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ABSTRACT
Some groups of fish have evolved to generate propulsion using
undulatory elongated fins while maintaining a relatively rigid
body. The fins run along the body axis and can be dorsal, ventral,
dorsoventral pairs or left-right pairs. These fish are termed as
median/paired fin (MPF) swimmers. The movement of these
groups of fish was studied in an influential series of papers
by Lighthill and Blake. In this work, we revisit this problem by
performing direct numerical simulations. We interrogate two
issues. First, we investigate and explain a key morphological
feature, which is the diagonal fin insertion found in many MPF
swimmers such as the knifefish. Not only are these results of
biological relevance, but these are also useful in engineering
to design bioinspired highly maneuverable underwater vehicles.
Second, we investigate whether there is a mechanical advantage
in the form of reduced cost of transport (COT) (energy spent per
unit distance traveled) for not undulating the entire body.Wefind
that a rigid body attached to an undulating fin leads to a reduced
COT.
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1. Introduction

In this work, we examine the physics of swimmers who hold a part of their
body rigid and use an affixed, undulatory fin for propulsion. Some examples
of these types of swimmers include: knifefish, triggerfish, bowfin and oarfish
(cf. Figure 1). Swimmers who fit this description may be classified as undulatory
median/paired fin (MPF) swimmers. These are swimmerswhopropel themselves
by undulating axial fins that are dorsal, ventral, dorsoventral pairs or left-right
pairs. Among these swimmers are the gymnotiformes, who only undulate one
elongated fin, and the balistiformes, who undulate a pair of anal and dorsal fins.
In this work, we consider gymnotiform and balistiform swimmers.
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Figure 1. (a) Apteronotus bonapartii, a typical example of a gymnotiform swimmer. (b)
Rhinecanthus verrucosus, a typical example of a balistiform swimmer.

Lighthill (1971) developed large-amplitude elongated-body theory which was
later applied to gymnotiform (such as knifefish) and balistiform (such as trig-
gerfish) swimmers in a series of four papers (Lighthill & Blake, 1990; Lighthill,
1990a, 1990b, 1990c). One of the questions they interrogated was whether there
is any mechanical advantage when gymnotiform and balistiform swimmers hold
their bodies nearly rigid while undulating their elongated fins. They developed a
mathematical formulation for the thrust component of the axial (parallel to the
base of the fin) force generated by elongated fins of gymnotiform and balistiform
swimmers, pictured in Figure 1. Their Lighthill and Blake (1990) formulation
uses a potential flow assumption and an approximate two-dimensional motion.
They concluded that the thrust produced by elongated fins of balistiform or
gymnotiform swimmers is increased due to the presence of a non-deforming
(rigid–like) body attached to the fin. This, they hypothesised, would give the
fish a mechanical advantage for holding their bodies rigid. In an earlier work
(Bale et al., 2014), we studied this issue by performing numerical simulations
and found no support for thrust enhancement for typical parameters of interest.

In this work, we perform numerical simulations of the model swimmers con-
sidered by Lighthill and Blake (1990) using the constraint–based immersed body
(cIB) method by Bhalla, Bale, Griffith, and Patankar (2013) to the hydrodynamic
forces and flow features produced by gymnotiform and balistiform swimmers.
Specifically, we consider two issues. First, we investigate a key morphological
feature, which is the diagonal fin insertion found in many MPF swimmers such
as the knifefish (cf. Figure 1). Second,we investigatewhether there is amechanical
advantage, in the form of reduced cost of transport (COT), (energy spent per unit
distance travelled) in maintaining a rigid portion of the body.

In our investigation, we find that the resultant propulsive force generated by
the elongated fin is at an angle to the fin axis. This is because the fin produces axial
(parallel to the base of the fin) as well as heave (perpendicular to the base of the
fin and in the plane of the body) force. The angle of the resultant force is found to
be qualitatively consistent with the angle at which the fin is attached to the body
(angle of insertion) of gymnotiform swimmers. The analysis by Lighthill and
Blake (1990) did not account for the heave force. Hence, the issue of the angle
of insertion of the fin could not be addressed by their analysis. We also perform
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free swimming simulations to determine whether it is advantageous for MPF
swimmers to hold their body rigid and undulate only their elongated fins. We
conclude that there is a mechanical advantage to rigid–body swimming through
a different metric than that proposed earlier (Lighthill & Blake, 1990).

