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ABSTRACT. A general framework is proposed for validating numerical models for nonlinear, 
transient dynamics. Previous work has focused on nonlinear vibration and several difficulties 
of formulating and solving inverse problems for nonlinear dynamics have been identified. 
Among them, we cite the necessity to satisfy continuity of the response when several finite 
element optimizations are successively carried out and the need to propagate variability 
throughout the optimization of the model's parameters. Our approach is illustrated using 
data from a nonlinear vibration testbed and an impact test experiment both conducted at Los 
Alamos National Laboratory in support of the advanced strategic computing initiative and 
our code validation and verification program. 

RESUME. Une formulation generale est proposee afin de valider les modeles numeriques 
developpes pour les besoins de Ia dynamique transitoire et nonlineaire. Le travail realise 
anterieurement s'est concentre sur les applications en vibrations nonlineaires et plusieurs 
difjicultes ant ete identifiees quant a Ia formulation et Ia resolution de problemes inverses. 
Parmi ces difficultes, nous citons Ia necessite de satisfaire Ia continuite des reponses 
temporelles lorsque plusieurs optimisations successives sont realisees ainsi que le besoin de 
propager des sources de variabilite durant /'optimisation des parametres du modele. Nos 
conclusions sont illustrees a /'aide de donnees experimentales issues d'un systeme vibratoire 
nonlineaire et d'un systeme soumis a impact, taus deux developpes et testes dans le cadre 
d'un programme initie a Los Alamos National Laboratory pour les validation et verification 
des modeles numeriques et phenomenes physiques complexes. 
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Nomenclature 

The «Standard Notation for Modal Testing & Analysis» is used throughout this 
paper, see Reference [LIE 92]. Symbols not commonly used in the modal testing 
and structural dynamics communities are defined in the text. 

1. Introduction 

Inverse problem solving is at the core of engineering practices as such work 
generally involves designing a system to target a given performance or to satisfy 
operating constraints. Increasingly, designers are faced with shorter design cycles 
while their testing capabilities are reduced and the physics they must understand 
becomes more sophisticated. The consequence is the need for larger-size computer 
models, coupled-field calculations and more accurate representations of the physics. 
To improve the predictive quality of numerical models and enhance the capability to 
extrapolate the response of a system, it is often necessary to solve inverse problems 
where simulations are compared to field measurements [HEM 99a]. In addition, it 
has been recognized that non-deterministic approaches must be employed to 
alleviate our lack of test data and incomplete understanding of complex mechanics 
[HEM 99b]. 

In this work, a general formulation of inverse problems for correlating transient 
dynamics to responses obtained from several nonlinear finite element models is 
proposed. An application to the field of structural dynamics is described where 
several software packages are interfaced to enable fast probability integration using 
nonlinear finite element analysis [CRU 89]. Hence, probabilistic response surfaces 
and sensitivity data are generated for optimizing the structural form and design 
parameters of a family of models with the ultimate goal of identifying the best 
possible representation of the system. 

The current application features the impact of a steel cylinder that compresses a 
layer of elastomeric material otherwise difficult to characterize with conventional 
testing procedures [BEA 99]. By correlating the transient acceleration response to 
field measurements, this behavior is characterized and high-fidelity, physics-based 
modeling of the material is optimized. In the effort to reproduce the test data, several 
models are developed by varying, among other things, the constitutive law and the 
type of modeling. Therefore, the optimization variables consist of the usual design 
variables augmented with structural form parameters such as kinematic assumptions 
and geometry description (2D or 3D). First, probabilistic sensitivity analysis is 
employed to identify the most important optimization parameters. Then, several 
metrics for comparing test and analysis data are evaluated. Finally, optimization is 
carried out to validate each one of the candidate models. 
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2. Motivations and Main Findings 

We wish to convince the reader that, for a wide variety of test-analysis 
applications, techniques based on linear dynamics and modal superposition are 
likely to fail. Thus, it is critical to validate numerical models by correlating transient 
test data rather than steady-state, modal data. However, formulating correctly the 
inverse problem in this case requires to solve multiple two-point boundary value 
problems, as explained in Reference [DIP 98]. Our preliminary investigation of 
these techniques indicates that their computational requirements prohibit their 
application to the types of problems we are interested in. Instead, inverse problem 
solving is replaced by a methodology where response surfaces are generated from 
the resolution of a large number of forward analyses. This best utilizes our 
capabilities for modeling nonlinear systems using general purpose finite element 
packages [ABA 98] and our computational resources where parallel processing 
enables the simultaneous analysis of several thousand nonlinear problems very 
efficiently. Two other important contributions to this work are 1) the ability to 
derive high accuracy, physics-based material models and 2) fast probability 
integration for large-scale structural analysis [NES 96]. The former is not discussed 
in this paper but it is briefly mentioned here because physics-based models of 
material behavior are generally obtained from a microscopic description of the 
material. As such, they depend on parameters that can not be measured with great 
accuracy and that are best characterized by probabilistic distributions. This explains 
why fast probability integration techniques are critical to our work and why 
optimization algorithms are required, not only to adjust parameters of the models, 
but also to assess the quality of models in a probabilistic sense. This procedure is 
summarized in Figure 1 where arrows symbolize the flow of information during the 
successive steps of testing, modeling, analysis and validation. 

