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ABSTRACT
The traction on the surface of a spherical active colloid in a
thermally fluctuating Stokesian fluid contains passive, active,
and Brownian contributions. Here we derive these three parts
systematically, by ‘projecting out’ the fluid using the boundary-
domain integral representation of slow viscous flow. We find an
exact relation between the statistics of the Brownian traction and
the thermal forces in the fluid and derive, thereby, fluctuation-
dissipation relations for every irreducible tensorial harmonic
traction mode. The first two modes give the Brownian force and
torque, fromwhichwe construct the Langevin and Smoluchowski
equations for the position and orientation of the colloid. We
emphasise the activity-induced breakdown of detailed balance
and provide a prescription for computing the configuration-
dependent variances of the Brownian force and torque. We apply
these general results to an active colloid near a plane wall, the
simplest geometry with configuration-dependent variances, and
show that the stationary distribution is non-Gibbsian.We derive a
regularization of the translational and rotational friction tensors,
necessary for Brownian dynamics simulations, that ensures
positive variances at all distances from the wall. The many-body
generalization of these results is indicated.
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1. Introduction

There has been a renewal of interest in the study of colloids with ‘active’ bound-
aries, onwhich the usual no-slip boundary condition is replaced by one involving
a ‘slip velocity’. This slip is the macroscopic manifestation of microscopic non-
equilibrium processes in a thin boundary layer surrounding the colloid. Clas-
sic examples of slip-driven motion are the multitude of phoretic phenomena
including electro-, thermo- and diffusio-phoresis and the motion of ciliated
microorganisms (Anderson, 1989; Ebbens & Howse, 2010). More recently, the
slip model has been adapted to provide an effective description of flagellated
microorganisms (Ghose & Adhikari, 2014). It provides a very general model
for the dynamics of phenomena where colloidal motion occurs without external
influence.
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The traction, that is the force per unit area, at the surface of an active colloid
has three components: the Stokes drag proportional to the rigid body motion,
the active thrust proportional to the slip velocity and the Brownian stress pro-
portional to the temperature and the viscosity of the fluid. When the inertia of
the colloid is negligible, its rigid body motion is obtained by setting the net force
and net torque due to these tractions to zero. A central question, then, is to derive
the traction from which the net force and torque can be obtained by integration
over the surface of the colloid.

At low Reynolds number and at finite temperature the Cauchy stress in the
fluid obeys the fluctuating Stokes equation, a linear stochastic partial differential
equation containing zero-mean Gaussian random fluxes with variances deter-
mined by the fluctuation-dissipation relation. These represent thermal fluctua-
tions in the fluid. The solenoidal fluid velocity obeys the slip boundary condition
at the colloid-fluid boundary. For a given rigid bodymotion and slip, the solution
of the fluctuating Stokes equation provides the Cauchy stress in the fluid, from
which the traction on the colloid boundary is obtained. As this no longer refers
to the fluid velocity, but only to the boundary condition and the random fluxes,
the fluid is said to have been ‘projected out’. The Brownian forces and torques on
the colloid are the first and second antisymmetric moments of the random part
of the boundary stress and their variance, by linearity of the governing equations,
is proportional to the variance of the random fluxes. The Langevin equations for
the position and orientation of the colloid then follow straightforwardly from
the expression for the net forces and torques.

Fox andUhlenbeck were the first to derive the Langevin equation for the posi-
tion of a passive spherical colloid from the fluctuating hydrodynamic equations
for the fluid (Fox & Uhlenbeck, 1970). The fluid was taken to satisfy the no-slip
boundary condition on the surface of the colloid and to be quiescent at the remote
boundaries. The Lorentz reciprocal identity was used to relate the dissipative
(Stokes) and fluctuating (Einstein) parts of the force and to derive, thereby, the
fluctuation-dissipation relation for the Brownian force on the colloid from that
of the randomfluxes in the fluid. This approach was refined by several authors by
including fluid inertia, particle inertia, and Brownian fluxes at the colloid-fluid
boundary (Bedeaux &Mazur, 1974; Beenakker &Mazur, 1983; Hauge &Martin-
Löf, 1973; Roux, 1992). Notably, Zwanzig, in an earlier contribution, had derived
the variance of the Brownian force on a spherical colloid in an unbounded fluid
using the Faxen relation (Zwanzig, 1964). Its use in the Green-Kubo relation for
the transport coefficient then recovered the expected form of the Stokes friction.

