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ABSTRACT
The fluid–solid–electric dynamics of a flexible plate covered by
interconnected piezoelectric patches in an axial steady flow are
investigated using numerical simulations based on a reduced-
order model of the fluid loading for slender structures. Beyond
a critical flow velocity, the fluid–solid instability results in
large amplitude flapping of the structure. Short piezoelectric
patches positioned continuously along the plate convert its local
deformation into electrical currents that are used within a single
internal electrical network acting as an electric generator for
the external output circuit. The relative role of the internal and
external impedance on the energy harvesting of the system is
presented and analysed in the light of a full modelling of the
electric and mechanical energy exchanges and transport along
the structure.
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1. Introduction

Flow-induced vibrations have been extensively studied for the last 50 years:
stemming from fundamental instabilities in the coupled dynamics of a moving
solid body and a surrounding flow, they generate spontaneous, self-sustained and
often large amplitude vibrations, that effectively convert some of an incoming
flow’s kinetic energy into solid kinetic or elastic energy (Blevins, 1990; Paidoussis,
Price, & de Langre, 2014). Because of their critical and often damaging impact
in industrial applications, most existing research has focused on the control of
their linear dynamics in order to prevent the development of large amplitude
vibrations (Paidoussis, 1998, 2004). The last decade has seen a renewed interest
for these classical instabilities as energy harvesting systems, converting with
an electric generator the vibration energy resulting from transverse galloping
(Barrero-Gil, Alonso, & Sanz-Andres, 2010), airfoil flutter (Xiao & Zhu, 2014),
vortex-induced vibrations (Bernitsas, Raghavan, Ben-Simon, & Garcia, 2008)
and axial flutter of flexible structures (Michelin & Doaré, 2012; Singh, Michelin,
& de Langre, 2012).

CONTACT Sébastien Michelin sebastien.michelin@ladhyx.polytechnique.fr

© 2017 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/17797179.2017.1306827&domain=pdf
http://orcid.org/0000-0003-2219-9295
http://orcid.org/0000-0002-9037-7498


EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 155

The latter, also known as ‘flapping flag’ instability, is the result of the coupling
of solid inertia and rigidity, to the destabilising fluid forces resulting from
the unsteady deflection of the flow by the moving structure (Paidoussis, 2004;
Shelley, Vandenberghe, & Zhang, 2005): beyond a critical flow velocity, large
amplitude flapping develops, characterised by bending waves propagating along
the plate (Eloy, Lagrange, Souilliez, & Schouveiler, 2008; Michelin, Llewellyn
Smith, & Glover, 2008; Zhang, Childress, Libchaber, & Shelley, 2000). Two
main approaches have been proposed to harvest the associated energy: (i) the
mechanical coupling of the flapping motion to a generator through its rotating
mast (Virot, Amandolese, & Hémon, 2016), and (ii) the use of electro-active
materials (e.g. piezoelectric materials) to directly convert the plate’s deformation
into an electric current (Akcabay & Young, 2012; Doaré & Michelin, 2011;
Giacomello & Porfiri, 2011). The present work focuses on the modelling of a
piezoelectric flapping plate, for which an explicit description of the two-way
electro-mechanical coupling and a more relevant definition of the harvesting
efficiency have been obtained (Doaré & Michelin, 2011; Michelin & Doaré,
2012), in contrast with empirical damping models for the harvesting process
(Singh et al., 2012; Tang, Païdoussis, & Jiang, 2009).

Modelling of such piezoelectric flags have so far followed two distinct routes:
(i) a continuous approach, where the energy associated with the local bending
is used locally into independent circuits (Doaré & Michelin, 2011; Michelin &
Doaré, 2012; Xia, Michelin, & Doaré, 2015a) and (ii) a discrete approach, where
the structure is covered by a single element (or a small number) powering a
single circuit (Piñeirua, Doaré, & Michelin, 2015; Piñeirua, Michelin, Vasic,
& Doaré, 2016; Xia et al., 2015b; Xia, Doaré, & Michelin, 2016). Beyond its
formal simplicity, the main advantage of the former is its ability to exploit the
entire structure’s deformation, regardless of the deformationmode excited by the
fluid–solid coupling. The latter is however themost relevant for applications as it
corresponds to a single output circuit, but the use of a single piezoelectric element
effectively performs an average of the deformation, reducing the efficiency of the
system (Piñeirua et al., 2015).

