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ABSTRACT
The shear-induced deformation of a capsule with a stiff nucleus, a
model of eukaryotic cells, is studied numerically. The membrane
of the cell and of its nucleus aremodelled as a thin elasticmaterial
obeying a Neo-Hookean constitutive law. The fluid–structure
coupling is obtained using an immersed boundary method. The
variations induced by the presence of the nucleus on the cell
deformation are investigated when varying the viscosity ratio
between the inner and outer fluids, the membrane elasticity
and its bending stiffness. The deformation of the eukaryotic cell
is smaller than that of the prokaryotic one. The reduction in
deformation increases for larger values of the capillary number.
The eukaryotic cell remains thicker in its middle part compared to
the prokaryotic one, thus making it less flexible to pass through
narrow capillaries. For a viscosity ratio of 5, the deformation of the
cell is smaller than in the case of uniform viscosity. In addition, for
non-zero bending stiffness of the membrane, the deformation
decreases and the shape is closer to an ellipsoid. Finally, we
compare the results obtained modelling the nucleus as an inner
stiffer membrane with those obtained using a rigid particle.
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1. Introduction

The deformation of a cell in shear flows is one of the fundamental mechan-
ical problems in cell biology. A living cell is subjected to mechanical forces
of various magnitude, direction and distribution throughout its life. The cell
response to those forces reflects its biological function (Lim, Zhou, & Quek,
2006). As an example, red blood cells (RBC) have a diameter of about 7µm in
the underformed state. Their ability to deform quite significantly allow them
to pass through narrow capillaries having a diameter of 3µm (Wu & Feng,
2013). This high deformability enables them to reach various parts of the human
body and to distribute oxygen and nutrient to cells. RBC can, however, be
affected by protozoan Plamodium falciparum, the parasites that cause malaria.
These parasites change the red blood cell chemical and structural composition
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(Bannister & Mitchell, 2003; Cooke, Mohandas, & Coppel, 2001), thus inducing
a stiffening of the cell membrane (Guo et al., 2016; Zhang et al., 2015). Such
variations in the mechanical properties of the cells affects the blood rheology
which may help to diagnose diseases.

Many early experimental studies have addressed the interaction between tiny
deformable particles and an external flow. Several interesting types of motion
have been discovered, such as tumbling and tank-treading in shear flow (Fischer,
1977;Goldsmith&Marlow, 1972), the zipper flowpattern (Gaehtgens,Dührssen,
& Albrecht, 1979) or parachute cell shapes (Skalak & Branemark, 1969). More
recent studies focused on cells that exhibit very large deformations at high shear
rates, which can cause breaking (Chang & Olbricht, 1993), just to mention few
examples. Most of these studies are of experimental nature. Such investigations
can however be quite expensive since they require dedicated facilities not easy
to fabricate. In addition, experimentally measuring the exact deformation and
stresses can be rather complicated. Developing robust and reliable numerical
platforms is thus of increasing importance in order to perform high-fidelity
simulations beside laboratory experiments.

Many cells, including RBC, can be modelled as capsules. Capsules consist
of a droplet enclosed by a thin membrane: the membrane area can vary while
the enclosed volume is constant. Nowadays, several numerical studies on the
deformation of a capsule in shear flow have been reported in the literature. At
certain shear rates, the capsule reaches a steady shapewhile itsmembrane exhibits
a rotation known as tank-treading motion (Huang, Chang, & Sung, 2012). This
tank-treading motion disappears when the viscosity or shear rate of the external
fluid becomes low enough and instead a flipping or tumbling motion similar
to that of a rigid body appears (Fischer, Stohr-Lissen, & Schmid-Schonbein,
1978; Schmid-Schönbein &Wells, 1969). Membranes can also undergo buckling
or folding for high elastic moduli or at low and high shear rates in absence
of bending rigidity (Huang et al., 2012; Walter et al., 2001). A solution to
this problem is proposed by introducing a stress on undeformed membrane,
the so-called pre-stressed capsule (Lac & Barthès-Biesel, 2005). As regards the
motion of non-spherical capsules in shear flow, different types of motion occur
when changing the fluid viscosity, the membrane elasticity, the geometry of the
problem or the applied shear rate. In Skotheim and Secomb (2007), a phase
diagram is presented for biconcave-shaped capsule in which the transition from
tank-treading to tumbling motion is identified when decreasing the shear rate.

For eukaryotic cells, the overall mechanical properties of a cell are not only
determined by its membrane but also by other cell organelle, such as the cell
nucleus (Rodriguez,McGarry, & Sniadecki, 2013). Typically, the nucleus is stiffer
than the surrounding cytoplasmwhich results in lower deformationwhen subject
to the external stimuli (Caille, Thoumine, Tardy, & Meister, 2002; Guilak and
Mow, 2000). To model and predict the cell behaviour, the mechanical properties
of the nucleus need to be quantified. To this end, both experimental tests and
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numerical simulations have been carried out in Caille et al. (2002). The elastic
modulus of the nucleus in round and spread cells was found to be around
5000N/m2, roughly ten times larger than for the cytoplasm. As further example,
the nucleus of bovine cells is nine times stiffer than the cytoplasm (Maniotis,
Chen, & Ingber, 1997), yet small deformations of the nucleus may occur when a
cell is subjected to flow (Galbraith, Skalak, & Chien, 1998). Though it can exhibit
large deformation on a substrate when highly compressed, stretched or flattened
(Caille, Tardy, & Meister, 1998; Guilak, 1995; Ingber, 1990), the nucleus may
be assumed as a rigid particle for an intermediate range of the applied forces
(external shear).