High Accuracy, Physics­
based Material Behavior 

Development of Several 
Structural Models 

Probabilistic Analysis 

Nonlinear 
Vibration or 

Transient 
Testing 

~--T_e_s_t-_A_n_a.ly~s-is._C•o~rr_e_la•t-io~n--~1-~------------------~ 

Figure 1. The different steps of testing, modeling, analysis and validation 
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In this way, the research effort presented here is mostly concerned with 
interfacing several general-purpose software packages together and learning how to 
utilize tools that have not necessarily been developed for test-analysis correlation 
and model validation. In doing so, however, we believe that this work contributes to 
open research issues such as assessing the efficiency of current metrics for test­
analysis correlation, formulating inverse problems for nonlinear dynamics and 
developing a new testing procedure for characterizing nonlinear materials in the 
high deformation and high rate ranges. An important finding that we would like to 
emphasize and that will be addressed in future research is the need to develop new 
test-analysis correlation metrics (which is sometimes referred to as «feature 
extraction») for analyzing nonlinear, transient data. Another critical issue is the 
notion of model validation that can be, we believe, recast as a general pattern 
recognition problem [BIS 98]. 

2.1 Background 

The first part of this research effort is documented in References [HEM 99a], 
[HEM 99b] and has consisted in attempting to formulate criteria for measuring the 
correlation between test data and finite element results for nonlinear vibrations. 
Since we have always constrained ourselves to 1) handle any type and source of 
nonlinearity and 2) enable both parametric and non-parametric updating to be 
carried out simultaneously, very few techniques have been found in the published 
literature that could meet our expectations. Typical examples of nonlinearities we 
are interested in include material nonlinearity, friction, impact and contact at the 
interface between two components. These are typical of nonlinearity sources dealt 
with in the automotive and aerospace industries. As an illustration of this lack of 
techniques relevant to the nonlinear word, the reader is invited to review from 
References [IMR 91], [MOT 93] the state-of-the-art in model updating technology. 
Among the earliest and most promising work in test-analysis correlation for 
nonlinear dynamics, we cite the work by Hasselman and Anderson [HAS 98] and 
that by Dippery and Smith [DIP 98]. 

2.2. Experimental Testbed for Nonlinear Vibrations 

Our testbed for the validation of nonlinear vibration modeling is the LANL 8-
DOF (which stands for Los Alamos National Laboratory eight degrees of freedom) 
system illustrated in Figure 2. It consists of eight masses connected by linear 
springs. The masses are free to slide along a center rod that provides support for the 
whole system. Modal tests were performed on the nominal system and on a damaged 
version where the stiffness of various springs is reduced by 14 %. A contact 
mechanism was also added between two masses to induce a source of 
contact/impact, see Figure 2. Time-domain acceleration data are measured at each 
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one of the eight masses and modal parameters are identified using a classical 
frequency-domain curve fitting algorithm. 

Figure 2. LANL 8-DOF Testbed. Overall setup (left) and detail (right) 

2.3. Application of Modal-based Updating Techniques 

The test we are interested in consists of identifying the damaged spring using a 
linear model that does not account for the friction nor the source of contact/impact. 
This is achieved by minimizing the «distance» between test data and predictions of 
the numerical model, whether this distance is evaluated in the time or frequency 
domain. The optimization problem can be formulated as the minimization of the cost 
function shown in equation [ 1] where the first contribution represents the metrics 
used for test-analysis correlation and the second contribution serves the purpose of 
regularization 

~!r _ L {Rj(p+dp)r[sRRJ-l{R/p+dp)}+{dpr[sppr{dp} [11 
J-l···Ntest 

Constraints are added to the formulation to eliminate any local minimum that 
would not be acceptable from a physical standpoint. In this test, the parameters of 
interest are the seven spring stiffnesses. The weighting matrices in equation [ 1] are 
generally kept constant and diagonal for computational efficiency. They can also be 
defined as general covariance matrices which formulates a Bayesian correction 
procedure, as shown in Reference [HEM 99b]. Obviously, many choices for the 
metric are available, the simplest of all being the difference between test and 
analysis modal parameters, also known in the model updating community as the 
output error residual, see Reference [PIR 91]. 