The present work investigates an alternative approach that fully exploits
the complex deformation of the structure, using many short interconnected
piezoelectric elements to create a single internal electrical network that can be
connected to an external load. This electrical structure allows for the coupling of
propagating bending and electrical waves, and richer electromechanical energy
exchanges between the flapping flag and the output circuit.

The paper is organised as follows. In Section 2, the model and equations
governing the dynamics of the piezoelectric flag are presented, in particular
focusing on the original nonlocal circuit design and the resulting electromechan-
ical exchanges within this fluid–solid–electric system. The resulting efficiency is
then discussed in Section 3, focusing in particular on the role of the circuit’s
properties. Building upon those results, Section 4 analyses in detail the electrical
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energy fluxes along the flag, andpotential routes of optimisation of the harvester’s
design. Finally, conclusions and perspectives are presented in Section 5.

2. Fluid–solid–electric model of a piezoelectric flag

2.1. Description

The energy harvester considered in this work is a thin inextensible flexible plate
(or ‘flag’) placed in an incoming uniform flow of velocity U∞ and density ρ,
and covered by piezoelectric patches on each side. The plate is rectangular
with dimensions L and H in the stream-wise and cross-flow directions, and
its thickness is h � H , L. The piezoelectric plate assembly is supposed to have
homogeneous structural properties and the effective mass per unit length and
flexural rigidity are noted ρs and B, respectively. The plate is clamped parallel to
the flow at its leading edge, and is free to deform under the effect of its internal
dynamics and of the flow forces. For simplicity, we consider here only purely
planar deformations of the structure (i.e. twisting and cross-flow displacement
are neglected).

The deformation of the plate periodically stretches and compresses the piezo-
electric layers positioned on each side of the flag’s surface, leading to a reorganisa-
tion of their internal electrical structure and to an electric charge transfer between
the electrodes of each patch. These patches are all identical and positioned
by pairs (i.e. one patch on each side), shunted through the flag’s surface; the
polarities of the patches within each pair are reversed so that the effect of
stretching of one patch and compression of the other during the flag’s bending
motion are additive (Bisegna, Caruso, &Maceri, 2006; Doaré &Michelin, 2011).
The remaining two electrodes of each pair are connected to the electrical network
(Figure 2).

The electric state of thepiezoelectric pair is characterisedby the electric current
and voltage between its free electrodes, noted, respectively, Q̇i and Vi for the ith
pair. The electro-mechanical coupling is two-fold

• a direct coupling: The deformation of the flag induces a charge transfer so
that

Qi = CVi + χ [θ(s+i ) − θ(s−i )], (1)

where C is the internal capacitance of the patch pair, s±i the Lagrangian
coordinate of the leading and trailing edge of the patch along the flag’s
centreline, and χ the electro-mechanical coupling that includes material
and geometrical properties of the assemply (see Bisegna et al., 2006; Doaré
& Michelin, 2011).

• a reverse or feedback coupling: The voltagewithin the pair induces an electric
field inside the patch, resulting in a mechanical stress and an additional
torque on the structure, −χVi applied between s−i and s+i .
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Figure 1. Piezoelectric flag in a uniform flow. The surface of the flag is covered on both sides by
piezoelectric patches (in grey) that are connected to their immediate neighbours.

2.2. Piezoelectric coverage

Our previous work on piezoelectric flags exclusively focused on local circuits:
the energy extracted from themechanical deformation is dissipated in an electric
loop connected solely to that region, and there is no electrical energy exchange
between different piezoelectric pairs. Such local circuits can take two forms:
(i) one or a few patches cover the flag and energy is transferred to a small
number of output circuits (Piñeirua et al., 2015; Xia et al., 2015b, 2016) or
(ii) a large number of piezoelectric patches is considered so that a continuous
limit can be used (Doaré & Michelin, 2011; Michelin & Doaré, 2012; Xia et al.,
2015a). The advantage of the former is its simplicity and relevance to experiments
(single output circuit). However, from amodelling point of view, this introduces
discontinuities in the piezoelectric forcing on the flag; more importantly, the
finite length of the piezoelectric patch effectively acts as an averaging filter in
space: the forcing on the electric circuit is only a function of the change in
orientation between s−i and s+i , and not of the detailed bending. As a result,
more energy can be harvested in the continuous limit consisting of many short
piezoelectric patches and associated circuits, although a careful design of a finite
number of a few piezoelectric patches allows to approach almost the same
efficiency as that of the continuous limit (Piñeirua et al., 2015).