The objective of present research is to quantify the deformation of a cell
with nucleus under simple shear flow at low but finite Reynolds numbers (fluid
inertia) using numerical simulations. For the present model, the cell is made of
two thin (two-dimensional) elastic membranes as originally proposed by Kan,
Shyy, Udaykumar, Vigneron, and Tran-Son-Tay (1999): the outer membrane
separating the cell from the ambient fluid and an inner membrane acting as the
boundary of the nucleus. The Neo-Hookean hyperelastic model is chosen for the
strain energy of the membranes, while the inner and outer fluids are assumed
to be Newtonian and can have different viscosities. The viscosity inside nucleus
is assumed to be the same as the surrounding cytoplasm. As the deformation of
the nucleus is assumed to be negligible, this is numerically treated either with a
second inner stiffer membrane or, alternatively, as a rigid particle using a differ-
ent numerical approach (Ardekani, Costa, Breugem, & Brandt, 2016; Lashgari,
Picano, Breugem, & Brandt, 2014). The presence of a nucleus and the effect of
viscosity ratio and bending stiffness on the cell deformation are investigated to
document the potential of the numerical method here developed. The results are
expected to provide an interesting comparison between mechanical properties
of cells with and without nucleus.

This manuscript is organised as follows. In Section 2, the geometry of the
problem and the governing equations for the membranes and flow dynamics are
presented. Section 3 provides a brief introduction to the numerical methods used
in order to simulate the problem. Validations of the present implementations
are presented in Section 4 while Section 5 reports the main results of the present
study. Finally, conclusions and perspectives are given in Section 6.

2. Problem statement

Figure 1 depicts the flow configuration considered and the coordinate sys-
tem adopted. An initially spherical cell located at the geometrical centre of a
rectangular computation box is considered. The upper and lower walls of the
domain move at opposite velocities in the streamwise direction while periodicity
is assumed in the other two directions. As boundary conditions, we therefore
impose no-slip at the walls and periodicity in the steamwise and spanwise
directions
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Figure 1. Schematic of the configuration and reference frame adopted to study a cell deformation
in shear flow.

2.1. Navier–Stokes equations

The dynamics of the incompressible flow of a Newtonian fluid are governed by
the Navier–Stokes equations,

∇ · u = 0,
∂u
∂t

+ u · ∇u = −∇P + 1
Re

∇ ·
[
μ∗(∇u + ∇uT)

]
+ f ,

(1)

where u = (u, v,w)T is the velocity vector, P the hydrodynamic pressure, and f
indicates the fluid–solid interaction force. The Reynolds number Re is defined as

Re = ργ̇R2

μo
. (2)

In the expression above, γ̇ is shear rate,R the reference cell radius,ρ the reference
density (assumed here to be the same for the fluid inside and outside the cell) and
μo the reference viscosity. In the present work, the reference viscosity is set to be
the viscosity of the fluid outside the cell and the ratio between inner and outer
viscosity is defined as λ = μi/μo, with μi the inner viscosity. In the expression
above, μ∗ = μ(x)

μo
indicates the ratio of viscosity at each point to the reference

viscosity.

2.2. Membrane dynamics

Cells are surrounded by a deformable membrane known as the plasma or cy-
toplasmic membrane. Along with a number of biological functions, its main
purpose is to separate the interior of each cell from the external environment. It
canmoreover deform quite significantly, as in the case of RBC travelling through
capillary vessels. In the present numerical study, such membrane is modelled
using a hyper-elastic model.

A point on the surface of the cell is expressed using the curvilinear coordinates
(ξ 1, ξ 2). To define the cell, two different coordinate bases are used, see Figure 2.
The first is a fixed cartesian base,

(
e1, e2, e3

)
corresponding to position x

(
ξ 1, ξ 2

)
.
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The second coordinate is a local covariant base (a1, a2, a3)which follows the local
deformation of the membrane. The unit vectors of the local base are

a1 = ∂x
∂θ

, a2 = ∂x
∂φ

, a3 = a1 × a2
|a1 × a2| , (3)

where θ and φ are latitudinal and longitudinal angles on the cell surface. The
co-variant and contra-variant metric tensors are defined as

aαβ = aα · aβ , aαβ = aα · aβ , (4)

where α,β = 1, 2. The basis vectors and metric tensors in the undeformed
(reference) state are hereafter denoted by capital letters (Aα, Aαβ). The invariants
of the transformation I1 and I2 are defined as

I1 = Aαβaαβ − 2, I2 = ∣∣Aαβ
∣∣ ∣∣aαβ

∣∣ − 1. (5)

Equivalently, they can also be determined from the principal stretching ratios λ1
and λ2 as

I1 = λ21 + λ22 − 2,
I2 = λ21λ

2
2 − 1 = J2s − 1.

