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RESUME. On propose dans cet article une technique numerique d'optimisation de procede 
appliquee a l'emboutissage des tales minces. Cette technique est basee sur le coup/age d'une 
methode d'optimisation et d'une methode de calcul par elements finis permettant de simuler 
l'emboutissage des tales minces. L'algorithme d'optimisation est base sur une methode de 
type gradient comprenant un module d'analyse de sensibilite et permet d'optimiser les 
parametres de procede de fa(:On a ce que Ia piece obtenue possede Ia geometrie souhaitee. 
Des exemples numeriques sont presentes pour illustrer l'efficacite de /'approche proposee. 

ABSTRACT A numerical technique for process optimisation applied to the deep drawing of 
sheet metals is proposed in this paper. This technique is based on the combination of an 
optimisation algorithm and a finite element method. The optimisation algorithm is based on a 
gradient method containing a sensitivity analysis and allows to optimise process parameters 
in order to obtain a final product with the desired shape. Numerical examples are presented 
to illustrate the efficiency of the proposed approach. 
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1. Introduction 

The design and control of forming processes require an accurate tuning of 
parameters having an effect on the behaviour of the process. These parameters can 
be classified into three main categories: operating conditions (punch load, blank
holder force, lubrication ... ), geometry (of the blank or the tools) and material 
(elastic properties, hardening and anisotropy). Empirical methods based solely on 
the experimental knowledge are no longer sufficient. Moreover, the development of 
numerical techniques allows profiting from the predictive capabilities of the finite 
element method in order to determine optimal process parameters. 

In this paper, a numerical procedure is proposed for the design of deep drawing 
processes. It is based on the coupling of an optimisation technique and the finite 
element method. The optimisation technique allows adjusting the parameters such 
that specified criteria are fulfilled. The finite element method, in addition to 
providing the response of the process with fixed parameters, allows the assessment 
of the effect of a variation of these parameters on this response. This is achieved 
using a sensitivity analysis based on a direct differentiation method consistent with 
the finite element method formulation. The use of such a method allows an accurate 
sensitivity evaluation with the minimum extra cost in computation time. The 
simulation of a deep drawing process makes use of shell elements in two or three 
dimensions with a mixed interpolation for transverse shear components [BOU 96], 
[GEL 95]. Sheet material properties are described using elastoplastic behaviour, 
with or without anisotropy. Elastoplasticity is described using an orthotropic Hill 
criterion taking into account hardening and associate flow rule. Blank-holder actions 
on the sheet are modelled by penalising contact reactions in the case of implicit 
approaches, or by dynamic projection and local equilibrium in the case of dynamic 
explicit approaches. Springback is modelled using an unloading procedure 
[JOA 95]. 

2. Characterisation of deep drawing processes 

To achieve the optimisation of deep drawing processes, it is necessary to define 
performance functions representing the quality of the obtained product. These 
functions are relevant to shape accuracy, surface distortions (buckling, wrinkling, 
scratching mark ... ), thickness distortions (thinning, ductile fracture, failure, diffuse 
and localised necking ... ). In a process optimisation context these functions are 
considered to be either objective functions or constraint functions. In the following, 
some examples of such functions are provided. 
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2.1. Shape accuracy 

The function to be defined here has to represent the distance of the obtained 
product to its CAD definition, which is the desired shape. A general form for this 
function can be written as follows: 

I I 

-[ n rxfAD -xrUM lp lp [ n [X;NUM -XfAD lq lq 
FsH- Ia xCAD + L~ xCAD 

i=l I + i=l I + 

[1] 

where: XCAD represents the geometrical position given by the CAD model, XNUM 
represents the geometrical position provided by the numerical simulation, n 
represents the number of positions in the product taken into account to evaluate the 
distance and therefore define an interest zone, a and ~ are weighting coefficients, p 
and q define the norm used to measure the distance, (.)+ is an operator defined by: 
(A)+ = A if A > 0 and A = 0 if not. This operator allow distinguishing a quality 
which is different upper or under the value of XCAD. 

2.2. Quality of the product 

An easy way to represent the quality of the deep drawn product is to use 
thickness distribution at the end of the process. The optimal conditions correspond 
to the case where no excessive thinning or thickening occurs in the area of interest 
for the product; thickening to some extent can be afforded in the region that will be 
subsequently trimmed away. A general form for the function representing the quality 
of the product can be written as follows [BAR 98]: 

I I 

FQP =[fa[hoh- h; )P ]P +[t~( h; :ho lq lq 
1=1 0 + 1=1 l 0 + 

[2] 

with the same definitions as in equation [1] and where h0 represents the initial sheet 
thickness and h; represents the nodal thickness at node i. 