We consider here the alternative approach of interconnecting the different
piezoelectric patch pairs electrically, so that energy can be transferred along the
flag bothmechanically and electrically. Adjacent pairs i and i+1 are connected by
two impedances (one on each side) ZA

i and ZB
i (Figure 1). The advantage of this

approach is two-fold: (i) focusing on the limit of many small patches, providing
a continuous coverage of the flag (i.e. s+i = s−i+1 and s+i − s−i = ds → 0)
allows for a maximum forcing of the circuit by removing any spatial average
introduced by a finite patch length l; (ii) the integrated form of this connection
provides the possibility to power a single output circuit with the entire apparatus
by connecting the output load to the free electrodes located at the leading or
trailing edge.
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Figure 2. (Top) Local electric circuit: each piezoelectric pair is equivalent from an electric point
of view to a current generator and an internal capacitance. The current through a patch pair and
the voltage at its free electrodes are, respectively, Vi and Q̇i . (Bottom) Boundary conditions for
leading edge harvesting, Equation (12).

Applying Kirchhoff’s circuit laws (Figure 2) leads to

Q̇i = −IAi + IAi−1 = −IBi + IBi−1, (2)
Vi+1 − Vi = −ZA

i I
A
i − ZB

i I
B
i . (3)

2.3. Continuousmodel for the electrical network

We follow here the approach presented in Doaré andMichelin (2011), by taking
ds → 0.Wedefine iA, iB and v the continuous functions of s such that iA(si) = IAi ,
iB(si) = IBi and v(si) = Vi. Writing q(s) the lineic charge transfer between the
two layers of piezoelectric patches, c, zA and zB the lineic internal capacitance
and internal impedance, the previous equations can be rewritten as

q = cv + χ
∂θ

∂s
, (4)

∂2v
∂s2

= z · q̇, (5)

with z = zA + zB. Equation (2) indeed leads to ∂iA
∂s = ∂iB

∂s = −q̇, or equivalently
iA = iB = i provided that the leading and trailing edges of the flag are not
connected to each other by an outer circuit (i.e. there is not net current flowing
through the flag). In that case, the lineic impedance distribution between the
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two sides of the flag does not affect the dynamics and only their sum is relevant.
In the following, we focus exclusively on a resistive connection between the
different piezoelectric pairs, so that z = r is the lineic resistance associated with
the piezoelectric connection. The dynamics of the electrical circuit are therefore
driven by

∂v
∂t

− 1
rc

∂2v
∂s2

+ χ

c
∂2θ

∂s∂t
= 0. (6)

2.4. Equations ofmotion

The additional piezoelectric torque applied on the structure now simply writes
−χv(s). An Euler–Bernoulli model is considered here to describe the two-
dimensional motion of the piezoelectric plate

ρs
∂2x
∂s2

= ∂

∂s

[
Tt − n

∂

∂s

(
B

∂θ

∂s
− χv

)]
+ Ffluid,

∂x
∂s

= t. (7)

In the previous equation, (t,n) are the local unit tangent and normal vectors in
the plane of motion, T is the tension within the structure and Ffluid is the fluid
force on the plate. The second equation imposes the inextensibility of the flag.
The flag is clamped at the leading edge and free at its trailing edge (the internal
tension, torque and shear force vanish). Therefore,

at s = 0, x = 0, θ = 0, (8)

at s = L, T = B
∂θ

∂s
− χv = B

∂2θ

∂s2
− χ

∂v
∂s

= 0. (9)

Up to this point, the fluid–solid–electric model is completely general, regard-
less of themethod chosen to evaluate the fluid force on the flag Ffluid. Computing
this fluid forcing can take many different routes, including direct numerical
simulations of the viscous flow field (Banerjee, Connell, & Yue, 2015; Connell
& Yue, 2007), and potential flow simulations using Panel Methods (Zhu, 2007),
point vortices (Michelin et al., 2008) or vortex sheet models (Alben, 2009). In
the limit of a slender flag (H � L), an asymptotic model can be obtained for
the inviscid local flow forces in terms of the local solid velocity using Lighthill’s
Large Amplitude Elongated Body Theory (Lighthill, 1971). This result based on
the advection of fluid added momentum by the flow along the slender structures
can also be interpreted (and proved) as an asymptotic expansion of the potential
flow forces in the limit of small aspect ratio (Candelier, Boyer, & Leroyer, 2011;
Candelier, Porez, & Boyer, 2013). For freely-flapping bodies, this purely inviscid
model must be complemented by a dissipative drag to account for the effect
of lateral flow separation (Candelier et al., 2011). This physical feature of the
flow field is described here by a quadratic drag associated with the normal
displacement of the plate (Taylor, 1952). The result is a purely local formulation
of the flow forces Ffluid (Eloy, Kofman, & Schouveiler, 2012; Michelin & Doaré,
2012; Singh et al., 2012),