(6)

The ratio of the deformed to the undeformed surface area is defined by the
Jacobian Js = λ1λ2. The two dimensional Cauchy stress tensor, T, is computed
from the strain energy function per unit area Ws(I1, I2) of the undeformed
membrane as

T = 1
Js
F · ∂Ws

∂e
· FT (7)

where F = aα

⊗
Aα and e = (FT · F− I)/2 is the Green–Lagrange strain tensor.

Equation (7) can be further expressed component-wise as

Tαβ = 2
Js

∂Ws

∂I1
Aαβ + 2Js

∂Ws

∂I2
aαβ. (8)

In the rest of this work, the strain energy function Ws is modelled using the
Neo-Hookean (NH) law (Pozrikidis, 2010; Pranay, Anekal, Hernandez-Ortiz, &
Graham, 2010; Zhu&Brandt, 2015). Using thismodel, the strain energy function
is expressed as

WNH
s = 1

2We

(
I1 − 1 + 1

I2 + 1

)
, (9)

where We = ρR3γ̇ 2

Gs
is the Weber number (or non-dimensional surface shear

modulus). The local equilibrium relates the tensor T to the external elastic load
q according to

∇s · T + q = 0, (10)
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Figure 2. Schematic of curvlinear coordinates and corresponding mesh on the cell surface.

with ∇s· the surface divergence operator. In curvilinear coordinates, the load
vector can be written as q = qβaβ + qnn. The force balance in Equation (10) is
further decomposed into tangential and normal components,

∂Tαβ

∂ξα
+�α

αλT
λβ + �

β
αλT

αλ + qβ = 0, β = 1, 2

Tαβbαβ + qn = 0
(11)

where �α
αλ and �

β
αλ are the Christoffel symbols.

In some cases, due to non-infinitesimal membrane thickness or a preferred
configuration of an interfacial molecular network, bending moments accom-
panied by transverse shear tensions play an important role on cell deformation
(Pozrikidis, 2001). Bending stiffness is incorporated into themodel using a linear
isotropic model for the bending moment (Pozrikidis, 2010, 2001):

Mα
β = −B

(
bα
β − Bα

β

)
, (12)

where B = Gb
ρR5γ̇ 2 is the non-dimensional bending modulus, and bα

β is the
Gaussian curvature (Bα

β corresponds to that of the reference configuration).
According to the local torque balance, including bending moments on the
membrane, we obtain the transverse shear vectorQ and in-plane stress tensor T,

Mαβ
|α − Qβ = 0,

εαβ

(
Tαβ − bα

γM
γβ

)
= 0,

(13)

where , |α , represents the covariant derivative and ε is the two-dimensional
Levi–Civita tensor. The left-hand side of Equation (13) identifies the antisym-
metric part of the in-plane stress tensor, which is always zero as proved in
Zhao et al. (2010). Including the transverse shear stress Q, the local stress
equilibrium, including bending finally gives

∂Tαβ

∂ξα
+�α

αλT
λβ + �

β
αλT

αλ − bβ
αQ

α + qβ = 0, β = 1, 2

Tαβbαβ − Qα|α + qn = 0.
(14)
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The non-dimensional numbers in Equations (3)–(14) are obtained using the
radius of the cell R as length scale, the shear rate 1/γ̇ as time scale, thus coupling
membrane deformation and flow dynamics, ρoγ̇ 2R3 as reference surface shear
modulus and ρoγ̇

2R5 for the bending stiffness. The Weber number can be re-
written as We = Re · Ca where Ca = μoRγ̇ /Gs is the capillary number. In the
present study, we shall consider different stiffnesses of the cell membrane by
varying the capillary number and keeping the Reynolds number constant.

3. Numerical methods

3.1. The Navier–Stokes solver

The Navier–Stokes equations are discretised using a staggered uniform grid to
prevent checkerboard numerical instability, while the time integration relies
on the classical projection method (Chorin, 1968). This method is a three-step
procedure: first, a non-solenoidal velocity field u∗ is computed as

u∗ − un

t
= RHS(u, p), (15)

where RHS(u, p) is the right-hand side of the discretised Navier–Stokes equa-
tions and contains the fluid–structure interaction (FSI) forces. In a second step,
the pressure field is obtained as the solution to the following Poisson equation

∇2p = − 1
t

∇ · u∗. (16)

Finally, the corrected velocity field un+1 is obtained as

un+1 = u∗ + t∇p, (17)

where ∇p is the pressure gradient required for the velocity field un+1 to be
divergence-free. Second-order central differences are used for the spatial dis-
cretisation of the convective terms, while their temporal integration relies on the
Adams–Bashforth explicit method.

