, for instance, P<, is modified such that 

1 1 
4(1 -17)(u;- u!) + 

4
(1 + 17)(u~- u!) [ 11] 

1 1 
-8(l-1])(X2- xi)(Bt + (}~)- 8(1 + 1])(x3 - x4 )((}~ + (}~) 

1 1 - 8(1 -17)(y2- yi)(O! + e;)- 8(1 + 17)(y3- Y4)(8~ + (}~). 

Note that the second and third line of Eq. [11] correspond to the terms ~{By and 

~(}x which appear in the definition of Pf,. see Eq. [9]. Note also that the unmodified 
polynomials described in Eq. [9] are of order three and the modified Pf, of Eq. (11] 
is of order one. This implies that the interpolation of the modified shear stresses 
(multiplied by IJI) are, in this case, assumed to be also of order one, see Eq. [8]. 

As it is pointed out in section 3, the error estimation procedure that is going to be 
generalized to shell elements in this work [DIE 98] requires to obtain values of the 
approximate solution uh in a number of nodes inside each element of the computa
tional mesh. In the linear case with standard 2D elements, these values are computed 
using the usual isoparametric interpolation. The loss of unicity of the rotation descrip
tion forbids to use direct interpolation to find the rotations inside the elements. Thus, 
the generalization of the error estimator requires a projection technique allowing to 
transfer the finite element solution uh from the computational mesh to another, this 
technique is introduced in section 4. 

3. A residual type error estimator 

The residual type error estimator that is generalized in this work has been first 
introduced for 2D standard linear finite element analysis [DIE 98]. The same idea has 
also been used for nonlinear analysis in [DIE 00, HUE 97, HUE 00]. The efficiency 
of the estimator has been studied in [DIE 97]. 

This estimator is based on the definition of a reference solution associated with a 
uniformly refined reference mesh. Each element of the computational mesh (of char
acteristic size h) is refined using a local elementary submesh. The reference mesh 
is the assembly of all the local elementary submeshes, see figure 1 for an illustra
tion. The characteristic size of the reference mesh is denoted by h (h < < h). In 
the following the objects marked with the subscripts h and h are associated with the 
computational mesh and the reference mesh respectively. Thus, a reference solution 
u;; and a reference errore;; := u;; - uh are introduced. The reference error is the 
solution of the following problem, associated with the fine reference mesh: 

[12] 

where K;; is the stiffness matrix in the reference mesh and r;; (uh) is the residual 
associated with uh. Note that e;; is not the error of uii but the error of uh with respect 
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Figure 1. Illustration of the different discretizations used in the error estimation 

to uh. Since uh is much more accurate than uh, eh is a good approximation to the 
exact errore := u- uh. However, both Uft and eh are computationally unaffordable 
and, consequently, their direct computation must be precluded. 

The idea of the estimator is to replace the direct computation of eh (or Uft). which 
requires the solution of the linear system of Eq. [12], that is a problem associated 
with the reference mesh, by a set of local problems, associated with the elementary 
submeshes. Instead of deriving boundary conditions for the local problems using a 
standard flux splitting procedure, trivial homogeneous Dirichlet boundary conditions 
are imposed. That leads to a first estimate describing the part of the error associated 
with the interior of the elements. This part of the error ignores the contribution of the 
flux jumps across the element edges. A new set of subdomains denoted by patches is 
defined such that they cover the original domain overlapping the elements, see figure I. 
A new set of problems, one over each patch, is solved and a new contribution to the 
error is obtained. Each local component of the error is obtained by solving a local 
equation homologous to Eq. [ 12]. It is worth noting that computing the patch estimates 
an additional linear restriction must be added to the local problem in order to ensure 
orthogonality with respect to the interior estimate. This allows to properly add the 
interior and patch estimates. 

Thus, the error estimate is computed in two phases. The first phase accounts for 
the error related to the interior (smooth) residual and the second phase accounts for the 
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error associated with the flux jumps (singular residual), see [HUG 98] for a clarifying 
discussion on the two sources of error. 

Two problems arise to generalize this estimator to the context of shell elements: 
the computation of the residual and the possibility of taking into account the real 
geometry of the shell. 

3.1. Difficulties in the computation of the residual 

Every local problem to be solved requires to compute the residual as the indepen
dent right-hand-side term of the local (element by element or patch by patch) counter
part of the error equation Eq. [12]. The residual r;. (uh) of the approximate solution 
uh associated with the (or expressed in) the fine reference mesh reads 

[ 13] 

where fhxt is the discretization of the external forces in the reference mesh and r~nt ( uh) 
is the internal forces corresponding to the approximate solution uh expressed in the 
reference mesh. The computation of rt(uh) in standard 2D linear problems is 
straightforward because it only requires to express uh in the reference mesh, that 
is, to obtain [uh];.. see [DIE 00, HUE 00]. The components of [uh];. are the values 
of uh in the nodes of the reference mesh and they are found by simple interpolation. 
Once [uh];. is available, 

[14] 

where K;. is the stiffness matrix associated with the reference mesh. 