160 Y. XIA ET AL.

Ffluid = −πρH2ma

4

(
∂(unn)

∂t
− ∂

∂s
(utunn) + 1

2
∂(u2nt)

∂s

)
− 1

2
ρcdH|un|unn,

(10)
which is expressed solely in terms of the local relative velocity ur of the solid
plate with respect to the background flow:

ur = ∂x
∂t

− U∞ = utt + unn. (11)

In Equation (10), ma and cd are the added mass and drag coefficients. For the
rectangular cross section considered here,ma = 1 and cd = 1.8.

A main advantage of this method is that it doesn’t require an explicit com-
putation of the flow field which is embedded in Lightill’s theory; this provides
a strong reduction in the computational time, which is particularly convenient
for large parametric or optimisation analyses. This feature is also one of its main
drawbacks, when dealing with multiple structures or confinement. A general-
isation of this method to deal with such configuration was recently proposed
(Mougel, Doaré, & Michelin, 2016).

2.5. Output connection and energy efficiency

The connectivity of adjacent piezoelectric pairs leaves two pairs of electrodes
free at each end of the flag that can be connected to an output circuit. In the
following, we consider that the output circuit, namely a resistive load Rext, is
connected at one end of the flag, the other one being shunted (see Figure 2).
As a result, depending on the position of the harvesting circuit, the boundary
conditions at the leading and trailing edges of the flag write:

Leading edge harvesting: v(s = 0) = Rext
r

∂v
∂s

(s = 0) and v(s = L) = 0,

(12)

Trailing edge harvesting: v(s = 0) = 0 and v(s = L) = −Rext
r

∂v
∂s

(s = L).

(13)

The output resistance is a proxy for the output circuit that uses the energy
produced by the flag, therefore the output power of the system is defined as

P =
〈
v2e
Rext

〉
, (14)

where ve is the voltage at the output resistance (ve = v(s = 0) or v(s = L) for
a connection at the leading or trailing edge, respectively), and the efficiency η of
the system can be defined as

η = P
Pref

, with Pref = 1
2
ρU3∞HA, (15)
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namely, the ratio of the output power P to the kinetic energy flux Pref through
the surface occupied by the flag (here A is the peak-to-peak flapping amplitude
at the trailing edge).

2.6. Energy transfers along the flag

The flapping of a piezoelectric flag induces energy transfers between three dif-
ferent systems: the flowing fluid, the moving structure and the output electri-
cal circuit. The conservation of mechanical energy is obtained by projecting
Equation (7) onto the flag’s local velocity

∂Ek
∂t

+ ∂Eel
∂t

= −∂Fm

∂s
− T + Wf , (16)

where Ek = ρs|∂x/∂t|2/2 and Eel = B(∂θ/∂s)2/2 are the local kinetic and elastic
energy densities on the flag, and

Fm = −∂x
∂t

·
[
Tt − ∂

∂t

(
B

∂θ

∂s
− χv

)
n
]

− ∂θ

∂t

(
B

∂θ

∂s
− χv

)
, (17)

T = −χv
∂2θ

∂t∂s
, (18)

Wf = ∂x
∂s

· Ffluid, (19)

are, respectively, themechanical energy flux along the flag (i.e. the rate of work of
internal forces and torques, measured positively from leading to trailing edge),
the local rate of energy transfer from the flag to the circuit (solid-to-electric
energy transfer), and the rate of work of the fluid forces (fluid-to-solid energy
transfer). The local conservation of electrical energy within each piezoelectric
pair is obtained by multiplying the time-derivative of Equation (4) by v and
writes

∂EC
∂t

= T − Pel , (20)

with EC = cv2/2 the energy stored in the piezoelectric capacitance, and Pel =
−vq̇ the rate of energy transfer from the piezoelectric pairs to the circuit. Finally,
for the nonlocal circuits considered here, Equation (5) leads to

Pel = Pi + ∂Fel

∂s
, (21)

with the electrical energy flux along the flagFel measured positively from leading
to trailing edge, and the rate of dissipation of electrical energy in the internal
resistors Pi, respectively, defined as

Fel = −v
r

∂v
∂s

and Pi = 1
2r

(
∂v
∂s

)2
. (22)
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Themechanical boundary conditions on the flag imposed a fixed trailing edge
and a free trailing edge, so that displacement or mechanical load vanishes at
either end, in both rotation and translation. Therefore, Fm(s = 0, L) = 0 (no
flux of mechanical energy out of the flag). The electric boundary conditions,
Equations (12) or (13), lead to P = −Fel(s = 0) (leading edge harvesting) or
P = Fel(s = L) (trailing edge harvesting). The electrical energy flux vanishes at
the shunted extremity of the flag (v = 0). Note that it would be the same for an
open circuit condition (∂v/∂s = 0).