As we allow for viscosity contrast between the fluid inside and outside the
cells, the classical Fast Fourier spectral method cannot be readily used to evaluate
the diffusive term Du = ∇ · (

μ
[∇u + ∇uT

])
. Indeed, the viscosity field being

a function of space, this operator cannot be reduced to a constant coefficient
Laplace operator. However, Dodd and Ferrante (2014) have recently introduced
a splitting operator technique able to overcome this drawback. Though it has
initially been derived for the pressure Poisson equation, this splitting approach
can easily be extended to the Helmholtz equation resulting from an implicit (or
semi-implicit) integration of the diffusive terms,

(I − tD)un+1 = RHSn (18)
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where I is the identifymatrix, andRHSn thediscretised right-hand side, including
the non-linear advection terms. Given the viscosity field

μ∗(x) = 1 + μ′(x) (19)

where 1 is the constant part andμ′(x) the space-varying component, the diffusive
termDu can be re-written as

Du = 1
Re

∇2u︸ ︷︷ ︸
D1u

+
D2u︷ ︸︸ ︷

1
Re

∇ ·
(
μ′(x)

[
∇u + ∇uT

])
. (20)

The constant coefficients operator D1 can then be treated implicitly while the
variable coefficients operator D2 is treated explicitly. The resulting Helmholtz
equation then reads

(I − tD1)un+1 = RHSn + tD2un. (21)

Since D1 is now a constant coefficient Laplace operator, Equation (21) can be
solved using a classical Helmholtz solver based on Fast Fourier transforms. Note
that a similar Fast Fourier-based solver is used to solve the Poisson Equation (16)
for the pressure.

3.2. Membrane representation: spherical harmonics

The membrane shape has been modelled as linear piece-wise functions on
triangular meshes by Pozrikidis (1995), Ramanujan and Pozrikidis (1998) and
Li and Sarkar (2008) among others. The finite element method has also been
employed by Walter et al. (2010) for its generality and versatility. Another
interesting method is the global spectral method. Fourier spectral interpolation
and spherical harmonics have been used for two-dimensional (Freund, 2007)
and three-dimensional simulations (Kessler, Finken, & Seifert, 2008; Zhao et
al., 2010). Here, we follow the approach of Zhao et al. (2010) , previously
implemented in Zhu and Brandt (2015), Zhu et al. (2014, 2015) and Rorai,
Touchard, Zhu, and Brandt (2015). This is briefly outlined below.

The capsule surface is mapped onto the surface of the unit reference sphere
S2, using the angles in spherical coordinates (θ ,φ) for the parametrisation.
The parameter space {(θ ,φ) | 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π} is discretised by
a quadrilateral grid using Gauss–Legendre (GL) quadrature intervals in θ and
uniform spacing in the φ direction. All other surface quantities are stored on
the same mesh, i.e. the grid is co-located. The surface coordinates x(θ ,φ) are
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expressed by a truncated series of spherical harmonic functions,

x(θ ,φ) =
NSH−1∑
n=0

n∑
m=0

P̄m
n ( cos θ)(anm cosmφ + bnm sinmφ), (22)

yielding N2
SH spherical harmonic modes. The corresponding normalised Legen-

dre polynomials are given by

P̄m
n (x) = 1

2nn!

√
(2n + 1)(n − m)!

2(n + m)! (1 − x2)m/2 dn+m

dxn+m (x2 − 1)n. (23)

The SPHEREPACK library (Adams&Swarztrauber, 1999; Swarztrauber&Spotz,
2000) is employed for the forward and backward transformations. To deal with
aliasing errors arisingdue to thenonlinearities in themembrane equations (prod-
ucts, roots and inverse operations needed to calculate the geometric quantities),
we use an approximate de-aliasing by performing the non-linear operations
on MSH > NSH points and filtering the result back to NSH points. A detailed
discussion on this issue is provided in Freund and Zhao (2010). For most of the
results presented in the present study, 576 spherical harmonics with 24 modes
are used to define the cell shape.

Considereing different viscosity inside and outside the cell, a space and time-
dependent viscosity field is defined by an indicator function I(x, t) related to the
membrane location,

μ∗(x) = (1 − I(x)) + I(x)λ. (24)

Here,we followUnverdi andTryggvason (1992) for the definitionof the indicator
function as the solution to the following Poisson equation

∇2I = ∇ · G (25)

where the Green’s function G = ∫
δ(X − x)n ds, and n is the unit normal

vector to the cell surface. Using the smooth Dirac delta function introduced
below in the computation of G makes, the indicator function smoother near the
boundary (Kim, Chang, Park, & Sung, 2015). Such indicator function is similar
to the regularised Heaviside function used in the level set framework.