2. Fin-plate fishmodel

Lighthill and Blake (1990) model balistiform swimmers with the body of the
swimmer as a flat plate with undulatory fins attached at the top and bottom of
the plate. They model the undulations of the fin by considering the motion of
slices of the swimmer in a 2D plane intersecting the body at a right angle to the
rostrocaudal axis. In one of these slices, the body is represented as a vertical line
and two angled lines affixed to the top and bottom, representing the fins, which
are oscillating at an angular frequencyω (a single fin version of this model can be
seen in Figure 2(b)). A travelling wave progressing from front to back (single fin
version seen in Figure 2) is then approximated by considering the motion of the
fins in each slice to be slightly lagged from the slice in front of it. The model for
a gymnotiform swimmer was the same except there was a fin only at the bottom
end of the plate as shown in Figure 2(b).

In what follows, we only consider the full three-dimensional motion of a fin-
plate model of a gymnotiform swimmer (Figure 2). The undulations of the fin
will be modelled by a travelling sinusoidal wave. Like Lighthill and Blake (1990),
we model the body of the swimmer as a flat plate while the displacement and the
corresponding velocity of lateral undulation of the fin are given by

θ = θmax sin
[
2π

(x
λ

+ ft
)]

, (1)

Vw = 2π f θmaxr cos
[
2π

(x
λ

+ ft
)]

, (2)

respectively, where x is the axial-direction, θ is the angular excursion of the fin
(Figure 2), θmax is the peak amplitude, λ is the wavelength, f is the frequency of
undulation, Vw is the lateral speed at any location (x, r) on the fin, and r, which
varies from 0 to h (the height of the fin), is the radial distance from the base of the
fin at any x location. The speed with which the undulatory waves move along the
fin, from head to tail (rostrocaudal direction, Figure 2), is the wave speed given
by Uw = f λ. The coordinate axes are chosen such that the fin axis and the wave
motion of the fin are along the x-axis, and the lateral direction is along the y-axis.
Positive x is in the front-to-back direction, positive z is in the upward direction,
and the positive y direction follows according to the right hand rule.

Refer to Figure 2 for the sign convention (demarcated by a ‘+’ where appropri-
ate). The forward swimming direction is taken to be caudorostral. Translational
velocity U , of the swimming body or the fin, is positive if directed forward.
The wave velocity Uw is positive in the rostrocaudal direction. According to the
decoupled drag–thrust model, the axial force on an elongated fin is composed of
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Figure 2. (a) 3D model of a gymnotiform swimmer considered in this work based on a prior
study Lighthill and Blake (1990). L is the length of the body, s is the height of the plate, h is the
height of the fin, Uw is the wave speed of the fin and U is the forward motion of swimmer. (b)
cross-sectional slice of the 3D swimmer is shown in (a).

a thrust component and a drag component (Bale et al., 2014). The forward axial
thrust force on the fin is positive (same sign as U) while the backward axial drag
force on the fin is also positive (same sign asUw). The resultant axial force on the
fin (= thrust–drag) is positive toward the front. By action–reaction, the positive
sense of forces from the fin on the fluid are reversed. In addition to the axial
force, the elongated fin also generates a heave force due to its flapping motion.
The heave force is positive when directed towards the base of the fin (positive z
direction in Figure 2). Thus, the net propulsive force generated by an elongated
fin is a resultant of the net axial force (= thrust–drag) and the heave force (a point
which will be discussed in greater detail in Section 4).