This function takes into account thinning by means of the first term and 
thickening with the second term. 
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2.3. Initial blank volume 

An important issue in deep drawing is the reduction of the amount of sheet 
residue. It is therefore desirable to use the minimal amount of initial sheet metal to 
get the final product. A general form for the function representing the initial blank 
volume can be written as follows: 

[3] 

where A and h represent respectively element area and thickness. 

2.4. Punch/blank-holder forces 

Another important issue is the reduction of energy costs associated to the punch 
and blank-holder forces, the aim being their reduction. A function can be defined by 
introducing energies of punch and blank-holder compared to reference energy in the 
following form: 

F. 
_ (Fpunch V punch + Fblank-holder V blank-holder ) p 

CF-
Eo 

[4] 

where Ftool and Vtool are respectively the force and the velocity of the considered tool 
and Eo is the reference energy. 

All the functions described above can be evaluated using a numerical method 
that provides accurate and reliable information. In this paper a finite element method 
is used. This allows predicting the shape of the final product as well as thickness, 
strain and stress distribution but also punch and blank-holder forces, for fixed 
process parameters. Furthermore, associated to this finite element method, a 
sensitivity analysis is developed on the basis of a direct differentiation consistent 
with the finite element formulation. This sensitivity analysis provides reliable and 
accurate information at a minimal extra-computation cost. It allows the 
determination of the effect of each variation of a process parameter on the function 
chosen to characterise the process. 

The solution of the mechanical problem and the associated sensitivity analysis 
are described in the next section. 
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3. Objective and constraint functions evaluation 

3.1. Mechanical problem formulation and solution 

Consider a solid S occupying a domain r!o with boundary r 0 in the initial 
configuration and the domain Q with boundary r in the current configuration. On 
boundaries r" and r a cr a r 1 r" =0, r aU r" =n, the displacement vector ~ and the 
traction vector f 5 are prescribed. The solid undergoes a deformation process 
specified by the displacement field u,(p,t) where t is time or a time like parameter 
for the quasistatic process and p is the vector of process parameters. In a finite 
deformation process the initial configuration C0 is deformed into C, with x,=x0+u,. 

The following weak form associated with the equilibrium equations for the sheet 
metal S is used in the finite element method: 

(5] 

where T is the Cauchy stress tensor, 11 is an homogeneous displacement field (11=0 
over ru) and V' 5 TJ is the symmetrical gradient of 11 in the current configuration. x, 

Equation [5] is non-linear with respect to u,(P ). The solution process is performed 
using a Newton iterative scheme and leads to the following equation: 

(6] 

where ou represents the displacement increment, C(V~ u 1 (p)) represents the tangent 
operator consistent with the stress evaluation algorithm'and internal variables. 

In the displacement based finite element method, the discretized form of the 
equation [6] is used to calculate an estimated incremental displacement ouO+, 
between t0 and tn+h following the implicit iterative equation: 

(7] 

where Fext represents the nodal vector of external loads, fFa(V'~+lu 1 (p))jthe nodal 
vector of internal loads, and [KTl represents the tangent stiffness matrix. These 
quantities are given by the following expressions: 
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[8] 

where B is the strain-displacement interpolation matrix. 

In the case of the transient explicit solution procedure, the acceleration is taken 
into account, the virtual work principle can be written in an Eulerian manner as: 

[9] 

After discretisation, integral form [9] is transformed as: 

[10] 

where Yn+I is the nodal accelerator vector and Mn+I the mass matrix. 

Nodal accelerations vector is obtained by solving equation [ 10] and velocities, 
respectively displacements are obtained by a central difference formula. In the 
particular case where M is a diagonal matrix, the solution process is easy and fast. 

3.2. Sensitivity analysis 

A sensitivity analysis for metal forming problems has been developed on the 
basis of direct differentiation of the solution process for the mechanical problem 
[GHO 96], [GHO 98]. 

Sensitivity of displacements is obtained, in the implicit case, by solving the 
following equation: 

[ 11] 

The inverse of the stiffness matrix can be obtained from the solution of the direct 
problem. It remains therefore to evaluate the sensitivity of the stiffness matrix and 
the sensitivity of the internal load vector. 