In this contribution, we derive the traction on the surface of an active colloidal
particle near a plane wall by projecting out the fluid degrees of freedom. Our
derivation differs in three important ways from previous work. First, we derive
the complete distribution of the Brownian boundary traction, and not just its
first two moments as has been customary. This provides, in addition to the
Brownian force and torque, the Brownian stresslet, a quantity important in the
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suspension rheology. Second, the no-slip boundary condition at the colloid-
fluid boundary is replaced by the slip boundary condition. This introduces an
additional uncompensated source of dissipation and is the source, as we show, of
the breakdown of detailed balance in the resulting Langevin equation. Third, a
no-slip boundary condition is introduced at the plane wall. This results in Stokes
drags and active thrusts that depend on the distance of the colloid from the wall.
The configuration-dependent friction requires, by the fluctuation-dissipation
relation, configuration-dependent Brownian forces and torques and necessi-
tates a ‘prescription’ in the Langevin equations to render them mathematically
meaningful. The solution to this old chestnut, the so-called Ito-Stratonovich
dilemma, has been provided by several authors on multiple occasions but tends
to be forgotten (Lau & Lubensky, 2007; Mannella & McClintock, 2011; Volpe
& Wehr, 2016; Volpe, Helden, Brettschneider, Wehr, & Bechinger, 2010). The
solution is to adiabatically eliminate themomentum, considered as a fast variable,
from underdamped Langevin equations, where no such dilemma exists. The
interpretation of the Brownian forces and torques in the overdamped Langevin
equations is then unambiguous, though not necessarily conforming to either the
Ito or Stratonovich prescriptions (Gardiner, 1985; Kampen, 1992; Klimontovich,
1990, 1994; Van Kampen, 1981). Due to the linearity of the governing equations,
this method of imputing meaning to the Brownian forces and torques remains
valid in the presence of activity, as we show below. To the best of our knowledge,
ours is the first systematic derivation of the Langevin equations for an active (and,
as a special case, of a passive) colloid when the Stokes friction is configuration
dependent.

The remainder of the paper is organized as follows. In Section 2, we transform
the fluctuating Stokes equation to its boundary-domain integral representation
and hence obtain a linear integral equation for the traction on the colloid-fluid
boundary. A formal solution, expressed in terms of the inverse of the single-
layer operator of the integral equation (see below), clearly identifies the drag,
thrust and Brownian contributions of the traction. The variance of the Brownian
component of the traction follows from this solution. In Section 3, we consider
a spherical colloid and provide an explicit solution to the boundary-domain
integral equation. We derive, through a Galerkin discretization, an equivalent
linear algebraic system for the coefficients of the expansion of the traction in a
complete orthogonal basis of tensorial spherical harmonics. The solution of the
linear system shows that the each tensorial coefficient of the Brownian traction
is a zero-mean Gaussian random variable and provides their variances in terms
of the variance of the stochastic term in the fluctuating Stokes equation. The
Brownian force, torque and stresslet follow immediately. In Section 4, we use the
previous results to construct the overdampedLangevin equations for the position
and orientation of the colloid. The Smoluchowski equations, corresponding to
the prescription for the Brownian forces and torques provided by the adiabatic
elimination procedure, are then presented and the activity-induced breakdown
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of fluctuation-dissipation relation is pointed out. In Section 5, we specialize to
the case of Stokes flow bounded by a plane wall by a specific choice of Green’s
function first identified by Lorentz and subsequently derived systematically by
Blake (1971). This Green’s function vanishes at the plane wall and leads to a
substantial simplification in the linear system.We show that the usual barometric
distribution of height is no longer the stationary solution, a consequence of the
breakdown of detailed balance. We also provide a regularization of the friction
tensors, for what would correspond to heights in which the sphere overlaps
with the wall. This ensures positive variances and is a necessary ingredient
in Brownian dynamics simulations of spheres without hard steric potentials.
Finally, the extension of the above results to many active colloids is indicated.

2. Boundary-domain integral representation of fluctuating stokes flow

In this section, we consider the motion of an active colloid of arbitrary shape
in an incompressible fluid of viscosity η at a temperature kBT . The boundary
condition induces a local force per unit area f = ρ̂ · σ on the colloid boundary,
where σ is the Cauchy stress in the fluid (Landau & Lifshitz, 1959) and ρ̂ is the
unit surface normal. We shall henceforth refer to f as the traction. In addition,
the colloidmay also be acted upon by body forces FP and body torquesTP . In the
absence of inertia of both particle and fluid, Newton’s equations for the colloid
reduces to instantaneous balance of the surface forces (and torques) with the
body forces (and torques)∫

f dS + FP = 0,
∫

ρ × f dS + TP = 0. (1)

These are overdamped Langevin equations when f contains Brownian contri-
butions.