3.3. Immersed boundarymethod

3.3.1. Immersed boundarymethod for deformable partices
The immersed boundarymethod (Peskin, 2002) is commonly used to solve fluid–
solid interaction problems. In this method, two distinct sets of grid points are
used: (i) an Eulerianmesh to solve fluid flow, see Section 3.1, and (ii) a Lagrangian
mesh for solving the particle motion, Section 3.2. In the present low Reynolds
number framework,we start from the original approach of Peskin (2002). At each
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Figure 3. A flowchart of the computational procedure used in present study.

time step, the fluid velocity defined on the Eulerianmesh is first interpolated onto
the Lagrangian mesh,

Uib(X, t) =
∫

�

u(x, t)δ(X − x)dx, (26)

where x and X are the Eulerian and Lagrangian coordinates and δ is a smooth
Dirac delta function, here that proposed in Roma, Peskin, and Berger (1999). The
elastic force per area q and surface normal vectors n are then computed from
the membrane equations described above. As next step, the normal vectors are
used to compute the indicator function I(x, t) on the Eulerian mesh. The force
is then spread to Eulerian mesh and added to the momentum equations as

f(x, t) =
∫

q(X, t)δ(x − X)ds. (27)

Thereafter, the positions of the Lagrangian points are updated according to

Xn+1 = Xn +
∫ t

0
Uibdt. (28)

Note that Equation (28) assumes an over-damped regime, i.e. the Lagrangian
points go to their equilibrium position immediately after the FSI force is applied.
Finally, the fluid flow is solved in the Eulerian framework as explained in
Section 3.1. A flowchart for computational procedure at each iteration is depicted
in Figure 3 .

The method described above is not particularly efficient when the Reynolds
number increases since it requires very small time steps, which increases the com-
putational time. At moderate and high Reynolds numbers, a modification of the
method by Kim et al. (2015), is employed to be consistent with the assumption of
inertialessmembrane. In our approach, in addition to theLagrangian coordinates
X, we introduce the additional immersed boundary points Xib whose motion is
governed by Equation (28). Since the total force exerted on each element on
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the membrane surface is equal to the difference between its acceleration and
the acceleration of fluid element at the same location, the motion of the real
Lagrangian points is governed by

ρos
∂2X
∂t2

= ρos
∂2Xib

∂t2
+ Fe − FFSI + FA (29)

where ρos is the surface density of the base fluid. The two sets of Lagrangian
points, X and Xib, are connected to each other by a spring and damper, i.e. a
fluid–solid interaction force FFSI computed using the following feedback law

FFSI = −κ
[
(Xib − X) + t(Uib − U)

]
. (30)

The final modified procedure is therefore as follows. At each time step, we first
compute Uib and the fluid–solid interaction force FFSI from Equation (30). The
indicator function I(x, t) is then computed to identify the interior of the cell
and impose viscosity contrasts, and the momentum equation solved to obtain
the flow velocity u. Finally, the positions of the Lagrangian pointsX are updated
using Equation (29). This additional equation ismade non-dimensional as above,
in particular with ρoR for the surface density of the base fluid and ρoR2γ̇ 2 for
the elastic and fluid–solid interaction forces per unit area. For completeness, we
report the non-dimensional form of Equation (29),

d∗ ∂2X
∂t2

= d∗ ∂2Xib

∂t2
+ Fe − FFSI + FA (31)

where d∗ = d/R is ratio between the membrane thickness and initial radius of
the cell, assumed in the present study to be d∗ = .01. In the above, FA is the
penalty force used to enforce volume conservation, calculated as in (Kim et al.,
2015):

FA = p · η(θ ,φ) · en,
p = 1

β

(
1 − V

V0

)
+ 1

β

∫ t

0

(
1 − V

V0

)
dt ′.

(32)

Here, p represents the pressure generated by the volume change, η(θ ,φ) is the
surface area of each element and en the local unit normal vector. This force is also
added to the elastic force q before spreading it to the Eulerian mesh according
to Equation (27).

3.3.2. Immersed boundarymethod for rigid particles
In the present study, two different immersed boundary methods are considered
to simulate the stiff nucleus. First, the method described above is used with
high surface shear modulus for the inner capsule. In the second approach, we
follow the implementation by Breugem (2012), which has been widely used in
the framework of rigid particles, see e.g. Lashgari et al. (2014). In this method,
a moving Lagrangian mesh is adopted to impose no-slip and no-penetration on
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the surface of a rigid object. The numerical procedure is as follows: first, the
prediction velocity u∗ is computed from the Navier–Stokes equations neglecting
the fluid–solid interaction force. This fluid velocity is then interpolated onto the
Lagrangian mesh (U∗) and the fluid–solid interaction force computed, based on
the difference between the fluid and the solid body velocity at each Lagrangian
point,

FFSI = UP − U∗

t
. (33)

This force is spread to the Eulerian grid and the second prediction velocity u∗∗
obtained by solving the Navier–Stokes equations with the fluid–solid interaction
force. The divergence-free constraint is then imposed on the velocity field by
solving the pressure Poisson equation and correcting the velocity field appro-
priately. Finally, the total force and torque on each particle is computed, and
the translational and rotational velocities of the particle obtained by integrating
the Newton–Euler equations. Readers are also referred to Uhlmann (2005) for
further details.