2.7. Non-dimensional equations

Equations (6), (7), and (10) together with boundary conditions (8)–(9) and
(12)–(13) form a closed set of equations for the flag’s position x, the internal
tension T and the voltage across the piezoelectric layers v. These equations are
made non-dimensional using L, L/U∞, ρHL2 and U∞

√
ρsc as characteristic

length, time, mass and voltage. The problem is then completely determined by
six non-dimensional parameters, namely

H∗ = H
L
, M∗ = ρHL

ρs
, U∗ = U∞L

√
ρs

B
, (23)

α = χ√
Bc

, β = rcU∞L, βext = RextcU∞. (24)

H∗ is the plate’s aspect ratio, and M∗ denotes the fluid-to-solid mass ratio: for
largeM∗ added mass effects dominate the solid inertia.U∗, the reduced velocity,
is a relative measure of the destabilising effect of flow forces on the flag and
of the stabilisation by internal rigidity. α is the coupling coefficient and scales
both the direct and reverse coupling between the electrodynamic andmechanical
problems. β is the non-dimensional internal resistance of the circuit, and βext
the external reduced load of the output circuit.

3. Non-linear dynamics and Energy harvesting

3.1. Methods

The non-dimensional form of Equations (6), (7), and (10) and boundary con-
ditions Equations (8)–(9) and (12)–(13) are marched in time numerically using
a second-order semi-explicit scheme (Alben, 2009; Michelin & Doaré, 2012) in
order to obtain the dynamical position of the flag x(s, t) and of the internal
voltage v(s, t). At a given instant t̃, the equations are recast as a set of non-linear
equations F(X) = 0, where X is a vector containing the discretised version of x
and v at t̃. Integrals and derivatives in space are computed using a Chebyshev
collocation method. The non-linear system is solved at each time step iteratively
using Broyden’s method (Broyden, 1965).

Initially, the internal piezoelectric capacitance is uncharged (v = 0) and
the flag is slightly displaced from its equilibrium position. Beyond a critical
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flow velocity, this perturbation is exponentially amplified by the fluid–solid–
electric interactions and spontaneousflappingdevelops (Michelin&Doaré, 2012;
Xia et al., 2015a). The system is marched in time until a permanent satu-
rated regime is achieved, for which time-averages can be defined without any
ambiguity.

The energy harvesting efficiency is a function of six non-dimensional pa-
rameters listed in Equations (23)–(24). Previous publications have focused on
the role of the inertia ratio M∗, on the relative importance of flow velocity and
bending rigidity measured inU∗, on the coupling coefficient α and on the aspect
ratio H∗ (Eloy, Souilliez, & Schouveiler, 2007; Eloy et al., 2008; Michelin &
Doaré, 2012). The goal of the present publication is to investigate the role of the
circuit’s structure on the energy harvesting performance, and more specifically
the effect of nonlocal electric coupling; in the following, we therefore focus on the
influence of the reduced resistances β and βext on the harvesting performance.
All simulations are thus performed forH∗ = 0.5, α = 0.3, andU∗ = 15, a value
that is sufficiently above the critical flow velocity in the absence of piezoelectric
coupling to avoid any restabilisation of the structure due to the fluid–solid–
electric interactions.

3.2. Tuning and harvesting efficiency

Previous work on energy harvesting using piezoelectric flags has identified
the critical role of the synchronisation of the mechanical and electrical
systems to maximise the energy transfers to the output resistance, whether for
purely resistive circuits (tuning, Michelin & Doaré, 2012) or resonant circuits
(lock-in, Xia et al., 2015a). In the present case of nonlocal energy harvesting,
Figure 3 identifies a non-trivial evolution of the efficiency with the internal and
output resistances, and two optimal tuning regimes, namely for β ∼ βext = O(1)
and for large but finite βext and β . The position of these optimal configurations
in the (β ,βext)-plane varies only weakly with the fluid–solid parameters (see in
Figure 3 for the role of M∗ which plays a critical role in selecting the flapping
mode shape), although the peak efficiency achieved in those configurations and
their relative magnitude may change.