To obtain the traction f it is necessary to know the flow field u. At low-
Reynolds number this satisfies the Stokes equation (Happel & Brenner, 1965)

∇ · u = 0, ∇ · σ + ξ = 0, inV , (2a)
u = v, on S, (2b)

where σ = −pI + η(∇u + ∇uT) is the Cauchy stress, p is the fluid pressure,
ξ is the thermal force acting on the fluid, v is the boundary velocity and S is
the surface of the colloid and V is the domain of flow. The thermal force is a
zero-mean Gaussian random field whose variance is given by the fluctuation-
dissipation relation〈∫

uD(r) · ξ(r, t) dV
∫

uD(r′) · ξ(r, t ′) dV ′
〉

= 2kBT Ẇ(uD)δ(t − t ′), (3)
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where uD is any flow field that satisfies the rigid body boundary condition on
S and Ẇ , the rate of dissipation of the fluid kinetic energy due to rigid body
motion, is given by

Ẇ(uD) = η

∫ [
∇uD +

(
∇uD

)T]2
dV . (4)

This manner of describing the thermally fluctuating fluid, due to Hauge and
Martin-Löf (1973), is specially suited for flows with boundaries. The addition of
a random flux, the more conventional manner of description first introduced by
Landau and Lifshitz (1959), contains ambiguities in the presence of boundaries
and is best used, therefore, when the fluid is unbounded in all directions (Hauge
& Martin-Löf, 1973).

The key property of the above problem, which makes it possible to eliminate
the fluid degrees of freedom exactly, is linearity. It is most clearly expressed in
terms of the boundary-domain integral representation which provides the fluid
flow in the bulk in terms of the boundary condition and the Brownian force. The
traction f is obtained as a solution of the boundary-domain integral equation

1
2
vα(r) =

∫
Gαβ(r, r′) ξβ(r′) dV ′ −

∫
Gαβ(r, r′)fβ(r′) dS′

+
∫

Kβαγ (r, r′)ρ̂γ vβ(r) dS′, (5)

where Gαβ(r, r′) is a Green’s function of the Stokes equation and Kαβγ (r, r′) is
the associated stress tensor. These kernels satisfy the Stokes system

∇αGαβ = 0,
−∇αPβ(r, r′) + η∇2Gαβ = −δ

(
r − r′

)
δαβ ,

Kαβγ (r, r′) = −δαγ Pβ + η
(∇γGαβ + ∇αGβγ

)
, (6)

where Pα(r, r′) is a pressure vector. Implicit in the above is a choice of Green’s
function that satisfies no-slip boundary conditions at any boundary of the fluid
that is not part of S. As is clear from Equation (5), the traction is a sum of a
mean contribution, proportional to the boundary velocity v and a fluctuating
contribution, proportional to the Brownian force ξ .

Defining the single-layer and double-layer integral operators G and K , which
act, respectively, on tractions and velocities, as

G · f =
∫

G(r, r′) · f (r′) dS′, K · v =
∫

ρ̂(r) · K (r, r′)v · dS′, (7)

and a Brownian velocity field w as

w =
∫

G(r, r′) · ξ(r′) dV ′, (8)
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the solution of the boundary-domain integral equation can be expressed formally
in terms of the inverse of the single-layer integral operator as

f = G−1 · w + G−1 · (− 1
2 I + K

) · v. (9)

This formal solution shows that: (i) the traction is a sum of a Brownian con-
tribution f̂ = G−1 · w from the fluctuations in the fluid and a deterministic
contribution from the boundary condition, containing both the rigid body mo-
tion f D = −G−1 · vD and the active slip f A = G−1 · (−1

2 I + K
) · vA (ii) the

Brownian traction is a zero-mean Gaussian random variable whose variance is
linearly related to the variance of the thermal force ξ and (iii) the variance of the
Brownian traction can be determined explicitly from the inverse of the single-
layer operator and the fluctuation-dissipation relation for the thermal force.
In the next section, we provide an explicit solution for the boundary-domain
integral equation for a spherical active colloid and, thereby, derive the explicit
form of the traction in terms of generalized friction tensors.

3. Traction on a spherical active colloid

We now consider a spherical colloid of radius b whose center is at R and whose
orientation is specified by the unit vectorp. A point on the boundary is r = R+ρ,
where ρ is the radius vector. The boundary velocity, v = vD + vA, is the sum of
its rigid body motion vD = V + � × ρ, specified by the velocity V and angular
velocity �, and the active slip velocity vA. The only restriction on the active slip
is that its integral over the surface of the sphere is zero. This ensures conservation
of mass in the fluid.

We choose the tensorial spherical harmonics Y(l)(ρ̂) = ( − 1)lρ l+1∇(l)ρ−1,
where∇(l) = ∇α1 . . .∇αl , as complete orthogonal basis functions on the sphere.
In this basis, the active slip is expanded as

vA =
∞∑
l=1

1
(l − 1)!(2l − 3)!! V

(l) · Y(l−1)(ρ̂). (10)