The results summarized here involve the definition of the output residue [PIR 
91] and two input residues, namely, the force and hybrid modal residues defined in 
References [HEM 95] and [CHO 98]. We emphasize that our purpose is not to 
compare various figures of merit for their efficiency to identify sources of modeling 
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error but rather to illustrate the danger of modal-based updating when the system is 
characterized by a source of nonlinearity not accounted for by the numerical model. 
Here, for example, friction is not represented. Although the linear model provides a 
good agreement with test data before and after parametric correction, the update 
fails to yield a positive identification of damage introduced at spring number five. 
Worse, false positives (that is, stiffness reductions predicted at locations where no 
damage was originally introduced) are obtained. We have checked that the 
optimization solvers used are not responsible for these poor results. In this study, the 
order-0, Simplex algorithm, the order-!, conjugate gradient algorithm and the order-
2, BFGS and Levenberg-Marquardt methods are implemented and they all fail to 
identify the damage scenario when associated to modal-based metrics. These 
classical optimization solvers are described in many publications and manuscripts 
among which we cite Reference [JAC 77]. This simply demonstrates the limitations 
of modal data to characterize nonlinear dynamics. 

2.4. Time-domain Correlation Metrics 

The next step is to implement two correlation metrics based on time series and 
described in Reference [HEM 99a]. The first one correlates the measured and 
simulated signals directly (RMS error) while the second one correlates the subspaces 
to which these signals belong. This is achieved by making the numerical model 
match the singular values and vectors obtained by decomposition of the test data 
matrix, a procedure generally referred to as principal component decomposition 
(PCD). Reference [HAS 98] offers a complete description of this procedure. The 
main result is that time-domain metrics are successful at identifying parametric 
and/or non-parametric errors even when the model optimized is purely linear. 

For example, we can identify the nonlinear, internal force by minimizing the 
RMS or PCD error based on acceleration measurements at three locations only. 
Here, the contact mechanism is enabled, therefore, introducing a source of 
contact/impact during the vibrations. The random, input excitations at the driving 
point (location 1) and the eight accelerations are measured at 4,096 samples over a 
time period of 8 seconds. Data are collected for various force levels to identify the 
degree of nonlinearity. Although all degrees of freedom are measured, we assume 
that data are available at locations 1, 5 and 6 only. Since the correlation involves 
three measurements only, model reduction is implemented to condense the finite 
element matrices and force vectors. The particular technique chosen preserves 
exactly the lowest frequencies and mode shapes of the linear model [BUR 94]. As 
mentioned previously, our modeling of this system is perfectly linear except for the 
addition of an internal force vector. Arbitrary internal forces are applied at each one 
of the eight masses of the system and test-analysis correlation is used for estimating 
these force levels at prescribed time samples. The unknowns are therefore these 
eight force components. Correlation is based on the first 90 acceleration 
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measurements that span the time window [0;0.168] sec. For the numerical 
simulation, finite element matrices and force vectors are reduced to the size of the 
test model (locations 1, 5 and 6 only) and the response of the condensed model is 
integrated in time using 10 sampling points between any two measurements. As the 
response is integrated in time, the internal force vector is optimized. Figure 3 shows 
the reconstruction of internal force as optimizations are performed for each time 
interval containing three consecutive measurements. In other words, 30 
optimizations are performed, one every 0.0056 sec. No clear interpretation of this 
forcing function can be made. Notice that the internal force at location 1 is 
approximately equal to zero which seems consistent with the fact that degree of 
freedom 1 is the driving point where the random excitation is applied. 
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Figure 3. Internal force reconstructed via test-analysis correlation 

Figure 4 illustrates the correlation before and after model updating when the cost 
function is defined by the RMS error. Similar results are obtained using the PCD 
metric. Adding to the numerical simulation the nonlinear force identified via test­
analysis correlation (see Figure 3) provides a clear improvement of the model's 
predictive quality. This simple example illustrates how unmodeled dynamics can be 
identified in the context of incomplete measurement sets and nonlinear responses. 
The next step is to show in Section 3 below that large numerical models can be 
validated using similar test-analysis correlation metrics, explicit, time-domain 
solvers and probability integration. 
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Figure 4. Accelerations before (left) and after (right) optimization 

2.5. Discontinuity of the Solution Fields 

When time-domain data are used for validating a numerical model, it may be 
advantageous to divide the available time record into several windows, each of 
smaller duration. The reason is that the computational effort of calculating a cost 
function in the time domain is directly proportional to the number of increments 
required to integrate the equation of motion. The shorter the time window, the faster 
the optimization. However, the strategy of implementing successive optimizations 
produces several optimized models, one for each time window considered. This is 
necessary not only for computational purposes but also because some of the 
parameters being optimized may vary in time and following such evolution as it 
occurs may be critical. However, nothing in the formulation of the inverse problem 
enforces continuity between the solution fields obtained from models optimized in 
two successive time windows. Since the optimization variables can converge to two 
different solutions, the discontinuity of the solution can be written, for example, as 

lim x(p<il, t) -:t lim x(p<i+l), t) [2] 
1---tlj t-Hj 

t:<;tj t~lj 

Optimal control strategies can be implemented to solve the inverse test-analysis 
correlation problem while reconstructing continuous solution fields and identifying 
the source of modeling error, as explained in References [DIP 98] and [MOO 89]. 
They rely on the resolution of multiple two-point boundary value problems (BVP). 
When satisfactory solutions to the two-point BVP's are obtained, it is guaranteed 
that the numerical model matches the measured data at the beginning and at the end 
of the time window considered for the optimization. The optimal error control is a 
very attractive technique since not only does it handle parametric and non­
parametric identifications simultaneously but it also propagates uncertainty and 
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variability using the Bayesian theory of information and it provides a rigorous 
framework for generating continuous solutions from an arbitrary number of 
optimizations. 