The non-dimensional parameters β and βext can be understood as ratios of an
electric time-scale to the typical fluid–solid time scale associated with the fluid
advection along the flag, and more generally the flapping frequency. When β

(resp. βext) is much lower or much greater than one, the internal (resp. output)
resistance behaves as short or open circuit.

The existence of an optimal configuration for finite β and βext is therefore
expected. When βext � 1 or βext � 1, the output circuit effectively behaves as a
short-circuit or open-circuit, respectively, leading to either no voltage or current
through the output circuit and no energy dissipation. Similarly, when β � 1,
the internal resistor connecting neighbouring piezoelectric patches effectively
behave as short circuits, leading to a uniform voltage along the piezoelectric flag.
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(a) (b)

(c) (d)

Figure 3. (Top) Harvesting efficiency η as a function of β and βext for (a) M∗ = 1 and (b)
M∗ = 10, with a harvesting resistor positioned at the leading edge. The dashed line corresponds
to the optimal impedance tuning condition, Equation (31). (Bottom) Flapping motion of the
piezoelectric flag obtained for (c) M∗ = 1, β = 1.95 and βext = 1.05, and (d) M∗ = 10,
β = 1.2 × 104 and βext = 140. The flapping frequency is measured as (c) ω = 1.7U∞/L and
ω = 6.2U∞/L, respectively. For all panels, α = 0.3, H∗ = 0.5 and U∗ = 15.

The current powering the output resistance is proportional to ∂v/∂s, therefore
β � 1 results in negligible energy harvesting. Finally, when β � 1, the internal
resistors effectively behave as open circuits, effectively disconnecting the different
piezoelectric elements. The output circuit is then only powered by the single
closest patch, and for infinitesimal patches, leads to negligible efficiency.

3.3. Tuning: a simplifiedmodel

The complexity of the problem comes here from the two-way coupling between
the fluid, solid and electric dynamics. To rationalise the results presented above,
we analyse a simpler problem, namely that of a prescribed flag kinematics. This
is effectively equivalent to neglecting the effect on the flag’s kinematics of the
feedback coupling, or at least of the change in the feedback coupling introduced
by varying the resistance parameters β and βext; this is a good approximation in
the limit of small α.

3.3.1. Optimal external tuning
For simplicity, the flag’s deformation is described as a travelling wave

θ(s, t) = 	
[
�0ei(ks−ωt)

]
, (25)
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with	[ζ ] the real part of a complex number ζ . The voltage in the circuit satisfies
Equation (5) togetherwith boundary conditions, Equation (12).Writing v(s, t) =
	 [

f (s)e−iωt], f (s) is the unique solution of

f ′′ + iωrcf = kωχr�0eiks, f (0) = Rext/rf ′(0), f (L) = 0. (26)

Writing a = √
iωrc = √

ωrc/2(1 + i), f (s) is obtained as

f (s) = kωχr�0

a2 − k2
[
A sin (as) + B sin (a(s − L)) + eiks

]
(27)

with

A = − eikL

sin (aL)
and B =

1 + γ
(

aLeikL
sin (aL)

− ikL
)

γ aL cos (aL) + sin (aL)
, (28)

and γ = βext/β . The total output power is then obtained as

P =
〈
v(s = 0)2

2Rext

〉
= |f (0)|2

2Rext
= (kωχr�0)

2

2Rext(k4 + ω2r2c2)
|1 − B sin (aL)|2 . (29)

After substitution,

P = r
2γ L

(
(kωχ�0)

2

k4 + ω2r2c2

) ∣∣∣∣∣
γ aL( cos (aL) − eikL) + iγ kL sin (aL)

γ aL cos (aL) + sin (aL)

∣∣∣∣∣
2

. (30)

MaximisingP with respect to the output resistance, all other dimensional quanti-
ties being held constant, is equivalent tomaximising γ /|γ aL cos (aL)+sin (aL)|2
with respect to γ . It is easily shown that the optimal value for γ is γopt =
| tan (aL)/aL|. Recalling that aL = (1+ i)

√
βω̄/2 (with ω̄ = ωL/U∞), this leads

to an optimal relationship between βext and β :
(

βext

β

)2
= 1

βω̄

[
cosh (

√
2βω̄) − cos (

√
2βω̄)

cosh (
√
2βω̄) + cos (

√
2βω̄)

]
= F(βω̄). (31)

For each value of β , this optimal output tuning is shown on Figure 3 as a dashed
line and coincides with the location of the two optimal configurations identified
in the non-linear simulations. Two regimes can be identified: (i) for βω̄ � 1, the
optimal tuning of the internal and output impedance corresponds to βext ∼ β