The coefficients V(l) are reducible Cartesian tensors of rank l, with three irre-
ducible parts of ranks l, l − 1, and l − 2, corresponding to symmetric traceless,
antisymmetric and pure trace combinations of the reducible indices. These
irreducible parts are (Brunn, 1976; Schmitz, 1980; Singh & Adhikari, 2016a,
2016b; Ghose & Adhikari, 2014; Singh, Ghose, & Adhikari, 2015) V(lσ) =
P(lσ) · V(l), where the index σ = s, aand t, labels the symmetric irreducible,
antisymmetric and pure trace parts of the reducible tensors. The operator P(ls) =
�(l) extracts the symmetric irreducible part, P(la) = �(l−1)ε the antisymmetric
part and P(lt) = δ the trace of the operand. Here �(l) is tensor of rank 2l,
projecting any l-th order tensor to its symmetric irreducible form (Hess, 2015)
ε is the Levi-Civita tensor and δ is the Kronecker delta.
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The traction can be similarly expanded in the tensorial harmonic basis as

f =
∞∑
l=1

2l − 1
4πb2

F(l) · Y(l−1)(ρ̂). (11)

and it is convenient to express it as a sum of rigid body, active and Brownian
contributions as

f = f D + f A + f̂ , (12)

with corresponding expansion coefficients FD(l), FA(l) and F̂
(l)
. As with the

velocity coefficients, each traction coefficient has three irreducible parts indexed
by lσ . Note that each V(l) and F(l) have the dimension of velocity and force
respectively. The net force and the torque are given by first two irreducible
coefficients

∫
f dS = F(1s) and

∫
ρ × f dS = bF(2a).

By linearity, the three parts of the traction satisfy independent boundary
integral equations. Recalling that rigid body motion is an eigenvector of the
double-layer integral operator, these are

Vα + εαβγ �βργ = −
∫

Gαβ(r, r′)f D
β (r′) dS′, (rigid body) (13a)

1
2
vA
α (r) = −

∫
Gαβ(r, r′)f A

β (r′) dS′

+
∫

Kβαγ (r, r′)ρ̂γ vA
β (r) dS′, (active) (13b)

0 =
∫

Gαβ(r, r′) ¸β(r′) dV ′

−
∫

Gαβ(r, r′) f̂β( r′) dS′. (Brownian) (13c)

Addition of the above three equations recovers the boundary integral equation,
Equation (5), for the net traction.

The first integral equation for the Stokes drag has been well-studied in the
literature on suspension mechanics. The second integral equation for the active
thrust has been studied recently in the context of active colloids in an athermal
fluid (Singh & Adhikari, 2016a, 2016b; Singh et al., 2015). The third integral
equation for the fluctuating traction is studied here for the first time. Physically,
thefluctuating traction corresponds to thedistributionof surface forces necessary
to keep the sphere stationary in the incident Brownian velocity field w(r).
From this, it is particularly clear that the Brownian traction is a zero-mean
Gaussian random variable whose variance is related to that of ξ . We now present
explicit solutions for each of the integral equations using Galerkin’s method
of discretization. Linear algebraic systems are derived by inserting the basis
expansions on each side of the integral equations, weighting the result by another
basis function and integrating over the boundary.We refer the reader to Singh et
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al. (2015), Singh and Adhikari (2016a, 2016b) where the procedure is explained
in detail.

3.1. Rigid body traction

The linear algebraic system for the rigid body contribution to the traction, with
the summation convention for repeated indices, is

− G(l, l′)(R) · FD(l′) = VD(l). (14)

Here the matrix elements of the single-layer operator G(R) in the tensorial
harmonic basis are

G(l, l′)(R) = 2l − 1
4πb2

2l′ − 1
4πb2

∫
Y(l−1)(ρ̂)G(R + ρ, R + ρ′)Y(l′−1)(ρ̂′) dS dS′,

(15)
and l-th tensorial harmonic coefficients of the rigid bodymotion and the traction
are, respectively,VD(l) and FD(l). Clearly, the only non-zero coefficients ofVD(l)

are V and �, corresponding to lσ = 1s and lσ = 2a respectively. The solution
of the linear system is

FD(lσ) = − γ (lσ ,T) · V − γ (lσ ,R) · �, (16)

where we have introduced the notation T for lσ = 1s and R for the lσ = 2a and
the friction tensors γ (lσ ,α) with α = T ,R are given by

γ (lσ ,α) = P(lσ) · [
G−1(R)

](l, l′) · P(α). (17)

The friction tensors give the contribution to the traction from rigid bodymotion
(Brenner, 1963; Felderhof, 1976). The contribution of the traction from lσ = 1s
and lσ = 2a correspond to the forces and torques

FD = − γ TT · V − γ TR · �, (18a)
TD = − γ RT · V − γ RR · �. (18b)

The inverse of the single-layer operator can be computed in several ways both
analytically and numerically. The Jacobi iteration used in Singh and Adhikari
(2016a, 2016b) is convenient for analytical expressions.

The fluid flow uD for a rigid body motion of the sphere has the integral
representation uD(r) = − G(l)(R, r) · FD(l) where the boundary integral

G(l)(r,R) = 2l − 1
4πb2

∫
G(r, R + ρ)Y(l−1)(ρ̂) dS. (19)

is the contribution to the external flow from the l-th tensorial coefficient of the
traction. The double layer has no contribution from rigid body motion to the
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external flow. This result will be used below in deriving a key identity necessary
for deriving the variance of the Brownian traction.