However, this improvement comes with the additional cost of formulating a two­
point BVP to guaranty continuity of the solution. Since the procedure is embedded 
within an optimization solver, multiple two-point BVP's must be solved for. 
Unfortunately, the impact on the computational requirement is enormous. For 
example, our resolution of the single degree of freedom, Duffing oscillator problem 
shown in Reference [DIP 98] requires a total of 16 to 20 hours of CPU time 
depending on the number of measurement points available. This timing is obtained 
on a dedicated R 10,000/250 MHz processor when the algorithm is programmed 
within the environment provided by Matlab™ [MAT 99). Clearly, it prohibits any 
application of the technique to practical engineering problems. This is why other 
avenues are explored in the remainder of this paper. 

3. Impact Test Experiment 

The application targeted is a high-frequency shock test that features a component 
characterized by a nonlinear, visco-elastic material behavior. Our intent is to 
validate an existing elastomeric material model. Since the original testing procedure 
that provided this model was quasi-static, it is our belief that the model does not 
represent the behavior with good fidelity at high strain rates. 

3.1. Numerical Modeling 

An illustration of the setup is provided in Figure 5. In an effort to match the test 
data, several FE models are developed by varying, among other things, the 
constitutive law and the type of modeling. Therefore, optimization variables consist 
of the usual design variables augmented with structural form parameters such as 
kinematic assumptions, geometry description (2D or 3D), contact modeling and 
numerical viscosity. Figure 5 also illustrates one of the discretized models used for 
numerical simulation. The analysis program used for the calculations is 
HKS/Abaqus-Explicit, a general-purpose package for finite element modeling of 
nonlinear structural dynamics [ABA 98]. It features an explicit time integration 
algorithm convenient when dealing with nonlinear material behavior, potential 
sources of contact and high frequency excitations. 
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Figure 5. Assembly of the impactor and carriage (left) and 3D model (right) 

It can be observed from Figure 5 that the main two components (steel impactor 
and foam layer) are assembled and attached to the carriage. The center of the steel 
cylinder is hollow and is fixed with a rigid collar to restrict the motion of the 
impactor to the vertical direction. This assures perfectly bilinear contact between the 
steel and foam components, allowing the structure to be modeled axi-symmetrically. 
In spite of this, a full three-dimensional model is also developed to verify this 
assumption. Another important parameter is the preload applied by the bolt used to 
hold this assembly together. The torque applied was not measured during testing and 
it may have varied from test to test. 

3.2. Experiment Setup 

During the actual test, the carriage that weighs 955 Ibm (433 kg) is dropped from 
various heights and impacts a rigid floor. The input acceleration is measured on the 
top surface of the carriage and three output accelerations are measured on top of the 
steel impactor that weights 24 Ibm (11 kg). Figure 6 provides an illustration of the 
test setup and instrumentation. This impact test is repeated several times to collect 
multiple data sets from which the repeatability of the experiment can be assessed. 
Upon impact, the steel cylinder compresses the foam to cause elastic and plastic 
strains during a few 11-seconds. 
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Figure 6. LANL impact test setup 
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Figure 7. Accelerations measured during the impact test. Low-velocity impact of a 
thin layer of material (left) and a thick layer of material (right). 

Typical accelerations measured during the impacts are depicted in Figure 7. Both 
data sets are generated by dropping the carriage from an initial height of 13 inches 
(0.33 meters). On the left of Figure 7, the acceleration response of a 1/4 inch-thick 
(6.3 mm) layer of foam is shown. On the right, the acceleration response of a 1/2 
inch-thick layer (12.6 mm) is shown. The results available are summarized in Table 
1 which gives the number of data sets collected for each configuration tested. The 
reason why Jess data sets are available at high impact velocity is because these tests 
proved to be destructive to the elastomeric material and could not, therefore, be 
repeated to study the variability. 
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Number of Data Sets Low Velocity Impact High Velocity Impact 
Collected (13 in./0.3 m Drop) (155 in./4.0 m Drop) 
Thin Layer 
(0.25 in./6.3 mm) 10 Tests 5 Tests 
Thick Layer 
(0.50 in/12.6 mm) 10 Tests 5 Tests 

Table 1. Data collected with the impact testbed 

It can be seen that over a thousand g's are measured on top of the impact 
cylinder which yields large deformations in the foam layer. The time scale also 
indicates that the associated strain rates are important. Lastly, the variation in peak 
acceleration observed in Figure 7 suggests that a non-zero angle of impact is 
involved, making it necessary to model this system with a 3D discretization. Clearly, 
modal superposition techniques would fail modeling this system because: 1) contact 
can not be represented efficiently from linear mode shapes; 2) nonlinear hyper-foam 
models, that possibly include visco-elasticity, are needed to represent the foam's 
hardening behavior; 3) very refined meshes would be required to capture the 
frequency content well over 10,000 Hz. 