(F ∼ 1), and the total internal resistance and output resistance are similar; (ii) for
βω̄ � 1, βext ∼ √

β/ω̄ and the internal resistance dominates (F(βω̄) ∼ 1/βω̄).
This argument explains the existence of an optimal tuning between the output

resistance (βext) and its internal counterpart (β), and can be understood as an
optimal matching of impedance between the continuous piezoelectric layer and
the output connection. These results do not explain however why little energy is
harvested for intermediate β (regardless of βext).
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(a) (b)

Figure 4. Non-dimensional harvested power P (a) and internal dissipation Pi (b)t as a function
of varying internal and external resistances β and βext. For both panels, the dimensional powers
are scaled by ρU3∞HL, andM∗ = 1, α = 0.3, H∗ = 0.5 and U∗ = 15.

3.3.2. Avoiding internal dissipation
To understand this second feature of Figure 3, we turn back to the non-
dimensional form of the electric equation, Equation (5). Its homogeneous part
(i.e. without the piezoelectric forcing) reads

∂2v
∂s2

− β
∂v
∂t

= 0, v(0) = βext

β

∂v
∂s

(0), v(L) = 0. (32)

which is formally equivalent to the heat equation. The characteristic time of the
internal electrical network can be determined by searching for v = e−t/τV(s).
After substitution in the equation above, this imposes that τ = β/λ2 with λ

solution of
tan λ

λ
+ βext

β
= 0. (33)

FollowingMichelin and Doaré (2012), we expect the dissipation to be maximum
in the internal circuit when ωτ ≈ 2π . When β/βext � 1 or β/βext � 1,
λ ≈ π/2 or π , respectively, which leads to ωβ ∼ π3. The frequency of flapping
ω is essentially imposed by the flag motion, and this leads to a region of finite
β where dissipation in the internal circuit is maximum, leaving little energy
available to the output circuit (Figure 4). Note that this β-range depends only
weakly on βext.

The optimal harvesting conditions for nonlocal electric circuits can therefore
be summarised as follows:

• An optimal tuning of the internal and external impedances so that energy
flowing to the harvesting end is entirely dissipated in the output resistor
and only little energy is reflected.

• A minimisation of the internal dissipation by avoiding the perfect tuning
condition between the flapping flag and the internal circuit.

It should be noted that these conclusions are intrinsically linked to the general
flapping pattern of the flag and more specifically the propagation of bending
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Figure 5. Comparison of the electrical energy fluxes Fel with no harvesting resistor (blue) and
for harvesting resistance at the leading or trailing ends (red and green, respectively) α = 0.3,
H∗ = 0.5,M∗ = 1, U∗ = 15, β = 1.95, βext = 1.05 (optimal configuration on Figure 3).

waves that act as a forcing mechanism on the circuit through the electro-
mechanical coupling. The detailed fluid dynamics around the flag only plays
a secondary role as exemplified by the agreement of the simulations and the
results of simplified model. While a more complex representation of the flow
field (e.g. using direct numerical simulations of the flow field) is likely to modify
the exact details of the flapping pattern and the values of the harvested energy,
the main results presented here, in particular the optimal harvesting conditions,
would only be marginally modified.

4. Electric energy transfers along the flag

Theprevious results emphasise the critical role of energy transport along the non-
local electrical circuit. In the analysis of energy transfers proposed in
Section 2.6, this corresponds to the electric flux Fel which is the rate of electrical
energy transfer in the flow direction (left to right) at location s. Because the
output resistor cannot store electrical energy, the output power P is simply
−Fel(0) (resp. Fel(L)) for a resistance located upstream (resp. downstream).

In the absence of any output resistance, the electrical flux must vanish at
both ends. Nevertheless, its variations indicate the amount of electrical energy
transferred along the flag by the internal circuit (Figure 5). One easily notes that
the downstream half of the flag is characterised by an electrical energy transport
in the direction of the flow and of the mechanical bending waves, while the
upstream half is characterised by a reverse and lower energy transport against
the direction of the flow. At both ends of the flags, the electrical energy flux
is therefore directed towards the flag’s extremities. Since it must vanish there,
energy must be either (i) returned to the mechanical system, and eventually the
fluid flow, or (ii) dissipated in the output resistance.