3.2. Active traction

The linear algebraic system for the active contribution to the traction is

− G(l, l′)(R) · FA(l′) + K (l, l′)(R) · V(l′) = 1
2V

(l). (20)

where the matrix elements of the double-layer operator K (R) in the tensorial
harmonic basis are

K (l, l′)(R) = 2l − 1
4πb2

1
(l′ − 1)!(2l′ − 3)!!∫

Y(l−1)(ρ̂)K(R + ρ, R + ρ′) · ρ̂ Y(l′−1)(ρ̂′) dS dS′. (21)

The irreducible parts of the slip coefficients are V(lσ). The first two modes,
V(1s) ≡ −VA and V(2a) ≡ −b�A are given by the integrals

4πa2VA = −
∫

vA(ρ)dS, 4πa2 �A = − 3
2a2

∫
ρ × vA(ρ)dS. (22)

and are equal to the self-propulsion velocity and self-rotation angular velocity of
an isolated active colloid in unbounded flow (Anderson, 1989;Ghose&Adhikari,
2014). The solution of the linear system is

F
A(lσ) = −

∞∑
l′σ ′=1s

γ (lσ , l′σ ′) · V(l′σ ′). (23)

The friction tensors γ (lσ , l′σ ′) gives the active contribution to the traction. These
tensors were first introduced in Singh and Adhikari (2016a) and are given by

γ (lσ , l′σ ′) = P(lσ) · [
G−1 · (− 1

2I + K
)](l, l′) · P(l′σ ′). (24)

They can be interpreted as Onsager coefficients of the linear response of the
traction to the surface slip. The active force and torque on the colloid are the
lσ = 1s and 2a coefficients of the traction. These are given as

FA = −
∞∑

l′σ ′=1s

γ (T , l′σ ′) · V(l′σ ′), (25a)

TA = −
∞∑

l′σ ′=1s

γ (R, l′σ ′) · V(l′σ ′). (25b)

The active forces and torques depend on all modes of the slip. In contrast to
passive colloids, where only four friction tensors determine the force and torque,
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there are, in general, infinitely many friction tensors for active colloids, corre-
sponding to the infinitely many modes of the slip. These infinitely many friction
tensors account for the diversity of phenomenon seen in active suspensions.

3.3. Brownian traction

The linear algebraic system for the Brownian contribution to the traction is

G (l, l′)(R) · F̂
(l′)

(t) = W (l)(R, t), (26)

where W (l) are coefficients of the irreducible tensor expansion

w(r) =
∞∑
l=1

1
(l − 1)!(2l − 3)!! W (l) · Y(l−1)(ρ̂) on S (27)

of the Brownian velocity field incident on the surface of the colloid. From the
definition of the Brownian velocity field, Equation (8), these coefficients are given
by

W (l) =
∫

G (l) · ξ(r′) dV ′. (28)

The solution of the linear system for the Brownian traction is

F̂
(l)

(t) = [
G−1(R)

](l, l′) · W (l′)(R, t). (29)

The coefficients of the Brownian traction are proportional to the coefficients of
the Brownian velocity field incident on the surface of the colloid and, by Equation
(8), to the Brownian force in the fluctuating Stokes equation. It is clear, then, that
the traction coefficients are zero-mean Gaussian random variables and then it is
only necessary to determine their variance to fully specify their distribution. By
the previous equation, they are related to the variance of the coefficients of the
Brownian velocity field as

〈F̂
(l)

(t)F̂
(l′)

(t ′)〉 = [
G−1(R)

](l, k) 〈
W (k)(R, t ′)W (k′)(R, t ′)〉 [

G−1(R)
](l′, k′)

.

(30)

To determine the variance of Brownian velocity coefficients we use the bound-
ary integral representation of uD given above (see also Singh & Adhikari, 2016a;
Singh et al., 2015). Inserting this on the left of the fluctuation-dissipation relation
for the thermal force, Equation (3), gives

〈 ∫
uD(r) · ξ(r, t) dV

∫
uD(r′) · ξ(r′, t ′) dV ′〉

= FD(l) ·
〈
W (l)(R, t ′)W (l′)(R, t ′)

〉
· FD(l′). (31)
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On the other hand, the power dissipated by the rigid body motion, on the right
of the fluctuation-dissipation relation can be expressed as

Ẇ(uD) = −
∫

f D(R + ρ) · uD(R + ρ)dS

= −FD(l) · VD(l) = FD(l) · G (l, l′)(R) · FD(l′) (32)

The first equality is obtained by using the divergence theorem to reduce
the volume integral of the quadratic form in Equation (4) to the boundary
of the colloid and then using the constitutive relation between the stress and
the strain rate in Stokes flow (Landau & Lifshitz, 1959). The second equality
is an elementary consequence of the orthogonality of the tensorial spherical
harmonics (Singh & Adhikari, 2016a; Singh et al., 2015). The third equality is
obtained by eliminating the velocity using the linear algebraic system, Equation
(13a) for rigid body motion. Comparing the above two equations, the variance
of the Brownian velocity coefficients is