As previously stated, this simple computation of the residual is no longer valid if 
the shell elements described in section 2 are used. This is because the components 
of [uh];. corresponding to the rotation terms cannot be interpolated using a unique 
description. The problem, now, is how to obtain r~nt(uh) precluding the compu

tation of [uh];. (the simple isoparametric interpolation). Once f~nt(uh) is found, a 
displacement-rotation field over the reference mesh, [uh];.. may be recovered solving 
Eq. [14]. This is described is section 4 and, in fact, it provides a general metodology 
to transfer the solution from one mesh to another in the shell elements context. 

3.2. Accounting for the real geometry 

The problem of taking into account the real geometry in the error estimation pro
cess may be easily handled following the approach introduced in this section. It suf
fices to build up a proper reference mesh using the data describing the real surface of 
the shell. 

The usual implementation of the presented error estimator defines the reference 
submesh as the assembly of all the elementary submeshes. Each of these elementary 
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Figure 2. Computational mesh (left), reference submesh built up without real geome
try data (center) and reference submesh built up with real geometry data (right). 

submeshes is a discretization of the corresponding element. However, using this ap
proach in the shell case gives an unrealistic reference mesh, see figure 2. Indeed, the 
mesh in the center in figure 2 is built up by simply refining each element of the left 
computational mesh. The only data about the geometry of the shell that has been used 
to construct this refined mesh is the location of the nodes of the computational mesh. 
These nodes are only a small part of the total amount of nodes of this refined mesh. 
The rest of the nodes are located following the isoparametric description of the geom
etry of the computational mesh elements. However, a reference mesh is expected to 
better fit the real geometry, as shown in the right mesh in figure 2. This mesh is built 
up such that all its nodes are located on the real geometry of the shell, that is, using an 
analytical description of the shell geometry to compute the coordinates of every node 
of the reference mesh. 

This process is illustrated in figure 3: a shell with curved geometry (figure 3 (a)) is 
computed with a computational mesh (figure 3 (b)) and the error affecting the approx
imate solution must be estimated. The error is estimated using a reference mesh fitting 
the real geometry (figure 3 (c)). This reference mesh is built up as the assembly of a 
number of elementary reference submeshes. The data describing the real geometry of 
the shell must be accounted for when constructing the elementary submeshes (figure 3 
(d)). 

4. Transfer procedure 

As already mentioned in section 2, the formulation used in this work to avoid 
shear locking in the thin shell elements, makes it difficult to transfer the information 
from one mesh to another. The problem is stated as follows: given a solution uh in a 
mesh of characteristic size h find the transferred solution [uh]i, in the refined mesh of 
characteristic size h. The problem is that the interpolation of the rotation terms is not 
unique: the rotations are interpolated using the standard isoparametric description to 
compute bending and axial terms and using a modified set of polynomials to compute 
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Figure 3. Smooth curved geometry (a), rough computational mesh, (b), expected ref
erence mesh, (c), and local submesh accounting for the real geometry, (d). 

the shear terms. Thus, the components corresponding to the rotations in [uh]j, are not 
determined uniquely using simple interpolation techniques. 

The goal of obtaining [uh]ii is to compute fknt(uh). However, fknt(uh) may also 
be computed from the stress tensor uh associated with the approximate solution. 
Thus, to compute rtt(uh) it suffices to obtain the values of uh at the integration 

points of the reference mesh of characteristic size h, denoted by [uhlii· This can 
be done easily using simple pure interpolation techniques inside each element of the 
coarse computational mesh because, as stated is section 2, every stress component 
belongs to well known polynomial interpolation space (these spaces are different for 
each component). Once it is stated that every component of the generalized stresses 
has a unique representation in a given interpolation family, it is necessary to identify 
it. 

In fact, as shown in section 2, the interpolation of the shear strain (or stress) terms 
(not the rotations) is prescribed using some modified polynomials, Eqs. (9] and [11]. 
Each component of the computed stress tensor u h may be expressed inside an element 
by 

. 1 . 
[uhF = lh(~, 77)1 QJ (~, TJ), [15] 

where [uh]3 is the j-th component of the generalized stress tensor and the polynomial 
Qi ( ~, TJ) belongs to a given interpolation space. This interpolation space of the stress 
components contains the proper derivatives of the shape functions if isoparametric 
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interpolation is used, see Eq. [7], or is determined by the modifications introduced to 
preclude shear locking. 

Then, the polynomial Q1 (~, 17) must be identified in the proper space using the 
known values of u h (at the integration points of the coarse computational mesh). This 
can be done if the number of known values of the stress components inside each ele
ment is equal (or larger) to the number of degrees of freedom of the interpolation space 
to which Q1 ( ~, 1J) belongs. For instance, in the case of the four-noded quadrilateral 
element, the bending and axial stress terms (multiplied by IJI) which belong to a bi
linear interpolation space are interpolated with the usual bilinear interpolation (four 
degrees of freedom). On the other hand, the shear terms (multiplied by IJ I) which are 
constant over the element are interpolated as a constant (one degree of freedom). 