The addition of an output resistance does not modify this general direction
of transport of electrical energy Fel , but significantly impacts its quantitative
distribution, in particular in the vicinity of the harvesting extremity where Fel is
not zero anymore, as shown on Figure 5. The addition of an output resistance
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effectively relaxes the constraint on Fel that imposed to dissipate or convert
this energy when no output circuit was present: the energy can now be simply
transferred to the output circuit.

This qualitative picture therefore suggests that an important insight on the op-
timal harvesting location can be gained from the distribution of electrical energy
flux. Indeed, larger electrical energy flux at the boundary is equivalent to a larger
output efficiency by definition, and Figure 5 suggests that one can determine the
optimal location for the output circuit a priori from the distribution of electrical
energy flux in the absence of any harvesting: a greater amount of energy transport
within the internal circuit in the vicinity of one of the flag’s extremity is likely to
lead to greater efficiency once a harvesting resistance is added. This amounts to
analysing ∂Fel/∂s near the boundary in the reference case.

For the configuration considered in Figure 5 (M∗ = 1), this would suggest
that trailing edge harvesting is more efficient, which is indeed confirmed by
comparing the actual performance of both configurations (Figures 3 and 6).
For M∗ = 1, the maximum efficiency obtained is an order of magnitude larger
for trailing edge harvesting than what is obtained with a leading edge output
circuit. Results obtained for larger M∗ (higher order flapping modes) show the
same trend, but the gain is much less pronounced, suggesting a more com-
plex mechanism. For both M∗, a single peak is obtained in the harvested effi-
ciency which lies on the theoretical prediction of the simplified tuning model,
Equation (31). Repeating the analysis of Section 3.3 indeed shows that the optimal
link between β and βext is not modified by moving the harvesting resistance to
the trailing edge. The optimal value of β , and its relative position with respect to
the region of maximum internal dissipation, is however modified, as well as the
magnitude of the efficiency peak. The combination of these effects results in the
existence of a single peak of efficiency (in contrast with two different peaks for
leading-edge harvesting).

Furthermore, the distribution of electrical energy flux (Figure 5) suggests that
alternative strategiesmaybe evenmore efficient, namely byplacing theharvesting
resistance in the regions of maximum electrical energy flux. While beyond the
scope of this study and modelling framework which focuses on a continuous
model of the internal circuit, this opens new opportunities in the optimal design
of efficient harvesting systems.

5. Conclusions

Powering an output external circuit from the flow-induced vibrations of a flexible
structure requires dealing with a double complexity. On the mechanical side,
flexibility allows for a continuous deformation and the solid’s dynamics are
characterisedby a largenumberof degrees of freedom.Efficient energyharvesting
requires to carefully analyse the effect of the extraction of energy on the flapping
dynamics and on the energy transfers along the structure, often requiring a global
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(a) (b)

Figure 6. Harvesting efficiency η as a function of β and βext for (a)M∗ = 1 and (b)M∗ = 10, with
a harvesting resistor positioned at the trailing edge.
Notes: The dashed line corresponds to the optimal impedance tuning condition identified in Equation (31). Here,
α = 0.3, H∗ = 0.5 and U∗ = 15.

optimisation approach. On the electrical side, the continuous deformation of the
structure must be exploited to produce a single electrical forcing to power the
useful load. The approach presented here proposes a novel solution to deal with
both challenges, by coupling the continuous mechanical system to a continuous
electrical system and exploit the energy exchanges between mechanical and
electrical waves along the flapping structures.

A minimal model for an output circuit was analysed here, namely a single
output resistance connected to one end of the flag.Optimal harvesting conditions
were determined in terms of the characteristic output and internal impedance.
Maximum energy transfer to the output circuit and maximum efficiency were
obtained upon satisfying two different conditions: (i) an impedance tuning of the
internal and output circuits to avoid reflection of energy, and (ii) an operating
regime outside the range leading to maximum internal dissipation.

The analysis of the electrical energy transfers along the flag shows that energy
harvesting is maximum when the output resistance is positioned near the flag’s
extremity where large electrical transport is present; in the absence of an output
resistance, this energy needs to be either returned to the flow or dissipated
internally, but the addition of an output circuit releases this constraint, and
the available energy can be dissipated optimally in the harvesting circuit.

This analysis suggests potential optimisation routes for the positioning of
the harvested circuit along the flag. This question is in fact critical for flow
energy harvesting, beyond this particular geometry as demonstrated by several
recent studies on energy harvesting using Vortex-Induced Vibrations of cables
(Antoine, deLangre,&Michelin, 2016;Grouthier,Michelin, Bourguet,Modarres-
Sadeghi, & de Langre, 2014), and should be investigated in future work for
piezoelectric flags.
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