〈W (l)(R, t ′)W (l′)(R, t ′)〉 = 2kBT G(l, l′)(R) δ(t − t ′). (33)

This expression is then used in Equation (30) to obtain the variance of the
coefficients of the Brownian traction

〈F̂
(l)

(t)F̂
(l′)

(t ′)〉 = 2kBT
[
G−1(R)

](l, l′)
δ(t − t ′). (34)

These are an infinite number of fluctuation-dissipation relations between the
variance of the tensorial harmonic modes of the fluctuating traction and
the matrix elements, in the irreducible tensorial harmonic basis, of the
inverse of the single-layer operator. To the best of our knowledge, the complete
statistics of the Brownian traction is derived here for the first time and is the
central result of this paper.

The variance of the irreducible parts of the fluctuating traction follow straight-
forwardly as

〈F̂
(lσ)

(t)F̂
(l′σ ′)

(t ′)〉 = 2kBT P(lσ) · [
G−1(R)

](l, l′) · P(l′σ ′) δ(t − t ′). (35)

The first two coefficients of the fluctuating traction are the force and torque, and
choosing lσ = 1s, 2a we obtain

〈F̂〉 = 0,

〈F̂(t) F̂(t ′)〉 = 2kBT γ TTδ(t − t ′),
〈F̂(t) T̂ (t ′)〉 = 2kBT γ TRδ(t − t ′), (36a)

〈T̂ 〉 = 0,

〈T̂ (t) F̂(t ′)〉 = 2kBT γ RTδ(t − t ′),
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〈T̂ (t) T̂ (t ′)〉 = 2kBT γ RRδ(t − t ′). (36b)

where γ αβ , with α,β = T ,R, are the one-particle friction tensor and are (lσ =
1s, 2a) elements of P(lσ) · [

G−1(R)
](l, l′) · P(l′σ ′). The fluctuation-dissipation

relation for theBrownian force and torque are, thus, derived from thefluctuation-
dissipation relation for the thermal force on the fluid.

We make the following remarks about the above derivation. First, the explicit
form of the inverse of the single-layer operator is is not necessary to obtain
Equation (34); it is sufficient to know that the inverse exists. Therefore, the
fluctuation-dissipation relation for the irreducible coefficients, Equation (35), is
valid for any geometry of the bounding fluid. In particular, it holds for a colloid
near a plane wall. Second, our derivation provides the fluctuation-dissipation
relation for allmodes of the Brownian traction. Earlier derivations have focussed
on only the force and torque. Therefore, our derivation provides the fluctuating
stresslet (lσ = 2s) which is necessary when computing the Brownian contribu-
tion to the suspension stress. Third, the configuration-dependence of both the
fluctuation, Equation (26), and the dissipation, Equation (35), is made explicit
in our derivation. The configuration-dependent noise variance follows from this
automatically. The interpretation of the resulting multiplicative noise in the
Langevin equation that we derive below is obtained recalling that themomentum
and angular momentum of the colloid are fast variables that have, implicitly,
been adiabatically eliminated (Gardiner, 1984). The form of the Smoluchowski
equation for this problem is well-known and is used below to consistently
interpret the multiplicative noise in the Langevin equation (Chandrasekhar,
1949; Murphy & Aguirre, 1972; Wilemski, 1976).

4. Langevin equations for a spherical active colloid

In this section we derive the Langevin and Smoluchowski equations for the
Brownian motion of an active colloid. We use the results derived above for
Stokes drag, active thrust and the Brownian forces on the colloid. Using the
results of the previous section, the balance conditions, Equation (1), become

−γ TT ·V − γ TR· � −
∞∑

lσ=1s

γ (T , lσ) · V(lσ) + F̂ + FP = 0, (37a)

−γ RT ·V − γ RR·� −
∞∑

lσ=1s

γ (R, lσ) · V(lσ) + T̂ + TP = 0. (37b)

The above canbe inverted to obtain the rigid bodymotionof the colloid in explicit
form. This gives the Langevin equations for a Brownian active colloid with
hydrodynamic interactions, first derived heuristically in Laskar and Adhikari
(2015),
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V = μTT · FP + μTR · TP +
√
2kBTμTT · ηT +

√
2kBTμTR · ηR

+
∞∑

lσ=2s

π (T ,lσ) · V(lσ) + VA, (38a)

� = μRT · FP + μRR · TP︸ ︷︷ ︸
Passive

+
√
2bkBTμRT · ηT +

√
2kBTμRR · ηR︸ ︷︷ ︸

Brownian

+
∞∑

lσ=2s

π (R,lσ) · V(lσ) + �A︸ ︷︷ ︸
Active

. (38b)