3. Numerical problem formulation

The numerical simulations performed here are similar to those performed in our
prior work (Bale et al., 2014). The swimmer is modelled as a thin membrane
as described in Section 2 and the cIB method – see Bhalla et al. (2013) for
details – is used to perform the simulations for given input data. Wall (zero
velocity of all components) boundary conditions in all directions are used in
the simulations performed in Sections 4 and 5, and wall boundary conditions
in y and z directions with periodic conditions in x direction were used in
the simulations for Section 6. The size of the computational domain, in all
simulations performed in this work, was chosen through numerical trials to
minimise the influence from the boundaries on the result. To this end, the
exact choice of boundary conditions in each particular case did not significantly
impact the results (less than 5 − 10%). In all simulations performed in this
work, grid spacing at the finest level of the adaptive mesh in the Eulerian
domain was chosen through numerical trials, so that the relative difference in
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the force calculated by two successively refined simulations was lower than 5%.
The spacing of the Lagrangian nodes representing the swimmer was chosen,
so that the Eulerian cells which coincided with the swimmer contained, on
average, one Lagrangian node. This follows the recommendation of Bhalla et
al. (2013). Similarly, time steps were chosen for each simulation in such a way
that the relative difference in the force calculated by two successively refined
simulations wereas lower than 5%. In all simulations performed, the mean
forces, steady swimming velocity and power of the fin were calculated as the
time average over at least one period of oscillation, after a quasi-steady state
is reached. The ‘quasi-steady’ regime is identified when the average over one
or more periods of oscillation produces the same result to within 1%. Similar
to our prior simulations Bale et al. (2014), two main types of simulation were
performed in this work. For simulations performed in Section 4, computations
were performed in the swimmer’s reference frame, and hence, the swimmer was
fixed in the computational domain and undulatory kinematics were prescribed,
while for those of Section 5 and 6, only the deformation kinematics of the fin are
prescribed, which results in a self-propelling fin-plate assembly. The density and
viscosity of water were taken as ρ = 1, 000 kg/m3 and μ = 8.9 × 10−4 kg/m-s.

4. Relative importance of the components of propulsive force

We first examine different flow fields created by an undulatory fin. Specifically,
we look for cross-sectional and axial flow fields. The flow field created by an un-
dulating elongated fin that circulates in a plane perpendicular to the rostrocaudal
axis of the swimmer (see Figure 3(c) for example) is termed as the cross-sectional
flow field. Flow field in the axial direction is termed the axial flow field. In what
follows, we will see that the axial force of a swimmer correlates to a circulating
flow field along the length of the swimmer (Neveln et al., 2014; Shirgaonkar,
Curet, Patankar, & MacIver, 2008) (see Figure 3(b) for example). We will also
further investigate and quantify exactly when a cross-sectional flow field or an
axial flow field represents the dominant pattern.

For the analysis in this section, we perform our simulations of the elongated
fin only. For the computation of a fin’s propulsive force, the physical parameters
of interest are: L (length of the fin), h (height of the fin), θmax (angular amplitude),
λ (wavelength) and f (frequency). For our simulations, we fixed frequency f = 1
Hz, angular amplitude θmax = 30◦. We chose these values as they have been
shown Ruiz-Torres, Curet, Lauder, and MacIver (2012) to be typical, though at
slightly reduced frequency than typically found for computational expedience.
Further Bale, Bhalla, Neveln, MacIver, and Patankar (2015) and Shirgaonkar et
al. (2008) show that any choice of f and any choice of θmax > 20◦ should not
affect trends in relative scaling of these forces with respect to other kinematic
or morphological parameters. We introduce the following non-dimensional
parameters: aspect ratio AR = h/L and number of undulations N = L/λ. A
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Figure 3. (b) The blue region represents the parameter regime in which the heave force is greater
than that of the axial and in the white region, axial is greater than heave. The black squares and
dashed line represent the computed boundary between these two regions. The error computed
by increasing the resolution of the simulations for the data points nearest the boundary line
(black squares) is within a 10% margin. The small grey dots indicate parameter values for which
simulations were performed.
Notes: Finally, numbered points indicate the experimentally obtained parameter pairs corresponding to
some select elongated fin species as follows: 1. Rhinecanthus aculeatus: Loofbourrow (2009) 2. Sepia officinalis:
Bale et al. (2015) 3. Xenomystus nigri: Bale et al. (2015) 4. Apteronotus leptorhynchus: Bale et al. (2015) 5. Amia calva:
Jagnandan and Sanford (2013) 6. Gymnotus carapo: Bale et al. (2015) 7. Gymnorhamphichthys hypostomus: Bale et
al. (2015) 8. Apteronotus albifrons: Albert and Crampton (2005), Ruiz-Torres et al. (2012) 9. Pseudobiceros bedfordi:
Bale et al. (2015) 10. Pseudobiceros parladis: Bale et al. (2015) We note that the kinematic parameters, such as f and
θmax, which were fixed in these simulations, vary for the different species shown. Thus, the animal data are shown
for qualitative comparison only. (c) The flow field around a swimmer in the parameter regime where axial force
dominates. Note the streamlines spiral along rays of the fin forming an axial flow field. (a) The flow field around a
swimmer in the parameter regime where heave force dominates. Note the cross-sectional flow field.