4. Validation of Nonlinear Structural Dynamics Models 

In this Section, the overall procedure for test-analysis correlation (TAC) is 
described with emphasis on explaining how the problem of probabilistic model 
validation is formulated. For this reason, technical details are eluded as much as 
possible. These can be found in the References cited throughout this work. 

4.1. Response Surfaces for TAC & Optimization 

As mentioned previously, correctly formulating inverse problems based on time­
domain data requires the resolution of multiple two-point boundary value problems 
within the parameter adjustment loop [DIP 98]. This formulation yields prohibitive 
computational costs for the systems we are interested in. The alternative pursued 
here is to, first, generate a response surface from a large number of explicit FE 
solutions. A typical sampling technique used is the Latin hypercube method. If 
additional resolution is required, curve-fitting or neural networks can be 
implemented for interpolating between data points. Once the FE solutions are 
available for multiple designs, a metric is adopted to correlate the time-domain data. 
In this work, essentially three metrics are defined: 1) comparing peak acceleration 
values; 2) comparing time-histories of acceleration data; 3) the PCD method 
mentioned in Section 2. The cost functions (also referred to as « g-function >> in the 
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next Section) associated with these three metrics are described by equations [3], [ 4] 
and [5], respectively: 

g(X) = {max(xs)- max(x;es' )f 
g(X)= L L(xs(t)-x;cst(t))2 

s,sensor t,time 

[3] 

[4] 

[5] 

where (X) denotes the subset of design parameters and/or random variables selected 
for parametric adjustment. Symbols used in equation [5] represent normalized 
differences between the singular values and singular vectors of the analysis and test 
data matrices. The definition of other metrics or «features» for nonlinear dynamics 
is an aspect on which we are increasingly focusing. 

4.2. Fast Probability Integration 

Our ability to perform probabilistic structural analysis relies essentially on the 
software NESSUS (which stands for Numerical Evaluation of Stochastic Structures 
Under Stress), see Reference [NES 96], and its fast probability integration (FPI) 
capability is described here. 

In the following, it is assumed that N random variables collected in vector (X) 
must be defined in the model. These may include uncertain input forces, random 
parameters for material modeling, manufacturing tolerances, etc. We also define a 
response function Z and the objective of the FE calculation is to estimate the value 
of Z for a given sample {X) of our random variables. Finally, a limit state function 
g(X) is defined that describes the correlation with test data. For reliability analysis, 
the g-function represents a limit on the acceptable behavior of the system. It is used 
for separating the safe domain (when g(X)~O) from failure (when g(X)<O). Here 
however, the g-function represents the metric used for test-analysis correlation. A 
simple illustration is provided in the following where the response Z is defined as 
the peak acceleration at a location coincident with a sensor and the g-function 
includes the peak acceleration value measured at that location during the test. In this 
particular case, the figure-of-merit defined for validating candidate models is simply 
given by equation [3]. «Success» is defined if g(X)=O, that is, if the peak 
acceleration measured during the test is matched by the model in a probabilistic 
sense. This essentially means that the problem of model validation consists of 
calculating either the probability density function (PDF) or the cumulative density 
function (CDF) of the Z-response, respectively defined as 

Pz(a) = Prob[Z =a], Fz(a) = Prob[Z ~a]= J:Pz(z)dz [6] 
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Hence, FPI is used to propagate efficiently variability information through a 
structural analysis. Typically, estimating the entire PDF with a FE model that 
depends on N random variables requires no more than (N+l) analyses using FPI. 
The central aspect of FPI is the search for the most probable point (MPP) that 
defines the most probable prediction of the model in the presence of modeling 
uncertainty. To find the MPP, the algorithm maximizes the joint PDF in variables 
{X} subject to the constraint g(X)=O. A critical computational issue is the 
transformation of random variables {X} into standardized normal variables { u}, that 
is, variables described by the unit normal CDF 

,z 

Cl>(u) = J" ~ e -2 ds 
~ -v21t 

[7] 

This is achieved via the Rosenblatt Theorem (see Reference [ROS 52]) that 
states that multivariate random variables can be converted to uniform distributions, 
then, to unit Gaussian distributions 

[8] 

This additional step facilitates greatly the search for the MPP and all subsequent 
calculations. A final aspect of the computational procedure is that, during the 
optimization, the constraint g(u)=O may be approximated using various polynomials 
to decrease the computational burden. Once the MPP has been determined, the 
response surface can be explored to reconstruct the entire PDF. 