Here ηα are zero-mean unit-variance Gaussian white noises. Themobilitymatri-
cesμαβ are inverses of the frictionmatrices γ αβ (Brady, Phillips, Lester, & Bossis,
1988; Cichocki, Felderhof, Hinsen, Wajnryb, & Blawzdziewicz, 1994; Durlofsky,
Brady, & Bossis, 1987; Felderhof, 1977; Happel & Brenner, 1965; Kim & Karrila,
1992; Ladd, 1988; Mazur & Saarloos, 1982; Nunan & Keller, 1984; Schmitz &
Felderhof, 1982) The propulsion tensors π (α, lσ), first introduced in Singh et al.
(2015), relate the rigid body motion to modes of the active velocity. They are
related to the generalised friction tensors, introduced in Singh and Adhikari
(2016a), by

−π (T, lσ) = μTT · γ (T , lσ) + μTR · γ (R, lσ), (39a)

−π (R, lσ) = μRT · γ (T , lσ) + μRR · γ (R, lσ). (39b)

The translational propulsion tensors π (T, lσ) are dimensionless while the rota-
tional propulsion tensors π (R, lσ) have dimensions of inverse length. Stochastic
trajectories of motion can be obtained from the kinematic equations

Ṙ = V, ṗ = � × p, (40)

using the standardErmak-McCammon integrator (Ermak&McCammon, 1978).
In this integrator, the noise variances are computed using mobilities in the
configuration at time t but a “spurious” drift, proportional to the configurational
divergence of the mobilities, is added to to arrive at the configuration at time
t + t. There is nothing particularly spurious about this drift; it is simply the
residual effect of the adiabatically eliminated momentum degrees of freedom.

The Smoluchowski equation for the distribution function �(R; p) of posi-
tions and orientations follows immediately from the Langevin equations. We
write it in the form of a conservation law in configuration space

∂�

∂t
= L� = − (∇R · VR + p × ∇p · Vp

)
� , (41)
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where the ‘velocities’ VR and Vp are

VR = μTT · (
FP − kBT ∇R

) + μTR · (
TP − kBT p × ∇p

)
+

∞∑
lσ=2s

π (T , lσ) · V(lσ) + VA, (42)

Vp = μRT · (
FP − kBT ∇R

) + μRR · (
TP − kBT p × ∇p

)
+

∞∑
lσ=2s

π (R, lσ) · V(lσ) + �A. (43)

Here FP = −∇RU , TP = −p × ∇pU , and U is a potential that contains both
positional and orientational interactions. Note the position of the mobility in
the second derivative terms: the∇μ∇ order (in contrast with two other inequiv-
alent permutations) is provided unambiguously by the adiabatic elimination
of momenta. In the absence of activity, the equation obeys the fluctuation-
dissipation relation and the Gibbs distribution � ∼ exp ( − U/kBT) is the
stationary solution. However, the Gibbsian form is not a stationary solution in
the presence of the active terms, as can easily be verified by substitution. This
applies, a fortiori, to an active colloid near a plane wall discussed in the next
section.

5. Brownian active colloid near a plane wall

Wenowapply the preceding general results to the specific case of an active colloid
near a plane wall. The Green’s function for the problem, denoted byGW , is taken
to vanish at the location of the wall, z = 0. The form of the Green’s function,
first derived by Lorentz (1896), can be written in the following form due to Blake
(1971)

Gw
αβ(R′, R) = Gαβ(R′ − R) + G∗

αβ(R′, R∗) (44)

where G(r) = −(∇∇ − ∇2 I)(r/8πη) is the Oseen tensor and the correction
necessary to satisfy the boundary condition is

G∗
αβ = 1

8πη

[
−δαβ

r∗
− r∗αr∗β

r∗3
+ 2h2

(
δαν

r∗3
− 3rαrν

r∗5
)

Mνβ

−2h
(
r∗3 δαν + δν3r∗α − δα3r∗ν

r∗3
− 3rαrνr∗3

r∗5
)]

Mνβ. (45)

The correction is interpreted as a sum of three images, a Stokeslet, a dipole, and
a degenerate quadrupole, located at R∗ = M · R, where M = I − 2ẑẑ is the
mirror operator with respect to the wall (Berke, Turner, Berg, & Lauga, 2008;
Brennen & Winet, 1977; Goldstein, 2015; Lauga & Powers, 2009; Mathijssen,
Pushkin, & Yeomans, 2015; Singh & Adhikari, 2016b). Here h is the height of
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Table 1. Expressions for the 3 × 3 friction tensors at a height h from a plane wall, using the result
of the first Jacobi iteration (Singh & Adhikari, 2016a) for h > b and its regularized form for h ≤ b.

h > b (Jacobi iteration) h ≤ b (Regularized)

γ TT = γ T
0

(
I − γ T

0 F1F1G∗)
γ TT = γ T

0

[(
1 + 9r∗

32b

)
I − 3r∗r∗

32br∗
]

γ RR = γ R
0
(
I − γ R

0
4 ∇R × ∇R × G∗)

γ RR = γ R
0

[(
1 + 27r∗

32b − 27r∗3
64b3

)
I −

(
9r
32b − 3r∗3

64b3

)
r∗r∗
r∗2

]

γ RT = − γ R
0 γ T

0
2 ∇ × G∗ γ RT = −γ R

0

(
2
b2

− 3r∗
4b3

)
ε · r∗

Note: HereF1 = 1 + b2
6 ∇2 is an operator encoding the finite size of the colloid.

the colloid from the wall and r∗ = R − R∗. The correction has no singularities
in the domain of flow and the only singular contribution there is from the Oseen
tensor. The flows produced by a sphere translating or rotating near the wall are
shown in the top panels of Figure (1).