physically realistic range for number of undulations is between N = .2 and 2
(Ruiz-Torres et al., 2012) and a physically realistic range for aspect ratios is those
greater that AR = .1 (Albert & Crampton, 2005; Crampton & Albert, 2006).
Further, we will useAR = .9 as an upper limit in our simulations as this seems to
safely capture all fish morphologies we are interested in and reduces number of
simulations needed to populate our study. Simulations of the elongated fin were
carried out for these ranges of theAR andN . For each parameter pair considered,
the axial and heave forces were computed.

The parameter space in which the axial force or the heave force is greater is
shown in Figure 3(a). Further, within these regions, there is a correspondence
with the dominant flow field being axial (in the cases where axial force is greater)
or cross sectional (in the cases where heave force is greater). Thus, the heave
force is more dependent on cross-sectional flow fields and the axial force is more
dependent on axial flow fields. A point which is substantiated by Zhu,Wolfgang,
Yue, and Triantafyllou (2002) for the axial force. Figure 3 shows that the axial
force relative to the heave force is dominant at large AR. This is because taller
fins at high AR are able to transport the fluid axially backwards more effectively
giving rise to a more dominant axial flow field and axial force.

We see that there are physically realistic cases inwhich the cross-sectional flow
field is the dominant flow feature. These cases represent a nearly ‘flapping fin’
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Figure 4. (a) Contour plot of simulated axial force (mN) data. (b) Angle φ (in degrees), of the
resultant propulsive force generated by the finwith respect to the base of the fin. (c) Contour plot
of simulated heave force (mN) data.

(similar to that of Figure 3(c)). This ‘flapping fin’ corresponds to the simplified
model considered by Lighthill and Blake (1990). However, typical elongated
fins have N and AR values that lie in the domain where axial forces and flows
dominate as seen from data for elongated fin swimmers in Figure 3(a). This
is consistent with experimental results (Neveln et al., 2014). Cases where the
axial flow field and the axial force are dominant is the more physically prevalent
scenario. The cross-sectional flow field assumed by Lighthill and Blake (1990),
for axial thrust calculations, in fact corresponds to the, typically, sub-dominant
heave force. Further, Lighthill and Blake (1990) did not consider heave force in
their analysis. If a rigid body were attached to the fin, it is reasonable to expect
that the axial flow caused by the fin would not be significantly altered compared
to a case where there is no body attached to the fin. This is because the attached
body would not disrupt the axial flow caused by the fin. Since our results show
that the axial force correlates with the axial flow features, it may be deduced that
the axial force too would not be significantly altered if a body were attached to
the fin.

More than simply considering which flow field is dominant, we may also
quantify their relative contribution to propulsive force. For this, we consider
the net propulsive force on a swimmer as the vector sum of the axial and heave
forces, which, in the cases considered above, will produce an angled propulsive
force relative to the top edge of the elongated fin. This angle, φ, is computed as

φ = tan−1
(
FH
FA

)
, (3)

where FA is the axial force and FH is the heave force generated by the elongated
fin. φ is a measure of the relative importance of axial and heave forces. That is,
if heave is much greater than axial force, φ ≈ 90◦; if the opposite is the case,
then φ ≈ 0◦; and if they are about the same, φ ≈ 45◦. Figure 4 shows φ along
with corresponding contours of axial and heave forces separately. The potential
influence of this angle on fish morphology will be considered in the next section.
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Figure 5. Angleψ , called the angle of insertion of the fin, at which an elongated fin is attached to
the body of a black ghost knifefish (photograph courtesy of Per Erik Sviland).
Notes: Also, shown is the angle φ of the resultant propulsive force generated by the fin with respect to the base of
the fin. The fish will swim along an axis parallel to its rostrocaudal axis (e.g. the dashed grey line) if ψ ≈ φ. Forces
shown are those acting from the fluid on the fin.