3.4. Notes on the parallelisation and implementation

The Eulerian mesh is decomposed using a 2D-pencil domain decomposition in
the streamwise and spanwise direction. For that purpose, the library 2DECOMP
& FFT (Li & Laizet, 2010) is used. The same library handles all of the transpose
operations required for the Helmholtz and Poisson solvers based on the fast
Fourier transforms. Regarding the parallelisation of each particle/capsule, each
processor can either be master or slave. A processor is labelled master if it
contains most of the Lagrangian points describing the given particle, while
those containing only some of these points are labelled as slaves. The rest of
the processors do not have any rule for the considered particle. Only the master
processor has the information of the particle (e.g. Lagrangian points and their
velocities) in its memory, though the slaves can access it for interpolation and
spreading operations, which might require information from the neighbours.
For the particle equations, the master is responsible for all the numerical proce-
dures, e.g. transformation using spherical harmonics. Such parallelisation saves
memory usage but requires communication between cores at each time step.

In order to obtain accurate results, the density of Eulerian and Lagrangian
grid points should be similar. In some cases, it is nonetheless necessary to have
a very fine Eulerian mesh, thus requiring very fine Lagrangian mesh. However,
since the spherical harmonic calculations are costly, the overall computational
time increases significantly. To make the code more efficient, two different
sets of Lagrangian points are therefore considered: forcing points that are used
for interpolation-spreading and the spherical-harmonic points that are used to
define the shape of the cell and the elastic stresses. While the density of the
forcing points has to be similar to that of the Eulerian points, fewer points are
required for the spherical harmonics representation of the cell, especially in the
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case of stiffer membranes deforming less. At each time step, before computing
the elastic forces, the spherical-harmonic points are obtained using spectral
interpolation.These points are thenused to compute the elastic forces and surface
normal vectors. Once computed, the elastic forces and surface normal vectors
are interpolated onto the finer mesh so that the elastic forces are spread on
the Eulerian mesh. All spectral interpolations are done with the SPHEREPACK
library (Adams & Swarztrauber, 1999; Swarztrauber & Spotz, 2000).

4. Validations

In order to validate the current implementation, two different cases are consid-
ered for a simple capsule: deformation of a capsule in shear flow at low Reynolds
number and equilibriumposition of a capsule in Poiseuille flow at finite Reynolds
number. The domain is a box with the size 10 × 10 × 10 in units of cell radius,
and the cell is located at its centre. The Eulerian grid is 1283 whereas for the
Lagrangian mesh 24 × 48 points are chosen in the latitudinal and longitudinal
directions, respectively. The non-dimensional bending stiffness GB

ρoR5γ̇ 2 is zero
unless otherwise mentioned. The dealiasing ratio is kept atMSH/NSH = 2.

A grid independence study has been carried out for Ca = .6 by increasing
the number of the Eulerian grid points and of spherical-harmonic grids by a
factor of 1.5. In this case, the change in the deformation parameter is found to
be less than 2%. In addition, we also increased the box size by a factor 1.5 and
measured a difference in the deformation parameter below .3%. To check time
step independency of the results, we decreased the time step by 50% and obtain a
change in the deformation parameter of only .002%. Finally, the effect of the ratio
between the forcing points and the number of spherical harmonics describing
the membrane deformation is investigated using 1152 force points. When the
ratio between the two is 4, the differencemeasured by the deformation parameter
is less than .5% with respect to the case with ratio 1. ncreasing the ratio from 1
to 2.25, the change is of about .1% . Here, we used the more demanding ratio of
1 to be sure to capture all features of the cell shape for large deformations.

4.1. Single cell in shear flow

In this section, the deformation of a cell in a simple shear flow obtained with the
present implementation is compared to the results by Pranay et al. (2010) and
Zhu and Brandt (2015). These authors have used boundary integral approaches
to solve for the Stokes flow, so the Reynolds number is chosen here small enough,
Re = .1, to ensure low inertia of the flow. The cell deformation is quantified by
the parameter

D = |l2 − l1|
l2 + l1

(34)

where l1 and l2 denote the major andminor semi-axes of the equivalent ellipsoid
in the middle plane, respectively. The inertia tensor of the cell is used to obtain
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Figure 4. Deformation parameter vs. time for an initially spherical cell in shear flow for different
capillary numbers.
Note: The results are compared with those in Pranay et al. (2010) and Zhu and Brandt (2015).

the equivalent ellipsoid as in Ramanujan and Pozrikidis (1998). As shown in
Figure 4, a good agreement is obtained with the different implementations.