Thus, once Q1 ( ~, 1J) is identified for every j, the stress terms are computed in 
all the integration points of the fine reference mesh of characteristic size h. This 
transferred stresses are denoted by [uh]ii· 

This process can be done elementwise because the reference mesh is a refinement 
of the computational mesh. 

Once [uh]ii is obtained, the internal forces rAnt(uh) are computed straightforward 
and the residual follows using Eq. (13]. The computation of the residual is required to 
solve the local counterparts of the error equation [12]. 

Moreover, this idea may also be used in a more general context of transferring 
information from one mesh to another, see reference [PER 96], even if a transferred 
displacement solution [uh]ii is also required. Eq. [12] may be viewed as a linear 
system of equations with unknown (uhJii, 

that can be solved once rt(uh) is computed. Note that the obtained (uh]ii is equiva
lent to uh in the energetic sense, that is, the energy norm of uh is equal to the energy 
norm of [uh]ii: 

[16] 

5. Numerical examples 

Three examples are shown to demonstrate the ability of the presented error esti
mation strategy to drive adaptive computations. 

5.1. Example 1: Spherical dome with vertical distributed load 

The behaviour of the previously introduced error estimator is tested in a problem 
due to Cirak and Ramm, see [CIR 98]. A detailed description of the geometry can be 
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Spacing between supporta of 3t,5" 

TOP VIEW 

Figure 4. Description of example 1 

Figure 5. Solution of the vertically loaded dome 

seen in figure 4. 

Material and load data 

E ~ 1.092 MPa 
t ~ 1,0 m 
p ~ 1.0 N/m 
v ~ 0.3 

The structure is a semispherical dome with a circular opening in the top vertically 
loaded on the upper ring. Due to the spaced supports the structure is not completely 
axisymmetrical and, consequently, a concentration of the stresses is expected on these 
supports. In figure 5 the distribution of the Von Mises stress computed with a coarse 
roughly uniform mesh is shown. 

The structure has four axes of symmetry, it is enough to consider a computational 
domain of an eighth of the whole structure. Then, appropriate boundary conditions 
must be applied on artificial contours that appear in the computational domain. 

In order to confirm the efficiency of the error estimator, the distribution of the 
reference error is compared with the distribution of the estimated error. Recall that 
the error estimator approximates the reference error. It can be seen in figure 6 that the 
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Figure 6. Reference error; a), estimated error over original mesh, b), and subsequent 
meshes in the adaptive process with their related error estimations, c) and d). 

Mesh 
Original (a) 

(b) 
(c) 

Elements 
62 

1351 
2307 

Nodes 
82 

1446 
2427 

Error Estimate (%) 
44,7 
6,2 
4,7 

Table 1. Adaptive process for the vertically loaded dome 

error estimation, b), successfully approaches the reference error distribution a). The 
global effectivity index is found to be around 85%. In the same figure, the subsequent 
meshes obtained through the adaptive process, meshes c) and d), can be observed. 
In table 5.1 the summary of these meshes and their related error estimation can be 
viewed. 

Computation without accounting for the real geometry data supplied values a 10% 
higher. Surprisingly, accounting for the two sources of error, in this case, reduces the 
estimated error (and also the reference error). That means that, in this very particular 
case the effect of the functional discretization and the geometric discretization have 
opposite sign. Reducing both estimated and reference error, the global effectivity 
index remains unchanged around 85%. 
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Slmpll 1upporll over 13,!1" 

TOP VIEW 

Figure 7. Description of example 2 

Material and load data 

E = 1.092 MPa 
l = 1.0 m 
s = 1,0 m 
v = 0.3 

SIDE VIEW 

5.2. Example 2: Spherical dome with concentrated load 

Example 2 takes the same structure of example 1 but with a singular point load, 
see figure 7. In this case, due to the location of the load, one half of the structure 
must be simulated. The adaptive procedure generates a succession of meshes with a 
concentration of elements in the zone where the load is applied, see figure 8. 

5.3. Example 3: Cooling tower shaped shell 

Example 3 is a shell adopting the shape of an hyperboloid (cooling tower like ge
ometry), the description of the supports and loads is shown in figure 10. In this case, 
due to the location of the load and supports, one fourth of the structure must be simu
lated. The adaptive procedure generates a succession of meshes with a concentration 
of elements in the zone where the load is applied (the top) and the supports, see figure 
9. 

6. Conclusions 

A residual type error estimator is generalized to deal with shell elements. This 
generalization allows easily to account in the error estimation process for the error 
in the discretization of the geometry. The residual must be carefully computed due 
to the particular Midlin-type elements used to overcome the transverse shear locking 
problem. A general procedure is introduced that allows to transfer a solution from one 
mesh to another in this context. 
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Figure 8. Results of the adaptive process in example 2: for each mesh the number of 
elements and the percentage of error are indicated 
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Figure 9. Results of the adaptive process in example 3: for each mesh the number of 
elements and the percentage of error are indicated 



TOP VIEW 

Figure 10. Description of example 3 
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