In the explicit case, the first stage is to evaluate sensitivity of the acceleration 
vector using the following equation: 
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This equation provides sensitivity of the acceleration vector relative to process 
parameters at time tn+l knowing sensitivity of the mass matrix, sensitivity of the 
external load vector and the sensitivity of the internal load vector, at time tn On the 
other hand, since the sensitivity analysis is performed once the mechanical problem 
has been solved, the quantities Mn and Yn+l are known. 

Next stage of the sensitivity analysis is the evaluation of sensitivities of the mass 
matrix, the internal load vector and the external load vector. 

Sensitivity of the stiffness matrix and the mass matrix are given by the following 
expressions: 

dBT(i) T dC 
[K ]<il = f _____!!±!_.c.B<il dV + f n<il -B<il dV 

T n+l Jnu> d n+l J01 ,1 n+l d n+l 
n+l P n+l P 

l T dB(i) l T d + B(iJ C_____!!±!_dV + n<il .C.B 0l ~lidS 
nl•l n+l d ru' n+l n+l d 

n+l P n+l P 

[ 13] 

[14] 

where n is the external unit vector to the boundary r of the domain under 
consideration. 

Sensitivity of the internal load vector expresses as follows: 

dFcr- f dBT T dV + f BT dTn dV + f BTT du"ndS 
d d n d 0 d p Q(p) p Q(p) p r(p) p 

[15] 

Expression of the sensitivity of the external load vector is: 

[16] 
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In these expressions, sensitivity of the Cauchy stress tensor is needed and 
evaluated in a consistent manner with the algorithm of evaluation of stresses and 
internal variables. 

4. Optimisation problem formulation 

Process optimisation is formulated as a non-linear mathematical programming 
problem in the following form [GHO 96; KEG 95; SCH 94]: 

minS 0 (p,u) 
p 

subject to constraints: 

1 s; j s; n ic 

1s;is;nc 

[17] 

[18] 

where n;c are the number of inequality constraints and nc the number of equality 
constraints, p represents the vector of process parameters and u the calculated 
displacement field. 

The objective function S0 is a process performance measure, whereas the 
constraint functions are introduced in order to take into account technology 
limitations such as bounds on the process parameters. 

4.1. Local search optimization method 

In this approach, a FSQP method [LAU 97] is used in order to solve the problem 
associated to equation [ 1]. This method allows satisfying the constraints during the 
optimisation ensuring that no unrealistic values for the parameters are used in the 
finite element method. 

4.2. Response surface approach 

This is a two-stage approach. First, approximations for the objective and 
constraint functions are constructed, then an optimisation algorithm is used to solve 
the problem of equation [17] using these approximations. Functions S0(p), h(p) and 
g(p) are therefore replaced in equation [ 17] by global approximations s.(p ), h.(p) 
and g.(p) determined using a finite number of simulations performed for different 
values of p. This response surface approach obtained by numerical simulation is 
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reported in [ROU 98], [SCH 98]. This method allows simplifying the sensitivity 
analysis necessary for the optimisation algorithm used (SQP). Furthermore, it allows 
to explore, from the beginning, a very large domain for p. Polynomial expressions of 
degree n are used for S.(p ), h.(p) and g.(p) in the following form: 

f.(x)=cJy [19] 

where f is a generic notation representing S, h or g, y vector of monomials evaluated 
in p and cf coefficient vector, both of dimension kf. 

The number of simulations to perform in order to identify cf is chosen around 1.5 
to 3 times max(kf). The corresponding values of p are extracted from experimental 
designs built following aD-optimal criterion using the Gosset software [HAR 94]. 
The coefficients are evaluated in a least-squares sense by minimising the following 
sum: 

[20] 
i=l i=l 

where P is the number of test points. 

The coefficients vector cf is obtained by: 

[21] 

where f is a column vectors of f(pJ and Y is a matrix formed by the y(pi). 

More simulations are performed in order to check the validity of the model. In 
case of large prediction errors, Cf must be recalculated using a set of test points 
deduced from the previous one. 

The convergence of the algorithm is not guaranteed in every case. The main 
cause is the choice of a large domain of study. In this case functions S0, h and g 
might present very strong non-linearities. An automatic procedure for domain 
reduction can be considered in this case [ROU 98]. 
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5. Applications 

5.1. Optimisation of a circular sheet 

The first example concerns the optimisation of the radius of a circular sheet with 
initial thickness of 0.7 mm, in order to reduce thickness variations at the end of the 
process [BAR 98]. The geometry of the test is reported in figure I. 

Figure 1. Geometry of the drawing of a circular sheet 

A Swift hardening function represents material law for the sheet metal: 
- {. - ¥> 1657 
a== 729.09\0.0135 + £p J MPa. 