4.2. Capsule in channel flow at finite inertia

The second validation case is provided by the equilibrium position of a cell in
Poiseuille flow at finite Reynolds numbers. Indeed, after some transients, a single
capsule reaches a steady state characterised by a constant wall-normal position,
constant velocity and deformation. This equilibrium position is located between
the wall and the channel centreline and depends on both the Reynolds and
capillary numbers (Kilimnik, Mao, & Alexeev, 2011). In the present validation,
the capillary number is set to Ca = .174 and the Reynolds number is varied.
Note that since the present bending model is different from that in the work of
Kilimnik et al. (2011), we chose the value of the bending stiffness that best fit their
data, B = .02. The dependence of the wall-normal position and deformation
of the capsule on the Reynolds number are reported on Figure 5(a) and (b),
respectively. As shown by these figures, a good agreement with the results in
Kilimnik et al. (2011) is obtained. In Figure 5(b), the difference appearing atRe =
100 may be attributed to the model considered in Kilimnik et al. (2011). These
authors used a Hookean law with a lattice-spring model where the membrane
has a finite thickness whereas in present work we use the hyperelastic Neo-
Hookian model with a infinitely thin membrane. At small Reynolds numbers,
when the deformation is relatively small, the last term on the right-hand side of
Equation (9) vanishes and our model practically reduces to a Hookean law: the
two methods give thus very similar results. In the case of large deformations, the



EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 145

(a) (b)

Figure 5. (a) Eqilibrium position of an initially spherical cell transported in a pressure driven
channel flow as a function of Reynolds number. (b) Deformation parameter of an initially spherical
cell as a function of the Reynolds number.
Note: In both figures, the capillary and bending stifness are set to Ca = .174 and B = .02, respectively.

term introducing non-linearity in the constitutive model is not negligible any
longer and the results start to deviate from each other.

5. Results

5.1. Stiff nucleus

As a starting point, the two-membrane model, based on the original IBM by
Peskin (2002), is employed. In order to have a stiff nucleus, the capillary number
of the nucleus is chosen to be 300 times smaller than that of the outer membrane.
The cell is subject to homogeneous shear as in the validation cases presented
above, i.e. same configuration and numerical parameters.

Figure 6 depicts the deformation parameter as a function of the capillary num-
ber for viscosity ratios λ = 1 and 5 in the absence of bending resistance, both for
capsules with and without a stiff nucleus. Note that the deformation parameter is
computed on the outer membrane, the inner one not being noticeably deformed.
As shown in this figure, the presence of a nucleus reduces the deformation, and
this reduction is larger the higher the capillary number. The stiff nucleus reduces
the outer membrane deformation since the minimum radius cannot be smaller
than the radius of the nucleus. At higher capillary numbers, themembranewould
tend to deformmore thusmaking the effect of the nucleus becomesmore evident.
It can be inferred from Figure 6 that the deformation is smaller for the cases with
a more viscous fluid between the outer membrane and the nucleus, λ = 5. In
this case, viscous forces appear to work together with elastic forces to reduce the
cell deformation.

The transient evolution of the deformation parameter to reach the final state is
demonstrated in Figure 7 for three different capillary numbers. The figure shows
that larger capillary numbers require longer time to reach the final steady state.
As for the steady state, the deformation is larger for higher capillary numbers.
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(a) (b)

Figure 6. (a) Deformation parameter of initially spherical cells with and without a stiff nucleus in
homogeneous shear vs. the capillary number for viscosity ratios λ = 1 and 5 and no bending
stiffness. (b) Cell deformation parameter vs. the capillary number for capsules with and without
bending stiffness at viscosity ratio λ = 1 and Re = .1.

The first two rows of Figure 8(a) depict the steady shape of the cell for three
different capillary numbers of the outer membrane and zero beding stiffness.
Note that, in the first row, the cell considered has no nucleus. In the absence of
nucleus, the cell assumes an ellipsoidal shape, while it has a thicker middle part
in the presence of the nucleus. Cells with nucleus thus have a lower flexibility
and may encounter more difficulties to pass through narrow vessels.

The effect of bending stiffness on the deformation parameter is presented in
Figure 6(b). It canbe observed that cellswith bending stiffness deform less and the
reduction measured by the deformation parameter increases with the capillary
number. This effect is documented by the shape of capsuleswith bending stiffness
reported in the lowest panels of Figure 8. Here, one can see that the deformation
is reduced mainly on the edges of the capsule. Indeed, Figure 8 shows that the
cell shape is closer to an ellipsoid when adding bending rigidity. The difference
between the different cases shown in the figures demonstrates that the effect of
the bending rigidity is not negligible in such conditions and should be accounted
for to obtain more accurate predictions.

For a number of microfluidic applications, it may be important to under-
stand the effect of flow inertia on the deformation of the transported cells. We,
therefore, report in Figure 9 the effect of increasing the Reynolds number on
the deformation parameter. To prevent buckling, we considered small bending
stiffness in the simulations. It can be observed that when increasing the Reynolds
number, the steady-state deformation parameter first decreases for Re = 1 and
then increases (Re = 5). The initial deformation rate is faster when increasing
inertia. Note also some oscillations in the deformation for Re = 5, as observed
in previous studies. These can be attributed to the formation of a pair of vortices
inside the cell, on the two sides of the nucleus, in the transient stage (see
Figure 9(b)). Such vortices disappear at steady state but their formation and
breakup results in oscillations of the cell membrane.
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Figure 7. Time evolution of deformation parameter for an initially spherical cell with nucleus for
different capillary numbers.
Note: Reynolds number Re = .1, bending stiffness B = 0.