The leading terms of the inverse of the single-layer operator are obtained
here using Jacobi’s iterative method (Singh & Adhikari, 2016a). The results for
the friction tensors γ αβ are given in the left column of Table (1). The grand
resistance tensor, formed out each of the 3 × 3 blocks, is manifestly symmetric
and, for h > b positive-definite. This is established by an explicit computation of
the eigenvalues, shown in the first figure of the bottom panel of Figure (1). Thus
positive-definiteness is ensured for all configurations in which the colloid does
not overlap with the wall.

In Brownian dynamics simulations, however, it is convenient to avoid hard-
sphere potentials as these require special integrators. In the absence of such
potentials, it is no longer possible to maintain the constraint h > b during
integration, and the colloid may substantially overlap with the wall. For such
configurations, a naive continuation of the friction tensors to the domain h < b
is untenable: as the dashed lines in the eigenvalue plot in Figure (1) show, the
grand resistance tensor has negative eigenvalues in this region. This implies
negative entropy production and is clearly unphysical. The cure, first proposed
by Rotne and Prager, is to regularize the matrix elements of the single-layer, by
computing the surface integrals in their definition, over the union of overlapping
surfaces. In this case, the integral is to be computed over the union of the surface
of the colloid and its image. Such overlap integrals have been computed recently
Wajnryb, Mizerski, Zuk, and Szymczak (2013) and we use those results to obtain
the regularized forms of the friction in the right column of Table (1). The use
of the regularized form provides friction tensors that are positive-definite for all
heights, as can be seen from the solid curves for h < b in the eigenvalue plot in
Figure (1). Their use results in positive-definite variances for the Brownian force
and torque at all heights above the wall.
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In the second and third figures of the bottom panel, we plot the condition
number of the grand resistance tensor as a function of height and its pseudo-
spectrum at h = 1.3b. The condition number remains small for all heights and
the pseudo-spectrum shows no sign of non-normality. Thus, computing the
‘square-root’ Cholesky factors of the grand friction tensor (or, its inverse, the
grand mobility tensor) poses no problem and iterative methods are expected to
converge rapidly. Brownian dynamics simulations of active colloids near a plane
wall can then be efficiently performed using the above results.

6. Discussion

We have shown how to obtain the three parts of the traction, due to rigid body
motion, activity and thermal fluctuations, on a spherical colloid in a fluctuating
Stokesian fluid.We then applied the general results to the specific case of an active
colloid near a plane wall. We provided a regularization of the friction tensors to
enable Brownian dynamics simulations in which the spheres can overlap with
the walls. We conclude with three remarks about our results.

The first is that expressions in the left column of Table (1) are valid not only
for the Lorentz-Blake Green’s function, but for any Green’s function that can
be expressed as G + G∗, where G is the Oseen tensor and G∗ is the correction
necessary to satisfy the boundary conditions. A variety of Green’s function can
be expressed in this form, including those for flow between parallel walls and in
periodic domains. As mentioned before, the correction term does not contain
singularities in the domain of flow and, therefore, the boundary integrals in the
definition of the matrix elements can be expressed in terms of derivatives of the
correction. Singular terms from the Oseen tensor can be calculated explicitly
using well-known results for integrals of Bessel functions. Therefore, our results
for h > b are of broader validity than might have been anticipated.

The second is that active colloids show fascinating behaviour in the proximity
of a wall (Palacci, Sacanna, Steinberg, Pine, & Chaikin, 2013; Petroff, Wu, &
Libchaber, 2015).While Brownianmotion appears to benegligible in comparison
to activity-induced motion for a large class of these colloids, there is consider-
able theoretical interest in understanding the interplay between passive friction,
thermal fluctuations, and activity, especially when the friction is configuration-
dependent. Brownian dynamics, with the regularized frictions provided here,
will be a powerful tool to study such interplays.

Finally, the extension of the method presented here to determine the tractions
on the surface of many active colloids is straightforward in principle, but tedious
in practice. The result for the active traction has been obtained recently (Singh &
Adhikari, 2016a) and a heuristic argument has been provided to determine the
first two moments of the Brownian traction. It will be instructive to obtain all
moments and, in particular, the symmetric second moment to determine their
contribution to the stress in an active Brownian suspension.
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