5. Angle of insertion of elongated fins

In the previous section, we focused our attention on which of these forces –
axial or heave – is greater and how that corresponds to the dominant flow
features. In general, both, cross-sectional and axial flow features are present,
and hence, both axial and heave forces are produced. Although the axial force
is typically dominant, in this section we demonstrate computationally that the
heave force very likely influenced themorphology ofMPF swimmers as discussed
in the literature (Blake, 1983; Breder, 1926; MacIver, Fontaine, & Burdick, 2004;
Sfakiotakis, Lane,&Davies, 1999). Since Lighthill andBlake (1990) did notmodel
the heave force, the issue discussed here was not resolved in their work.

All gymnotiform and balistiform swimmers have their undulatory fins at-
tached to their rigidly held bodies at some angle, which we will call as the
angle of insertion, ψ . Gymnotiform species, such as the black ghost knifefish,
shown in Figure 5 have a non-zero angle of insertion. We hypothesise that, if
a gymnotiform fish, which does not have paired fins, is to swim along an axis
parallel to its backbone (straight forward swimming) without using other fins,
then the angle φ (see Section 4) would be nearly equal to the angle of insertion
ψ of the fin.

Consider the black ghost knifefish, Apteronotus albifrons, (Figure 5), which
hasN = 2.6 andAR = .1 (Albert&Crampton, 2005; Ruiz-Torres et al., 2012).We
measured the angle of the fin base with respect to the horizontal. This required
determining the position of the horizontal axis through the body when the fish
was swimming. We recorded video of the black ghost knifefish to determine the
pitch of the body during straight forward swimming in flowing and still water.
After orienting side view photographs to this pitch, we measured the angle of
the fin base with respect to the horizontal. The black ghost knifefish data showed
that the angleψ for this fish is 9± 2◦ (mean and std., sample size = 6) indicating
that, in fact the axial force generated by the fin must be dominant for these
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swimmers. However, the data shown in Figure 4 do not quantitatively show
that ψ ≈ φ for this swimmer. This is, in part, due to the different frequency
of undulation between the simulations of Section 4 and the observed values for
black ghost knifefish. In addition, the simulations in Figure 4 were for force
generated by a fixed fin whereas in case of a swimming fish the elongated fin is
translating at the speed of the fish. Hence, no matter the kinematic parameters,
the agreement between φ andψ can only be qualitative. From prior observations
(Blake, 1983; Ruiz-Torres et al., 2012; Shirgaonkar et al., 2008),wemay extract the
broadest range of admissible swimming frequencies for the black ghost knifefish
as f = 3 − 15 Hz, with normal cruising in the f = 3 − 6 Hz range. As evidence
for the effect of frequency, we performed a simulation similar to those done for
Figure 4 but used f = 5 Hz. This gives φ ≈ 15.6◦ which is closer to 9◦ but still
quantitatively off by roughly 70%. In order to resolve this further, we resort to
more realistic, free swimming simulations.

To interrogatewhether the observed angle of insertionof thefinψ is consistent
with the angle φ of the resultant propulsive force while swimming, we performed
self-propulsion simulations of a black ghost knifefish using body geometry data
that was experimentally extracted by Ruiz-Torres et al. (2012) and prescribed fin
kinematics were taken as f = 3Hz and θmax = 30◦. The exact value for frequency
was chosen to be in the admissible frequency range for the black ghost knifefish
and also tominimise computational expense. If our hypothesis thatψ ≈ φ,while
swimming, is correct, then the computational fish will swim straight ahead when
the fin is attached to the body at an angle of 9◦. This is indeed observed in self-
propulsion simulation results in Figure 6. All rotational degrees of freedomwere
locked in the self-propulsion simulation results of Figure 6 in order to prevent the
fish from pitching or rolling. Pitching and rolling moments may be countered
by real fish using pectoral fins. Based on the simulations while we cannot say
that the body will not pitch, we can say that the absence of vertical displacement
during forward swimming supports our claim that ψ is consistent with φ.

To further verify that this straight, forward motion is caused by a balance of
axial and heave forces, we reverse the motion of the fin undulations midway
through the simulation. If, the angle of the fin is balancing heave and axial forces,
we should then see the swimmer reverse at an angle of roughly 2ψ relative to
the swimmers midline (assuming force magnitudes are relatively same during
backward motion). In Figure 6, we see that this is indeed the case and is also
consistent with experimental observations (MacIver et al., 2004). This tells us
that the anglewhich a gymnotiform swimmer’s elongated finmakes to itsmidline
can be used as a gauge for how much heave vs. axial force it is generating.