(a) (b) (c)

Figure 8. Steady-state shape of an elastic capsule in shear flow at Re = .1. (i) cell without nucleus,
(ii) with nucleus and bending stiffness B = 0, (iii) with nucleus and B = 10.
Note: The capillary number is (a) Ca = .15, (b) Ca = .30 and (c) Ca = .60.

5.2. Rigid nucleus

Asmentioned previously, two differentmodels of nucleus are considered. For the
results in the present section, the nucleus is modelled as a rigid, not deformable,
particle following a different implementation of the immersed boundarymethod,
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(a) (b)

Figure 9. (a) Time evolution of deformation parameter for an initially spherical cell with nucleus
for different Reynolds numbers, (b) streamlines in the mid x1 plane for Re = 5 at t=2.5.
Note: Black lines indicate location of the inner and outer membranes, Ca = .3, B = .1.

Figure 10. Deformation parameter vs. the capillary number for capsules whose nucleus is
modelled as a stiff membrane or as a rigid spherical particle, λ = 1, Re = .1.

see above. Figure 10 reports a comparison of the deformation for cells whose
nucleus is modelled as a stiff membrane or as a rigid spherical particle, for
viscosity ratio λ = 1. The two methods produce approximately similar results,
however with slightly larger deformation for cells with a rigid spherical nucleus.
This fact can be related to the different nucleus rotation rates obtained with
the two models. Indeed, for a rigid nucleus we assume no slip at the interface,
whereas some slip is present at the surface of the nucleus if this is represented by
an elastic membrane.

Finally, we report that the computational time needed for the case of a capsule
with rigid nucleus is about 1.2 times that for a cell with a nucleus represented
by a stiff membrane. Note that the simulations assuming a rigid nucleus have
been performed by coupling together two different approaches, able to model
deformable and rigid object. This implementation opens possibility of modelling
new more complicated structures, which will be investigated in the future.
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6. Conclusions

The deformation of a capsule containing a stiff nucleus in homogeneous shear
flow is studied numerically using an immersed boundary method to account for
the fluid–solid interaction. The Neo-Hookean hyperelastic constitutive model
is used to describe the cell membrane deformation while the fluid inside and
outside each capsule is assumed to be Newtonian. The cell nucleus is modelled
in two different ways, first as a second inner capsule with a significantly stiffer
membrane and then as spherical rigid particle using a different implementation
of the immersedboundarymethod,most suited to solid objects (Lashgari, Picano,
Breugem, & Brandt, 2016).

In the immersed boundary method, a Lagrangian mesh is used to follow the
deformation of the elastic membrane defining the capsule and an Eulerian mesh
to solve the momentum equations. The shape of the membrane, its deformation
and internal stresses are represented by means of spherical harmonics in order
to have an accurate computation of the high-order derivatives of the membrane
geometry. To save computational time in caseswith very fine underlying Eulerian
meshes, we have implemented the possibility of using a coarser Lagrangian
mesh for the computation of the cell shape and stresses and a finer mesh for
the communication of forces exchanged with the fluid. Spectral interpolation is
employed to link the two Lagrangian representations of the geometry of the cell.
Finally, to have the possibility to consider different viscosities inside and outside
the cell, an indicator function is computed on the Eulerian mesh as the solution
of a Poisson equation. The right-hand side is obtained by spreading the normal
vectors to cell surface known at the Lagrangian grid points onto the Eulerian
mesh. The viscosity is then taken to be a function of this indicator function. The
accuracy of the code is validated against results pertaining to the deformation
of capsules without nucleus. In particular, we consider the inertialess flow of a
capsule in homogeneous shear and transport in pressure-driven Poiseuille flow
at moderate Reynolds numbers (finite inertia).

The behaviour of cells with a stiff nucleus in homogeneous shear has then been
investigated. The cell deformation parameter is reported for different capillary
numbers, two values of the viscosity ratio and with or without bending rigidity.
We observe that the deformation is smaller for cells with a nucleus. Examining
the shape of the cell, that with nucleus is thicker in the middle part making it less
flexible to pass through narrow vessels. When also considering bending stiffness,
we observe an even smaller deformation and the shape of the cell is more regular
and closer to an ellipsoid. Finally, we have compared the results obtained by
modelling the nucleus as a rigid particle, reporting small differences. We show
also that the numerical approaches for rigid and deformable objects can coexist,
which opens the possibility of modelling more complicated structures, e.g. small
rigid cavities and obstacles in the flow (Zhu et al., 2014).
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The method presented here can be employed and extended in the future to
study the behaviour of cells in different and more complicated configurations,
enabling us to extract qualitative and quantitative data about the maximum
stress on the membrane. Possible extensions include the possibility to consider a
vesicle (Seol et al., 2016), i.e. an inextensible membrane, and a density contrast.
Including cell–cell and cell–wall interactions in the numerical platform would
allow us to study pair interactions of cells with nucleus in shear flow (Pranay
et al., 2010) and ultimately investigate dense suspensions of deformable objects
(Gao, Hu, & Castañeda, 2011, 2013; Krüger, Kaoui, & Harting, 2014).
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