4.3. Software Integration 

Software integration is an important part of our probabilistic model validation 
procedure. First, the optimization parameters and random variables are defined. 
Multiple FE solutions and multi-dimensional response surfaces are generated from 
statistical sampling. The first useful result is the sensitivity analysis used to reduce 
the subset of potential optimization variables down to the most sensitive ones. Then, 
the best model is sought after by optimizing the design parameters. The ability of a 
probabilistic model to reproduce test data is assessed using the Z-response' s CD F. 
Of course, when multiple data sets are available, CDF's of the family of models 
must be compared to the CDF established from test data and not to individual 
measurements anymore. Three software packages involving four different 
programming languages are interfaced. The test-analysis correlation procedure is 
controlled by a library of Matlab TM functions [MAT 99]. The reason for this choice 
is flexibility and the possibility to develop a user graphical interface easily. 
Depending on the type of analysis requested by the user, the Matlab ™-based 
software writes and compiles Fortran77 routines that are used for generating the 
Abaqus input deck. Drivers written in the script language Python [LUT 96] are also 
generated and used for piloting the FE analyses. Finally, results are uploaded back 
into Matlab™ for test-analysis correlation and parametric optimization. This 
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architecture should enable the interfacing in a near future of a variety of engineering 
analysis software, including parallel FE processing packages such as Lawrence 
Livermore National Laboratory's ParaDyn for running large-dimensional, nonlinear 
problems on high-performance computing platforms. 

5. Demonstration of Model Validation With the Impact Testbed 

An illustration of several concepts discussed previously is now provided with the 
data sets collected during the impact test experiment presented in Section 3. After 
describing the test data variability (Section 5.1 ), the model's predictive quality is 
assessed using fast probability integration (Section 5.2). The problem of measuring 
the consistency of two populations of data points is briefly addressed (Section 5.3). 
Model validation is performed in Section 5.4 by reconstructing response surfaces 
using two test-analysis correlation metrics and optimizing the design variables to get 
the best test-analysis match. Finally, the concept of model verification for nonlinear 
dynamics is illustrated (Section 5.5). 

5.1. Variability of the Experiment 

Figure 8 shows the variability observed during the impact test when the same 
configuration (same sample of elastomeric material and impact velocity) is tested 
ten times. Although the environment of this experiment was very well controlled, a 
small spread in both input and output signals is obtained. This justifies our point that 
model correlation and model validation must be formulated as statistical pattern 
recognition problems. 
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Figure 8. Test data from 10 «similar» tests (left) and resulting PDF's (right) 

From these multiple measurement sets, variability of the test data can be assessed 
and represented in a number of ways, an illustration of which is provided on the 
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right of Figure 8. It shows the peak acceleration PDF's for each measurement. Such 
representation tells us, for example, that 17% of the peak accelerations measured at 
output sensor I are equal to I ,520 g's when «similar» experiments are repeated. 
According to Figure 8, this is the most probable peak acceleration. What is therefore 
important is not necessarily that the correlated models reproduce the peak 
acceleration measured during a single test, but that they predict the different 
acceleration levels with the same probability of occurrence as the one inferred from 
test data. 

5.2. Analysis of the Probabilistic Models 

The next step is to obtain the statistical characterization of numerical models. 
This is achieved via fast probability integration, as seen previously. The models are 
then individually validated by comparing their PDF's or CDF's to those obtained 
from test data. For this application, several 2D and 3D models are developed. 
Among the parameters varied are the type of elements used in the discretization, the 
mesh size, the type of contact conditions implemented, the material modeling, the 
preload applied when the center bolt is tightened, the velocity at time of impact and 
the input acceleration. The two types of information obtained by FPI are illustrated 
in Figure 9. 
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Figure 9. CDF of the peak acceleration (left) and its sensitivity (right) 

After defining each one of the random variables, a relatively small number of FE 
solutions are needed to estimate, in this case, the probability distribution of the peak 
acceleration at output sensor 1. From Figure 9 (left), it can be seen, for example, that 
the probability that the peak acceleration is less than 1,520 g' s is equal to 90%. 
These PDF or CDF vectors can also be differentiated with respect to each one of the 
random variables. It provides valuable information regarding the influence of a 
probability distribution on a cost function or Z-function for test-analysis correlation. 
Figure 9 illustrates this concept: the CDF shown on the left is differentiated with 
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respect to the mean of the velocity at time of impact (right, top half) and the 
standard deviation (right, bottom half) when it is assumed that the velocity is 
normally distributed. Peak acceleration values (on the horizontal axis) most sensitive 
to the impact velocity can then be identified. 

The sensitivity information can be further condensed into single indicators that 
compare the influence of each random variable on the Z-function. Figure 10 
summarizes a study where the influence of five variables (impact velocity, foam 
thickness, foam density and parameters of the stress-strain, hyperfoam model) is 
investigated. This information is used for selecting the most sensitive parameters in 
a manner similar to an analysis performed with a deterministic model. However, due 
to the nature of random variables, we emphasize that derivatives can not be 
estimated with respect to the variables themselves. Instead, their statistics must be 
used as illustrated in Figure 9. 
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Figure 10. Sensitivity of the CDF with respect to several random parameters 

Parameter Varied Sensitivity Observed O__Qtimum Value/Range 

Type of Elements Very Low CAX4R, C3D8R 

Mesh Size Very Low 1/lOth Dimensions 

Contact Condition Very Low Free, No Weights 

Impact Velocity Low 550 in./sec. 