6. Is there amechanical advantage due to a body held rigid?

We simulate amodel problem by considering a rectangular sheet of heightH and
length L as the ‘body.’ Given this body, we consider different cases by varying
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(a)(a) (b)

Figure 6. Snapshots of forward swimming (a) and backward swimming (b) simulated black ghost
knifefish.
Notes: Shown in each panel, are iso-surfaces of the magnitude of vorticity for flow visualisation. Figures show that
the wake structures shed from the fin line up with the net force vector. Specifically, for a backward swimming fish in
(b) the wake structures shed from the fin line up with the net force vector at an angle of roughly 2ψ or 18◦ relative
to the swimmers midline.

the fin height, h, (or equivalently plate height, s) but keeping a fixed total height
H = h+ s. In what follows, the fin is undulated at f = 3Hz andwith θmax = 30◦.
Further in an attempt to keep our results as general as possible when fixing a
parameter, we chose to fix the specific wavelength

SW = λ

h
2 sin (θmax)

, (4)

at SW = 20 as this was found to hold for elongated fin swimmers
(Bale et al., 2015). Self-propulsion simulations were performed. The average
power Pavg expended by the fin over one period of the swimming cycle and the
average steady swimming speed Us were calculated. A COT metric defined by

COT = Pavg
Us

, (5)

was calculated. Then we investigated whether, for a given body (i.e. H and
L specified), there is a fin height h that minimised COT. The goal was to find
‘optimal’ (defined as the one that minimises COT) swimmer dimensions as a
function of the aspect ratio Ar = H/L. Note that this definition differs from the
aspect ratio (AR) considered in Section 4 as Ar is the body aspect ratio, while AR
is the fin aspect ratio.

To collect our desired data, we performed four sets of simulations. For a fixed
total swimmer body height of H = 1 cm in all cases considered, we simulated
four different fin lengths, L = 10, 5, 2.5 and 1.25 cm. These represent aspect
ratios of Ar = .1, .2, .4 and .8, respectively. For each length value, we considered
several fin height values in the range h = .1 to 1.0 cm. All data collected from
these simulations have less than a 10% margin of error based on grid sensitivity.

In Figure 7, we have plotted the COT curves of different length swimmers as
functions of fin heights. We see a clear separation of trends. In the two smallest
aspect ratio cases (Ar = .1, .2), there is one pronounced minimum around
h = .2 cm in both cases, and the COT increases monotonically for h > .2 cm.
Further, we note that the COT data for these two lowest aspect ratio cases,
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Figure 7. The results of our numerical simulations for different length swimmers are shown in the
above 4 plots.

Ar = .1, .2, are in qualitative agreement with the COT data presented in Bale
et al. (2014). By contrast, the two largest aspect ratio cases both have minima
at the smallest h values we could simulate (there were numerical convergence
problems for smaller values of h) and less pronounced local minima at higher
values of h (h = .8 cm in both cases).

We deduce that no matter the exact morphology of the ‘gymnotiform-like’
swimmer considered, it is mechanically advantageous to have a rigid body
constitute part of the swimmer. This conclusion seems to suggest that a rigidly
held body is more than a vessel for organs, it may provide some mechanical
advantage as far as the COT is concerned. The reason for this advantage is
hypothesised to be different scalings of drag and thrust forces on a undulatory
propulsor similar to those discussed by Bale et al. (2014). A detailed investigation
of how body size affects these drag and thrust scalings, along with a physical
explanation, should be a subject of future work.

7. Conclusions

In this work, we show that for an elongated fin attached to a plate, the dominant
flowfield is oftennot cross sectional but axial,which is consistentwithprior simu-
lations and experiments (Neveln et al., 2014; Ruiz-Torres et al., 2012; Shirgaonkar
et al., 2008). In fact, we found that both the flowpattern and the larger component
of the propulsive force may change depending on the physical parameters of a
gymnotiform swimmer and that this may have influenced the morphology of
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some swimmers, i.e. the angle at which the elongated fin is attached to the body
of the fish. We also found that there is a mechanical advantage (by minimising
COT) to holding part of the body rigid as is observed in gymnotiform and
balistiform swimmers.
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