Figure 2. Thickness distribution for a sheet radius of 65.0 mm 
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Figure 3. Thickness distribution for a sheet radius of90.0 mm 

Due to the symmetry of the problem and assuming isotropic behaviour, only one 
quarter of the part was discretised using triangular shell elements. Figures 2 and 3 
represent thickness distribution for a sheet radius of respectively 65 mm and 90 mm. 

It can be noticed that for a small initial sheet radius (65 mm), the thickening is 
excessive even if the thinning remains moderate. On the other hand, for an initial 
radius of 95 mm, if the thickening is reduced, the thinning is simultaneously 
increased. The goal of the optimisation is therefore here to find the optimal initial 
blank radius leading to the best compromise between thinning and thickening. 

Among different possible forms, the following objective function provides the 
best results: 

NbNI 12 So= L hi :ho 
i=l 0 

[22] 

where NbN is the total number of nodes, hi is the nodal thickness at the end of the 
process and h0 is the initial thickness. 

Both methods of optimisation described in Section 4 were used to solve this 
problem. 

5.1.1. Local search method 

A FSQP method was applied to solve the optimisation problem with the objective 
function described in equation [22]. Different values for the initial parameter guess 
were tried to ensure that the solution obtained is the global minimum. 
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60o·~~~~5~~~~1~0~~--1~5~~~~20 

Iteration 

Figure 4. Evolution of the process parameter during optimisation 

Figures 4 and 5 represent respectively the evolution of the objective function and 
the parameter (blank radius) during the optimisation procedure. As can be noticed, 
as the initial guess gets farther from the solution, it takes more time for the iterative 
process to converge. 

In order to cross-correlate these results, thickness distributions for the optimal value 
are compared with those for the upper and lower bound on the parameter in figure 6. 
It can be seen that thickness distribution is indeed more homogeneous. 

0.5 

c 0.4: 0 
·-= c;J 
c 0.3 .E 
~ 
> 0.2 ~ 
c;J 
~ 

:c' 0.1 

~J 0 
0 ~- ~_L___.__. 

0 5 10 15 20 
Iteration 

Figure 5. Evolution of the objective function during optimisation 
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Figure 6. Thickness distribution for bounds and optimal value of the process 
parameter 

The example studied here is a very simple one that allows easily to verify the 
results obtained. To do so, the objective function can be plotted with respect to the 
process parameter (figure 7). 

It can be noticed that the optimal value for this problem is in deed Ropt = 
72.8 mm. 
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Figure 7. Evolution of the objective function with respect to the process parameter 
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5.1.2. Response surface approach 

A quadratic approximation is used for the objective function following the 
expression: 

[23] 

where ai are polynomial coefficients to identify and p represents the process 
parameter. 

To be able to identify coefficients ai (i=1, 2, 3), a minimal number of three 
simulations is sufficient. However, in order to study the effect of the number of 
simulations on the optimisation results, four cases where studied: 3, 5, 9 and 17 
simulations respectively. The results obtained from the approximations constructed 
with each case are reported in Table 1. It can be noticed that from nine simulations 
the approximation constructed leads to an optimal parameter close enough to the 
actual value (less than 1-% error). This is to be added to the fact that in doing so, the 
number of simulations is limited and the optimisation process is highly simplified. 
Furthermore, with this method the problem of the initial guess is no longer present 
as the whole domain of solutions is explored from the beginning. 

Of course, the example studied here is very simple but it does allow us to draw 
some conclusions as to the efficiency of the response surface approach compared to 
a classical local search method. 

Number of simulations Optimal parameter Error in % (from the value 
72.8 mm) 

3 71.3 2.0 

5 72.1 1.0 

9 72.4 0.5 

17 72.5 0.4 

Table 1. Results of the opt1m1sation using different numbers of simulations to 
approximate the objective function 

5.2. Optimisation of tool geometry 

One crucial problem in deep drawing is to determine the optimal tool geometry 
in order to achieve a desired shape for the component. This problem is addressed in 
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the second example. This is a U-bending test with a geometry represented in Figure 
8 that was provided as a benchmark problem in NUMISHEET'93 Conference 
[MAK93]. 

Figure 8. Geometry of the U-bending test 

The material considered IS a mild steel with behaviour represented by the 
following hardening law: 

-p 
a= K(£ )" 

Geometry and material properties for this test are reported in table 2. 