Steel Material Low 304-SS 

Angles of Impact High 0.5 degrees 

Bolt Preload High 120-160 psi 

Bulk Viscosity High 0.5-0.8 

Foam Material VeryHigh 1.2 x Stiffer 
Input Scaling Very High 1.2-1.6 

Table 2. Qualitative results of the probabilistic sensitivity studies 
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Table 2 shows some of the sensitivity and optimization results obtained when the 
cost function [3] is implemented. These results are discussed below. 

5.3. Statistical Consistency of Test Data and Simulations 

One of the somewhat open research issues identified by this work is the problem 
of establishing a correlation between multiple data sets. By this we mean "assessing 
the degree to which two populations are consistent with each other." Our literature 
review seems to indicate that tools for assessing the distance between multivariate 
data sets are not readily available. This difficulty is illustrated in Figure II. It 
represents the peak acceleration values for channels I and 2 plotted against each 
other. The data of ten independent, "identical"' tests are shown together with 
simulation results generated by two different models. For each model, a particular 
design is generated by varying the angles of impact and the bolt preload. Then, each 
design is analyzed ten times using the ten different input acceleration signals 
measured during the repeated experiments. The three ellipsoids shown in Figure II 
illustrate the 95% confidence intervals for the test data and two models . 
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Figure 11. Comparison of test and analysis data in a two-feature space 
(The 2D space represents the peak accelerations at sensors 1 and 2.) 

Obviousiy, the predictive quality of one of the two models is better because most 
of its data points (68 of 100) fall within the 95% confidence interval of the test data. 
The other model predicts only 34 of 100 points within the test's 95% confidence 
interval. This example illustrates that plotting several features against each other 
defines a more powerful analysis tool than a simple comparison of time-histories. 
Unfortunately, higher-order graphics are difficult to interpret visually. A quantitative 
indicator of the model's fit to test data is required when more than two features are 
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analyzed simultaneously. Two such statistical, «goodness-of-fit>> indicators are 
briefly presented in the remainder. 

By inspection of Figure 11, It IS apparent that the peak magnitudes of 
accelerations I and 2 are uncorrelated because the 95% confidence interval is nearly 
circular. Thus, we suspect that one of the greater sources of variability is the source 
that affects the channels differently. This conclusion, however, is not confirmed by 
data generated from the two models. One of them clearly exhibits greater variability 
as indicated by the large confidence interval. The other one shows that the peak 
accelerations obtained are somewhat correlated even if the features are statistically 
consistent with test data. This can be assessed using a standard, multivariate 
Hotelling' s T 2 test. First, statistics such as the vector of mean and the matrix of 
covariance can be evaluated from the distribution of features. Hotelling's T 2 test 
states that the model's mean vector is an estimate of the test data to the ( 100-a.)% 
confidence level if 

Applied to the data shown in Figure 11, this statistic sets the acceptance ratio to 
1.0035 at the 95% confidence level. The Mahalanobis distance in the left-hand side 
of equation [9] is equal to 4.0 for the first model which clearly indicates that it fails 
the test. The Mahalanobis distance of the second model is equal to 0.2. This 
establishes that the mean response predicted by our second model has converged. It 
can alternatively be stated that we are 95% confident that the average peak 
accelerations predicted by this model are consistent with test data given the sources 
of variability of the experiment and given the sources of modeling uncertainty. 
However, this conclusion remains of limited practical use as long as the variance of 
the population has not converged as well. One of the only possibility for testing both 
mean and variance is to calculate Kullback-Leibler' s relative entropy defined as the 
expected value of the ratio between the PDF's of the two populations 

[ 

model(a.)] 
I(Modelll Test) = E -"-Pz,___. __:______:__ 

p~"(a.) 
[10] 

If the features used are normally distributed (or if enough data points are available to 
justify the application of the central limit Theorem), the relative entropy can be 
approximated as 
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I [ ( -1) [det[:E(p)])) I(ModeliiTest):=- Trace[:E(p)][:Etest] -NP-log [ ] [11] 
2 det Ltest 

+~({ll(P)}- {lltcsJ nLtestt( {ll(P)}- {lltest}) 

This metric would typically be used for assessing the consistency between two 
populations of features and for optimizing parameters of the model. Unfortunately, 
statistical tests for verifying a pass/fail hypothesis based on the relative entropy [ 1 O­
Il] are not available in the general case. This limitation is currently being addressed. 
Another important issue is the availability of multiple data sets. For many 
applications, the experiment can not be repeated and the amount of measurements 
available is insufficient to establish meaningful statistics. The method of surrogate 
data offers an attractive solution, as demonstrated recently in Reference [PAE 99] 
with an application to nonlinear dynamics. It can be used for generating additional 
data sets after the original distributions have been converted to unit, Gaussian 
distributions via the Rosenblatt transform. By using the tools briefly discussed in 
this Section and by investigating multiple data features rather than simple 
comparisons of time-series, we believe that a systematic procedure for the 
qualification of modeling uncertainty can be developed based on test-analysis 
correlation whether a single test or repeated experiments are available. 

5.4. Parametric Optimization for Test-Analysis Correlation 

If the correlation with test data is not found satisfactory, Z-response surfaces are 
used to generate fast-running models. These, in turn, provide the core of the 
parametric optimization algorithm that fine-tunes a subset of the model's design 
variables to improve the correlation with test data. In this Section, a case is 
discussed where the nonlinear foam model, the bolt preload and the angles of impact 
are optimized. 

Time measurements from the three sensors are gathered in a data matrix and its 
principal component decomposition is compared to numerical simulations. The three 
singular values obtained from test data are equal to 8.79e+06, 0.85e+06 and 
0.13e+06 which clearly indicates that the dynamics is dominated by a single 
«mode.» Figure 12 represents the three left singular vectors (or pseudo-mode 
shapes) and right vectors (or time series) obtained from test data. 
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Figure 12. Sets of left and right singular vectors from the PCD of test data. The 
pseudo-mode shape vectors shown on the left are normalized to unity. The time­
series shown on the right are scaled by the corresponding singular values 

Although Figure 12 shows that the measured acceleration responses are 
dominated by a single «mode,» the contribution from the second PCD vector is far 
from insignificant. It means that the dynamics of the impact is somewhat more 
complicated than first thought, probably due to the motion of the foam pad relative 
to the impactor. From the left singular vectors, it can be deducted that the first mode 
corresponds to the rigid-body steel impactor compressing the foam pad because the 
vector exhibits roughly the same amplitude at each of the three sensors. The second 
vector indicates that the impactor/foam assembly features a small inclination 
compared to the carriage. From this second pseudo-mode shape, the location of the 
axis of rotation can be estimated. We have found that the angle provided by this 
calculation matches the angle obtained by numerical optimization (in the [0.5;0.7] 
degree range). The last vector probably involves elastic deformations of the steel 
impactor (first bending mode). 

Figure 13 depicts a typical Z-response surface obtained with the 3D model: the 
two horizontal axes represent the values spanned by two parameters (an angle of 
impact and a scaling coefficient for the hyperfoam model) and the vertical axis 
represents the cost function [5] on a log scale. For clarity, the surface is shown as 
only two of the seven optimization variables are varied. The complete set includes 
two coefficients of the hyperfoam material model, two angles of impact that 
simulate a small free-play in the alignment of the carriage and steel impactor, the 
bolt preload, the input acceleration scaling factor and a numerical bulk viscosity 
parameter. A total of 1,845 FE models are analyzed to generate a fast-running model 
after having determined the approximate location of the cost function's minimum 
from probabilistic analysis. Figure 13 also depicts the test-analysis correlation 
before and after parametric optimization. A clear improvement of the model's 
predictive quality is witnessed. This is an important result because features used for 
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Figure 13. Z-response surface (left) and correlation of the 3D model (right). (Test 
data are shown in red, solid line. Original predictions are shown in blue, dashed 

line. Predictions of the optimized model are shown in blue, solid line.) 

5.5. Verification of the Models 

The last step consists in verifying that the optimized models are indeed correct. 
This is referred to as model verification here. It is achieved by comparing 
predictions of various models to measured data sets for configurations different from 
the one used during FPI and optimization. For example, the 3D models are 
optimized using the thin pad/low impact velocity setup. Then, the 2D, axi-symmetric 
models are verified with the thick pad/low impact velocity configuration. On the 
left-hand side of Figure 14, predictions of the original and final 2D models are 
compared to test data measured during a low-velocity impact using the 0.25 in. (6.3 
mm) thick foam pad. On the right-hand side of Figure 14, the response of a 0.50 in. 
(12.6 mm) thick foam pad is featured. Despite small oscillations attributed to 
numerical noise generated by the contact algorithm, the models predict the 
acceleration levels measured during the test. We believe that such independent 
checks constitute the only valid proof that the modeling is correct. 
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Figure 14. Verification of the predictions, Left: response of a thin pad Right: 
response of a thick pad. (Test da!a are shown in red, solid line. Predictions of the 
original model are shown in blue, dashed line. Predictions of the optimized model are 
shown in blue, solid line.) 

6. Conclusion 

In this paper, a general framework is proposed for validating numerical models 
for nonlinear, transient dynamics. To bypass difficulties identified when applying 
test-analysis correlation methods to nonlinear vibration data, inverse problems are 
replaced with multiple forward, stochastic problems. After a metric has been defined 
for comparing test and analysis data, response surfaces are generated that can be used 
for 1) assessing in a probabilistic sense the quality of a particular simulation with 
respect to «reference» or test data and 2) optimizing the model's design parameters to 
improve its predictive quality. One critical issue to be investigated in future research 
is the definition of adequate metrics for correlating transient, nonlinear data. Rather 
than attempting to define deterministic, scalar distances, future work will emphasize 
dealing with «clusters» of test and analysis data that must be compared in a 
statistical sense. 
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