Property Value 

Initial sheet length (mm) 420.0 

Initial sheet width (mm) 200.0 

Initial sheet thickness (mm) 0.87 

Young Modulus E (MPa) 206 800.0 

Poisson's ratio v 0.29 

Yield stress <Jy (Mpa) 160.0 

K (MPa) 563.0 

n 0.256 

Blank-holder Force (kN) 100.0 

Table 2. Geometry and material properties for the U-bending test 

[24] 
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The direct problem was solved using shell elements. Among different possible 
forms, the following objective function proved to be the most efficient: 

[25] 

where d; represents the distance from node i to the desired shape. 

The goal of the optimisation here is to find the desired shape given by Figure 9. 

Figure 9. Desired shape for the product after drawing 

Figure 10 represents the initial geometry of tools considered. 

Figure 10. Initial geometry of tools 



Process optimisation in deep drawing 145 

25~. ------------------------------, 
i 

5 L 
0~1 ~~~~£=~~~~. 0 2 4 10 

Iterations 

Figure 11. Evolution of the objective function during optimisation 

Figure 11 represents the evolution of the objective function whereas figure 12 
represents evolution of the parameters (punch radius and die radius) during the 
optimisation. A solution is achieved in six iterations. 

10 

0 ok--------------,2~--47---------7-6 -----k-s -----.'10 

Iterations 

Figure 12. Evolution of the process parameters during optimisation 

5.3. Optimisation of initial blank volume 

In this example the goal is to find the minimal blank allowing the formability of 
a component. The component is a square box with a geometry represented in Figure 
13 and was provided as a benchmark problem in NUMISHEET'93 Conference 
[MAK 93]. The initial thickness of the blank is 0.78 mm and a Swift hardening 
function represents material law for the sheet metal: 
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- l - J.IM7 
a= 729.09\0.0135 + Ep MPa. 

Due to the symmetry of the problem and assuming isotropic behaviour, only one 
quarter of the part was discretised using triangular shell elements. 

The optimisation for this example can be formulated as follows: 

minimise S0 = LAehe 
e 

j 
Max hi - h0 h 

1 ----'---"- ::; to up 

b
. ho 

su ~ect to Min hi - ho > 
----'----"- _ -htol 10w 

ho 

[26] 

where Ae and he are respectively initial area and initial thickness for each finite 
element of the discretisation of the blank, h0 is the initial thickness, hi is the nodal 
thickness and htolup and hto11ow are tolerances respectively for thickening and 
thinning. 

The objective function S0 represents the volume of the initial blank whereas 
thickness is considered only in the useful zone of the final component (figure 13). 

35mm 

Waste zone r "><' ... 
: 15mm 

37mm -------I 

Zone of interest I 

Figure 13. Geometry of the square box test 

The initial blank is described by a B-spline curve defined using seven control 
points (figure 14). Positions of these control points represent process parameters for 
this example. 
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,. 

EB Control points 

Initial blank 

----
! 

Figure 14. Starting estimation for the initial blank shape and positions of the 
control points 

The following considerations have to be taken into account for the determination 
of the number of independent parameters that starts with a value of 14. Due to 
symmetries with respect to OX and OY axes, points 7 and I can only vary 
respectively along OX and OY reducing therefore the number of parameters to 12. 
On the other hand, as the final component is symmetrical and assuming isotropic 
behaviour, displacement of control points on each side are dependent. This means 
that for instance Y -displacement of point 2 is the same as X-displacement of point 6, 
and so on until point 4 where X-displacement and Y -displacement are the same. 
This second consideration reduces the number of independent parameters to 6. The 
final consideration is the fact that points 2 and 3 are constrained to move only in the 
Y-direction (respectively points 5 and 6 move only in the X-direction). The number 
of independent parameters is therefore 4 and the vector of process parameters is p = 
{Y~> Y2• Y3• Y4}T. 

After each modification, the geometry is meshed keeping the same element size 
in order to minimise effects of the meshing on the results. 

Only the local search technique was used for this example and provided the 
optimal geometry represented in Figure 15. 
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Optimal blank 
f--~/ 

Initial blank 

Useful Part 

L__------~--~----1 

Figure 15. Optimal shape for the initial blank 

After deformation, the waste zone is reduced as can be seen in Figure 16 where a 
deformed mesh is represented along with the contour of the useful zone. 
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Figure 16. Deformed mesh for the optimal blank. 
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6. Conclusions 

In this paper, a procedure for the design of forming processes is presented. The 
optimisation is performed by means of a gradient-based method including sensitivity 

analysis. First results obtained are promising in terms of convergence rates. Current 

works include the investigation of the use of sensitivity analysis in the construction 

of approximations used in surface response. 
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